
Causal Reasoning and Inference in Epidemiology

Vanessa Didelez

Chapter in the upcoming 3rd edition of Handbook of Epidemiology (eds. Wolfgang Ahrens & Iris Pigeot),
Springer New York

Key words: causal discovery; causal mediation; directed acyclic graphs; g-formula; instrumental variables;
potential outcomes; target trial emulation; propensity score; treatment-confounding feedback
Abstract The chapter gives an introduction to basic concepts of causal reasoning and to key methods
for causal inference as developed and used in epidemiology over the last two decades. It begins with some
considerations about formulating causal questions, e.g., using the idea of a target trial, and their mathematical
formalization via potential outcomes. We then address typical assumptions and methods for estimating causal
effects under a variety of causal models. The methods include estimating point and time-dependent treatment
effects, e.g., via inverse probability of treatment weighting, or using natural experiments such as instrumental
variable estimation. While confounding bias is always a concern when using observational data, we discuss
how the principle of target trial emulation offers some protection against other, often self-inflicted biases
such as immortal time bias. The chapter concludes with the special topics of causal mediation analysis and
causal discovery, which both aim at investigating direct and indirect causal pathways.

1 Introduction

A core aim of epidemiological research is to investigate how to retain or improve health, e.g., by assessing
the potential benefits of behavioral changes, the impact of new health policies, and the effectiveness (or
harm) of preventive measures, new treatments, or modified treatment strategies. Such questions go beyond
modeling of how things currently are, for which we use ‘associations’, but instead address how things would
be (or would have been) under different options for action, changes, or interventions — they are therefore
‘causal’ questions. It is also typical of epidemiology to rely on observational (i.e., mostly non-interventional or
non-experimental) data, such as cohort studies, or routinely collected data, such as electronic health records
(EHR). The field of causal inference provides a methodological framework for defining and quantifying
causal effects, under specific assumptions, with the ultimate aim of obtaining actionable results, such as
recommendations or guidelines for decision makers, e.g., individuals, doctors, or health authorities.

Two key elements characterize the field of causal inference: (a) An explicit and formal definition of the
causal target of inference (often decoupled from parameters of statistical models and measures of association);
and (b) a formal statement (and scrutiny) of the assumptions under which this causal target is identifiable
from observable data. For the statistical analysis, it turns out that standard methods often require rather
restrictive assumptions or are not sufficiently flexible. Hence, these two key elements are usually followed
by a third element: (c) A wide range of specialized statistical methods for causal inference that are tailored
to the specific causal targets, their assumptions, and critical evaluation. However, the specialized statistical
methodology alone does not make a causal analysis; without (a) and (b) it will be difficult for a causal
analysis to be convincing.

The literature provides some guidance on how to bring the above points (a)–(c) to life in any given ap-
plication: Petersen and van der Laan (2014) propose a causal roadmap beginning with the data generating
causal model and ending with a possible causal interpretation of the statistical findings (for a recent synthesis
see Dang et al (2023)); Hernán and Robins (2016) stress the importance of framing and designing an obser-
vational study so as to emulate a target trial; Goetghebeur et al (2020) list eight steps of formulating causal
questions to obtain principled statistical answers; Young (2024) emphasizes the importance of a motivating
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causal story. Inspired by the above, the present chapter gives an introduction to causal reasoning and causal
inference in epidemiology. Figure 1 summarizes the key aspects of a causal analysis that will be discussed.
We focus on the main ideas and principles with no claim to mathematical detail or completeness, for which
we refer to the original literature and key textbooks (Pearl, 2009; Rosenbaum, 2010; Hernán and Robins,
2020).

Summary. Section 2 discusses aspects relevant to formulating causal research questions in terms of hy-
pothetical interventions, and more formally using potential outcomes. In Section 3, causal models using
directed acyclic graphs (DAGs) are briefly introduced (see also Chapter on Causal Directed Acyclic Graphs
by R. Foraita et al in this book) which are helpful to justify typical assumptions, e.g., to rule out un-
measured confounding. Bringing causal questions, models and assumptions together, Section 4 presents the
main principles of statistical estimation of causal effects. Section 5 addresses important issues of designing
observational studies in a way to avoid common sources of bias beyond confounding. The special topic of
causal mediation analysis, investigating direct and indirect causal effects, is covered in Section 6, while the
exploratory tool of causal discovery, i.e., data-driven approaches for finding causal structures, is the subject
of Section 7.

2 Formulating Causal Research Questions

It is a matter of debate whether or not it is possible to conduct valid (or even useful) causal inference when
premised on an ill-defined causal question (Greenland, 2017; Hernán, 2018a; Young, 2024). At the least,
it seems difficult to speak meaningfully about bias (cf. Section 3.2, and the Chapter Sensitivity Analysis
and Bias Analysis by S. Greenland in this book) if the target of inference is not well-defined. We therefore
begin with some points of consideration when formulating causal research questions. Even though typical
of epidemiological research, it is not self-evident how to specify a causal question (Fox et al, 2019; Hernán
et al, 2019; Young, 2024) and some journals still discourage declaring a research question as being ‘causal’
(Hernán, 2018a). However, in line with many voices in causal inference, we posit here that in order to obtain
a causal answer we must begin with an explicit causal question, not only for general transparency but also
as a crucial prerequisite for determining an appropriate statistical analysis and for a critical appraisal of the
findings.

To elicit and clarify the causal nature of a research question, as opposed to descriptive or purely predictive
questions (Hernán et al, 2019), one can follow a number of strategies depending on the field of application.
It can help to clearly define the decision problem(s) one aims to inform (Dawid, 2021). For example, in the
context of a suspected teratogenic medication, we may ask what actionable advice women might seek who
are planning to become pregnant; this may be different for those who already are pregnant. It can also be
helpful to discuss what, possibly hypothetical, intervention one might introduce. For example, parents could
be given advice by local kindergarden teams on bed-time routines so as to increase the sleep duration of their
children. Such interventions are hypothetical because, typically, they were not carried out in the observational
data at hand. To quote Hernán and Robins (2020), causal inference addresses “What if. . . ?” questions1.

It is furthermore good practice to specify the research question by formulating a hypothetical trial that
would directly inform our decision problem or choice of interventions, even if this trial is not practically
feasible for ethical, financial or other reasons (Didelez, 2016). This concept of a target trial is introduced in
Section 2.1; the practical emulation of a target trial with available data is discussed later in Section 5. Much
of the methodological literature on causal inference has focused on the mathematical formulation of different
types of causal effects and their subsequent statistical estimation. We address the former in Section 2.3 after
introducing formal notation and terminology in Section 2.2; methods of estimation are deferred to Section
4.

2.1 Decision Problems and Target Trials

It is widely accepted that randomization, and thus randomized controlled trials (RCTs), deliver causally
interpretable results. However, RCTs have a number of further characteristics, in addition to randomization,
that facilitate a clear and meaningful interpretation. Following the design principles of an RCT even when
using observational data has been shown to resolve seemingly conflicting findings, for instance, comparing

1 While Pearl and Mackenzie (2018) view causality as being about “Why?” questions.
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Fig. 1 Overview of key aspects and steps in a causal analysis.

earlier observational studies versus later RCTs on adverse effects of hormone replacement therapy (Hernán
et al, 2008). Hernán and Robins (2016) list the following key components to be specified for a target trial:
Eligibility criteria, treatment strategies to be compared, assignment to treatment strategies, length of follow-
up, outcome of interest, causal contrast and analysis plan. The thought process required to specify all these
components for an observational study prompts the researcher to borrow other strengths from RCTs, apart
from randomization.

What to compare. One key component is the explicit formulation of the trial arms which should reflect
the decision options or hypothetical interventions to be compared. For instance, in the above sleep example,
we may determine that we want to compare ‘no intervention’ (known as ‘natural course’) with a hypothetical
intervention imposing a bed-time routine that increases current sleep duration by 10%. In other examples,
we may suspect that a certain medication causes severe adverse events, but it may be challenging to define a
suitable comparison group, particularly when a ‘no treatment’ group is not practical or relevant (e.g., among
groups of very ill patients that are never left untreated and therefore always take an active medication). It
is also part of the trial arm definition to state whether we are interested in ‘point treatments’, i.e., one-off
treatments, or whether these are to be sustained over a given period of time. They could even be adaptive,
i.e., functions of the individual’s development, like increasing or decreasing the dosage in response to the
patient’s progress. To complete the definition of treatment arms, we need the definition of the outcome, which
deserves careful thought so as to be meaningful and well-defined under various circumstances. For example,
when interested in the risk of malformation as a pregnancy outcome, we have to consider that it may not
always be possible or meaningful for every pregnancy to determine whether there was a malformation or not,
e.g., when there was an early abortion or miscarriage.

Alignment at time-zero. A further important aspect of a target trial is the alignment of certain
components of the trial at baseline or time-zero. The elements to be aligned are (i) the inclusion and exclusion
criteria, which must be assessed before (ii) the assignment to trial arms, and finally (iii) the start of follow-
up with the moment of randomization. This sequence is natural in RCTs but not in observational studies,
e.g., when using EHRs there is often no unique time-zero. Importantly, the alignment facilitates the clear
formulation of a research question in the context of time-dependent treatments. It has been illustrated in
various settings that a failure to align these elements in the design of observational studies can lead to
considerable bias (Hernán et al, 2016; García-Albéniz et al, 2017; Dickerman et al, 2019; Braitmaier et al,
2024).

Many treatments in epidemiology are long-term behaviors or exposures, e.g., ‘smoking’, so that it is tempt-
ing to summarize them into a single binary indicator, e.g., ‘current smoker’ or ‘former smoker’. However, a
treatment definition such as ‘former smoker’ is not well-defined. It would be infeasible to design a trial where
participants are randomized to be ‘former smokers’ as we would need to randomize the past. Thus, it violates
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the alignment and lumps together possibly very long periods of time ignoring that, in this example, those
who started smoking and remained smokers may be very different from those who started and soon stopped
again. To obtain alignment and ask a more precise research question we might formulate a time-window
during which smoking should start, e.g., adolescence, and then consider sustained or discontinued smoking
separately, while ‘never smoking’ or ‘later start of smoking’ may serve as control arms.

A causal story. Formulating a target trial to make the research aim transparent has been adopted
especially in pharmacoepidemiology, a field that lends itself to this framework due to its typical research
questions and data sources such as EHRs or health claims data. In other fields the target trial principle has
sometimes been regarded as limiting the research questions that can be asked (Pearce and Vandenbroucke,
2023). However, target trial examples have been developed for a large variety of questions and designs in-
cluding, for example, dietary studies (Chiu et al, 2021). Experience shows that the ensuing clarity of the
analysis much improves scientific practice (De Stavola et al, 2023; Didelez et al, 2024). Still, a target trial has
to be preceded by a ‘causal story’ that generates the research question. This story may be quite distant from
what has actually been measured in the available data which, in turn, may result in a perceived difficulty of
mapping the question to a target trial. For instance, common exposures in epidemiology include biomarkers,
air pollution, body mass index (BMI) or birth weight – none of these can directly be randomized in a real
trial. But there are ways to target and modify them indirectly via interventions, e.g., traffic rules, physical
activity programs in school, or support during pregnancy, and the causal effects of such interventions are of
much relevance to health outcomes. In the sleep example, there is no practical intervention that ‘fixes’ sleep
duration at a given value, but the causal story could be extended to a hypothetical intervention imposing
a bed-time routine that increases sleep duration by 10%. Other situations are even more complicated: For
example, to explain the inverse association between cancer and dementia, Rojas-Saunero et al (2024) sug-
gest constructing a target trial with a hypothetical drug that increases Pin1 expression (a protein involved
in the cell cycle) specifically in the brain tissue even though such a drug does not (yet) exist and Pin1
expression was not measured in the available data. To quote Greenland (2017), ‘practical concerns should
prod us to extend our analysis to potentially modifiable components of the initial study factors, for which
potential outcomes can be made precise’. Explicitly addressing the gap between available data and causal
research questions will guide sensitivity analyses and improve data collection in future studies (Young, 2024).

Bibliographic notes: Further discussion of the issue around well-defined causal research questions with
examples can be found in Hernán and Taubman (2008) or Hernán (2016). There is also a debate on the
difficulty of specifying causal questions in the field of social epidemiology, with exposures such as socio-
economic status or race (Kaufman, 2019; Galea and Hernán, 2019; Jackson and Arah, 2019). Ramspek
et al (2021) provide a review on the common practice of not clearly distinguishing between prediction and
causality (see also van Geloven et al (2020)). The popular but ambiguous notion of ‘risk factor’, which may
or may not be intended to have a causal meaning, is dissected by Huitfeldt (2016). Practical difficulties in
determining the research question in observational pharmacoepidemiology are highlighed by Luijken et al
(2023).

2.2 Terminology: Association and Causation

In this section we introduce some basic concepts of a formal framework for articulating causal research
questions. This allows precision when it comes to showing (mathematically) which method is valid under
which assumptions. While realistic research questions can be quite complex, as illustrated with some of
the above examples, we keep the formalization basic for the sake of simplicity and to keep a focus on key
principles. Note that we usually speak of treatments rather than exposures as the objects of causal inference;
for instance, ‘smoking’ can also be a ‘treatment’.

In one aspect, however, we will be less simple than most introductory texts. Throughout we keep in mind
the time-dependence of treatment variables, A1, A2, . . . , because few typical exposures in epidemiology are
point treatments, i.e., occur at a single point in time. In fact, timing or duration of treatments or exposures
play an important role in many studies. Moreover, the causal assumptions and methodology in the context of
sequential treatments are distinct from point treatments because relevant events can occur between sequential
treatments. These events may be causally affected by earlier and in turn affect later treatments and out-
comes, which requires more complex assumptions and methods. When we do consider a point treatment we
will retain the subscript A1 as a reminder that this is often only the first in a sequence of treatments. The key
challenges that occur for time-dependent treatments can already be explained with just two sequential treat-
ments A1 and A2, so we mostly restrict the exposition to this case. Further, we denote the outcome variable
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by Y and other variables or covariates by a set X or X1, X2, . . . , Xp, where the latter may sometimes have
a temporal order; unmeasured variables are denoted by U . For simplicity, all variables are considered discrete.

Probabilistic versus causal dependence. We use the notation P (Y = y |A1 = a1) and E(Y |A1 = a1)
to denote conditional probabilities and conditional expectations, respectively. These describe associative
dependencies. For instance, if P (Y = y |A1 = 0) ̸= P (Y = y |A1 = 1) then both variables are associated
and A1 is predictive of Y (and, in fact, vice versa). Multivariable regression models are usually models for
E(Y |A1, X1, X2, . . . , Xp), as addressed in the Chapter on Regression Methods for Epidemiological Analyses
by S. Greenland in this book, where (X1, X2, . . . , Xp) may or may not be ordered in time. In our context,
multivariable regressions aim at describing the dependence of Y on treatment A1 after accounting for (i.e.,
conditioning on) the covariates (X1, X2, . . . , Xp). Further, we use the notation Y ⊥⊥ A1 |X for conditional
independence (Dawid, 1979); in this instance, conditional independence would imply that P (Y = y |A1 =
a1,X = x) = P (Y = y |X = x). Of note, unlike causal relations probabilistic dependence is symmetric so
the same conditional independence also implies that P (A1 = a1 |Y = y,X = x) = P (A1 = a1 |X = x).

An intuitive way to formally distinguish association from causation is via the ‘do-operator’ (Pearl, 1995,
2009). Here, do(A1 = 0) denotes an intervention that fixes A1 at zero. Hence, E(Y | do(A1 = 0)) now denotes
the expected value of Y under such an intervention on A1. That ‘association does not imply causation’ is
formally expressed as

P (Y = y |A1 = 0) ̸= P (Y = y | do(A1 = 0)).

Moreover, if P (Y = y | do(A1 = a1)) = P (Y = y), for all a1, we have that A1 does not cause Y (at popula-
tion level).

Potential outcomes. The above do-operator is not common in the epidemiological literature. Instead,
potential outcomes (POs) are more popular as a means to formalize causal quantities. We denote by Y (a1)
the potential outcome if A1 were set to a1 by some intervention2 (Rubin, 1974, 2005); if A1 is a binary
treatment vs. control variable we have two potential outcomes, Y (a1 = 1) and Y (a1 = 0) (written Y (1) and
Y (0) if unambiguous). POs for different treatment values can never be observed jointly because only one
value of treatment can be realized for any given individual at any time; they are therefore commonly known
as ‘counterfactual’ outcomes. For a discussion of the subtle differences between hypothetical, potential and
counterfactual outcomes see Dawid (2007). For many practical purposes, we can consider E(Y | do(A1 = 0))
as expressing the same notion as E(Y (a1 = 0)), namely the expectation of the outcome under this particular
intervention on A1. Under the assumption of consistency (introduced below), we have that the observable
outcome Y equals the potential outcome Y (A1) that occurs if treatment takes ‘the natural value’ that it
would take without intervention. If Y (a1) = Y , for all a1, then A1 does not cause Y (at individual level).

When we are interested in joint interventions on multiple, possibly time-dependent treatments, say
(A1, A2), we consider the POs Y (a1, a2). For instance, Y (a1 = 0, a2 = 0) expresses the PO under ‘never
treat’ whereas Y (a1 = 1, a2 = 1) is the PO under ‘always treat’ (never / always being only two points in
time, here); this may further be contrasted with Y (a1 = 1, a2 = 0) for the PO under ‘only early treatment’
or Y (a1 = 0, a2 = 1) for the PO under ‘late start of treatment’. Note that when we reduce a time-dependent
treatment sequence to the first treatment we effectively consider Y (a1) = Y (a1, A2), i.e., the outcome where
the value of the first treatment is imposed by an intervention and the second treatment is left to take its
natural value.

Cross-world assumptions and single world models. The language of POs allows us to express beliefs
or assumptions such as ‘P (Y (0) = 1 |Y (1) = 0) = 0.2’ stating that the probability of the outcome event
occurring without treatment is 0.2 given that, under treatment, the outcome event did not occur. This is a
genuinely counterfactual statement in the sense that it refers to a joint model for the POs (Y (1), Y (0)). Such
models or assumptions are termed cross-world because they combine two parallel worlds, one where treatment
is taken and the other where it is not taken (Dawid, 2000). Richardson and Robins (2013b) suggest a frame-
work for causal models that is restricted to a single world and does not allow cross-world assumptions, as
these are empirically never verifiable and therefore regarded as unscientific by some authors (Richardson and
Robins, 2013a; Stensrud et al, 2021; Andrews and Didelez, 2021). These single world models go back to the
so-called finest fully randomized causally interpretable structured tree graphs (FFRCISTGs) of Robins (1986).

Bibliographic notes: Binary treatments and interventions that fix a treatment at a given value are
still rather simplistic, even if we allow for sequential treatments. Frameworks for more complex treatment
strategies exist and are often more relevant in practical applications, e.g., shift interventions as mentioned
in Section 2.1 in the context of increasing sleep duration by 10%, or dynamic or adaptive interventions such

2 Other common notations are Y a1 or Ya1
.
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as ‘start treatment when a certain condition is met’ (Cain et al, 2010; Morzywołek et al, 2022). These are
‘generalized’ treatments and are sometimes denoted by the index g, and thus give rise to the potential outcome
Y (g) denoting the outcome when following, say, a specified dynamic strategy g. Other popular formal causal
modeling frameworks are based on structural equation models (SEMs), e.g., the non-parametric SEMs or
structural causal models which impose additional structure (Pearl, 2009; Peters et al, 2017). Perhaps the
most parsimonious framework, imposing the least structure, is that of influence diagrams proposed by Dawid
(2002) (see also Dawid and Didelez (2010) or Dawid (2015)).

2.3 Basic Notions of Causal Effects

With the terminology of Section 2.2 we now present some basic notions of causal effects, often called ‘causal
estimands’. These are defined without refering to, or requiring, a parametric model (Hernán, 2004). In the
following, we make a number of simplifications, such as binary treatments and either one, A1, or two possibly
sequential treatments, (A1, A2). However, we keep in mind that practically relevant causal effects usually
involve much more complex intervention(s), as in the above examples.

Individual, conditional, and average causal effects of a point treatment. Consider just a single
treatment A1 and potential outcome Y (a1) with a1 ∈ {0, 1}. Using the index i to denote an individual, we
define an individual causal effect (ICE) as a contrast of the individual potential outcomes Yi(1) versus Yi(0),
for instance ICE = Yi(1)− Yi(0). Given that potential outcomes cannot simultaneously be observed for the
same individual under different treatment settings, it is self-evident that no data or study design (not even
randomization) can inform us about individual effects without being supplemented by special assumptions
that are fundamentally untestable (Dawid, 2000; Hernán and Robins, 2020). We might view the index i as
replacing a description of all characteristics of an individual that could possibly be relevant. Hence, a less
stringent type of causal effect is obtained by averaging within meaningful subgroups, i.e., by conditioning on
a finite set of measured baseline (or pre-treatment) covariates Z such as sex, age and income. The conditional
average (causal) treatment effect (CATE) is given as

CATE(Z = z) = E(Y (1)− Y (0) |Z = z),

or in words, the average difference in outcome if all those in subgroup Z = z (e.g., women aged 40-45 with
low income) were treated versus if they were not treated. If the average is taken over the whole eligible
population, we obtain a (population) average causal effect (ACE),

ACE = E(Y (1)− Y (0)).

In words this is the average difference in outcome if all those eligible were treated versus if all of them
were not treated. Note that if the CATE differs for different choices of subgroups, Z = z, then there is effect
modification, or moderation, by (some variable in) Z. The ACE is then a weighted average of the CATEs over
the subgroups. Also note that all of these are total effects, in the sense that they describe differences between
the distributions (or just their expectations) of Y (1) and Y (0) regardless of exactly how the differences are
brought about.

A particular subgroup is that of the ‘treated’, meaning those who would naturally take treatment if
offered, i.e., where A1 = 1 without intervention. The average causal effect of treatment on the treated (ATT)
is defined as E(Y (1) − Y (0) |A1 = 1). This causal effect is relevant for policy makers when considering if,
say, a preventive measure such as a cancer screening program were to be offered because the effect would
only concern those who would take advantage of the program, a subgroup which might be quite different
from those who would not (Wang et al, 2017).

In all of the above, other contrasts can be used to replace the difference, such as the ratio, e.g., the
causal relative risk for binary outcomes. Odds ratios and hazard ratios are popular effect parameters, but
their causal interpretation involves some subtelties: The population odds- or hazard ratio is not usually a
weighted average of the conditional or subgroup odds or hazard ratios due to noncollapsibility (Greenland
et al, 1999; Hernán, 2010; Stensrud et al, 2017; Greenland and Pearl, 2011; Daniel et al, 2021). Furthermore,
the point treatment can, in principle, be replaced by a set of multiple treatments, though the contrast will
then typically involve more than two settings (Linden et al, 2016).

Multiple, sequential, controlled direct and interacting treatment effects. For all of the above
types of causal effects, we may replace the single treatment A1 by multiple treatments or a sequence of tem-
porally ordered treatments A1, A2, . . . , so as to obtain individual, conditional, and population causal effects
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contrasting joint interventions on the treatments. For instance, with two treatments, ACE = E(Y (a1 =
1, a2 = 1) − Y (a1 = 0, a2 = 0)) would be the population effect of ‘always’ or sustained treatment versus
‘never treat’ (we will also write this as ACE = E(Y (1, 1) − Y (0, 0))). It is clear that when comparing any
possible treatment sequence, there are a large number of potentially relevant contrasts. A special case is the
contrast E(Y (1, 1)−Y (0, 1)) where the second treatment is fixed at the same value, while the first is varied.
This can be interpreted as the controlled direct effect (CDE) of A1, fixing A2 = 1, because any effect that
A1 may have on A2, and thus indirectly on Y , will be cut off by the intervention fixing A2 (see also Section
6, below). An example where such an effect could be interesting is the question whether certain behaviors
in early childhood, e.g., high versus low physical activity, still have a remaining effect on adolescent health
if we could hypothetically ensure high physical activity levels in later childhood.

A further special case of joint intervention effects is that of causal interactions (this is regardless of any
temporal ordering of A1 and A2). A causal interaction occurs if the effect of intervening on A2 is different
depending on what we fix A1 to be, i.e., if E(Y (1, 1)−Y (1, 0)) ̸= E(Y (0, 1)−Y (0, 0)) (VanderWeele, 2015).
Note that this is not the same as effect modification (cf. above) for which we simply condition on other
observed variables. The difference is that for a causal interaction, both A1 and A2 must actually have a
causal effect on Y , whereas to be an effect modifier it would suffice to condition on a relevant subgroup
indicator or, say, a proxy for an unmeasured cause of Y .

Attributable fractions. Many more types of causal effects have been proposed in the literature. For
instance a contrast of a possibly sustained intervention versus no intervention, e.g., E(Y (a1 = 1, a2 = 1))
versus E(Y ), is referred to as the population intervention effect (Westreich, 2017). It quantifies how much
the average outcome would be different if a particular intervention were to be imposed versus retaining the
current state of affairs (or versus ‘standard of care’). In case of a binary outcome denoting presence of, say,
a disease, this type of contrast is often transformed to the attributable fraction (AF):

AF =
P (Y = 1)− P (Y (1, 1) = 1)

P (Y = 1)
.

Supposing that the intervention reduces the risk of disease, the AF denotes the proportion of diseased that
could be prevented by implementing the intervention in the whole population3. For example, Börnhorst et al
(2023) investigate whether a hypothetical intervention of sustained adherence to guidelines for healthy be-
haviors in children affected the 13-year risk of overweight/obesity compared to the natural course (i.e., not
doing anything differently). The population intervention effect, here, was estimated to be a risk reduction
by 5 percentage points. Transforming this, the estimated AF suggested that 17% of the 13-year risk of over-
weight/obesity in children were attributable to non-adherence to guidelines on sustained health behaviors.

Time-to-event and survival outcomes. When we have a time-to-event or survival outcome, Y , the
statistical analysis usually needs to deal with censored data. It is then popular to consider parameters on
the hazard scale, typically hazard ratios (HRs), as hazards are simpler to estimate under censoring. The
noncollapsibility of hazard ratios was mentioned earlier, which means that a HR version of a population
effect does not necessarily equal a weighted average of subgroup HRs. A second issue is the following: We
can define a ‘causal hazard ratio’ as the ratio of the hazard of the distribution of Y (a1 = 1) and the hazard
of the distribution of Y (a1 = 0). However, the interpretation is subtle because the hazard is based on a
conditional probability given survival, Y (a1) ≥ t, a1 = 0, 1, which will over time become different in the
treated versus control arm. Those surviving, say, one year on the treatment arm may be very different kinds
of patients from those surviving one year in the control arm (Hernán, 2010). The issue is, in fact, one of
post-treatment selection (Stensrud et al, 2017). However, to resolve the problem, it is often possible to use
flexible hazard models just as a tool when analyzing time-to-event data but to report causal effects on the
relative or absolute risk scale by suitably transforming the hazard functions (Cole and Hernán, 2004; Toh
et al, 2010; Sjölander, 2018; Daniel et al, 2021).

Bibliographic notes: Other types of causal effects include those of shift or stochastic (randomized)
interventions, as well as dynamic interventions mentioned above (Díaz and van der Laan, 2013). A special
type of subgroup effects are those restricted to a ‘principal stratum’ (Frangakis and Rubin, 2002). For
instance, when assessing the cognitive function in elderly patients, the principal stratum is often defined
as those who would be alive (so that cognitive function is well-defined) under treatment and under control.
Such principal stratum effects have been criticized due to their cross-world nature, and because the particular

3 Hernán and Robins (2020) distinguish the AF, or excess fraction, from the etiological fraction which is defined at individual
level.
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subgroup is indeterminable from observable data (Robins and Richardson, 2011; Dawid and Didelez, 2012;
Stensrud and Dukes, 2022).

3 Causal Models and Assumptions

Causal inference is typically conducted in the context of a causal (or structural) model, i.e., a model for
the probabilistic distribution of relevant variables and processes under the intervention(s) of interest and
under the absence of an intervention. A notable exception is, perhaps, a randomized trial where, by virtue
of randomization, a causal interpretation of an association between treatment and outcome is regarded as
acceptable without a causal model. However, even RCTs are usually not conducted without a motivating
question and background knowledge that not only provides justification for carrying out the RCT, but also
guides many of the RCT’s design choices. As such, one could consider this background knowledge as an
implicit causal model for RCTs.

In observational studies, a causal model makes the current state of knowledge as well as the assumptions
motivating or justifying a particular analysis explicit. It links the observable data to the (assumed) under-
lying data generating process and allows us to scrutinize and either exclude or be aware of possible sources
of bias. Basic causal models specify a minimum of relations (or their absence) between POs, observable and
possibly further latent variables. For instance, we could assume a basic model claiming that Y (a1) ⊥⊥ A1 |X
and that Y (a1) = Y if A1 = a1, which implies that conditionally on A1 = a1 and X = x we can equate the
distribution of Y with that of Y (a1). However, to make a convincing argument supporting the assumption
that Y (a1) ⊥⊥ A1 |X, more elaborate causal models can be helpful, such as causal directed acyclic graphs
(DAGs) covered in Section 3.1, below. Causal DAGs impose restrictions on the presence or absence of (direct)
causal relations and of latent variables without any specific parametric assumptions. They are, therefore,
often referred to as ‘non-parametric’ causal models4 (Pearl, 2009). At the other extreme are causal models
that heavily rely on mechanistic and parametric assumptions, such as linear SEMs which allow us to model
the joint distribution of POs and to make cross-world assumptions.

Identifiability. An important stage of a causal analysis is to assess identifiability of the desired causal
target of inference under a defensible causal model. Identifiability is given if the observable data are in
principle sufficient to uniquely determine the causal effect. Here, ‘in principle’ means disregarding finite
sample issues. Identifiability has been formally proved for a variety of causal effects under a variety of causal
models. Note that assumptions yielding identifiability are specific to causal inference and more fundamental
than further statistical modeling assumptions typically made when it comes to statistical estimation, such
as assuming a logistic, linear or proportional hazards model.

3.1 Causal Directed Acyclic Graphs

Causal DAGs feature prominently in epidemiology as tools to guide causal inference because they offer
a transparent and intuitive way to communicate assumptions (Robins, 2001; Staplin et al, 2017). Hernán
advised: ‘Draw your assumptions before you draw your conclusions!’ (Hernán, 2024). An introduction to
(causal) DAGs is given in the Chapter on Causal Directed Acyclic Graphs by R. Foraita et al, in this book,
and an overview of the different graph-based causal modeling approaches can be found in Didelez (2018).
Here, we only give a brief recap of the main concepts.

A DAG has nodes representing variables (measured or unmeasured) and directed edges. Strictly speaking,
an edge V −→W between some variables V and W expresses that we cannot rule out the presence of a CDE
of V on W fixing (by an intervention) other parent nodes of W , i.e., being ‘direct’ is relative to the set of
other variables in the graph. The presence of an edge is sometimes misunderstood as there must be a (direct)
effect, but when expressing the key assumptions of a causal model, it is more important that the absence of
an edge must indicate certainty about the absence of a direct effect. For instance, in Figure 2(i), the absence
of edges between A1 and X2 and from X1 to Y may be crucial for the validity of an analysis as they imply
that adjusting for either X1 or X2 is sufficient to eliminate any confounding under this causal model, i.e., we
do not need to measure both (cf. below). With this caveat in mind, we will nevertheless loosely say that, in a
causal DAG, a directed path from one variable to another indicates that there is a (possibly indirect) causal
effect of the former on the latter, while any other open path between two variables induces a non-causal

4 This should not be confused with non-parametric statistical models or methods.
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association. Whether a path is open or not can be established using d-separation (Pearl, 2009). For instance
in Figure 2(i), the path A1 ←− X1 −→ X2 −→ Y is open, but would be blocked if we condition on either X1

or X2 (or both), e.g., by stratification. In contrast, in Figure 2(ii) the path A1 ←− X1 −→ S ←− X2 −→ Y
is blocked, but would be opened by conditioning on S, e.g., by selection. These two basic examples are at
the heart of most sources of structural bias threatening the validity of causal inference: Confounding and
selection bias (cf. Section 3.2).

Single world intervention graphs (SWIGs). It may not be obvious how to link DAGs on nodes that
seemingly represent factual variables with typical causal assumptions because POs do not explicitly appear in
causal DAGs. Richardson and Robins (2013b) devise a sound way to combine the two and make POs explicit
in the graph, which they call single world intervention graphs (SWIGs). These are augmented DAGs where
the treatment nodes are split into two nodes, the ‘natural’ variable (without intervention) and the specific
value imposed by the intervention. An example is given in Figure 2(iii): The intervened node, a1, has no
parent nodes, representing that an intervention severs the observational dependencies, while all descendants
of such a node inherit the interventional value as POs. The node representing the natural treatment, A1,
inherits all of the parent nodes. Via d-separation we can now check on this SWIG that Y (a1) ⊥⊥ A1 |X1

as well as Y (a1) ⊥⊥ A1 |X2. As the name says, SWIGs are intended as models that cannot express, and
therefore do not make, any cross-world assumptions. We refer the interested reader to a series of papers for
further details (Robins et al, 2022; Shpitser et al, 2022).

Fig. 2 Examples of DAGs with point treatment A1 and outcome Y : (i) Two covariates (X1, X2) on one backdoor path;
(ii) M-DAG illustrating backdoor path opened by selection on S; (iii) Single world intervention graph (SWIG) for (i); (iv)
Post-treatment selection bias in, e.g., regression of Y on (A1, X1, X2).

Bibliographic notes: A popular and useful tool for constructing and analyzing (causal) DAGs is the
software ‘dagitty’ (Textor et al, 2016) with its latest extension (Ankan et al, 2021). A detailed critical
discussion of the assumptions implied by causal DAG models is given by Dawid (2010). Care is also needed
when attempting to use DAGs for representing dynamic processes in continuous time with feedback (Aalen
et al, 2016).

3.2 Structural Bias

Bias refers to a systematic difference between the intended target of inference (the estimand) and the average
result of a chosen analysis. Note that random differences due to sampling variation, typically due to small
sample sizes, are not indicative of bias. Further, we distinguish between statistical bias of a chosen estimator
(which often vanishes with sufficiently large samples under the assumed statistical model) and structural
bias which is induced by problems with a chosen study design, database, or analysis plan. Many sources of
structural bias affect any kind of statistical analysis, such as measurement error or non-ignorable drop-out.
Here, we focus on those types of structural bias that are most typical for causal analysis: Confounding and
selection bias. We distinguish between simple confounding and time-dependent confounding, where the latter
requires special attention in case of treatment-confounding feedback.

Confounding. Confounding of the effect of a point treatment on an outcome occurs when there
are some common causes of both (Greenland et al, 1999). Formally this implies that Y (a1) ̸⊥⊥ A1 or
P (Y |A1 = a1) ̸= P (Y | do(A1 = a1)). Graphically it can easily be detected in a causal DAG by trac-
ing back any common ancestors of the treatment and outcome nodes. Randomization ‘severs’ edges into
the treatment node and thus ensures balance (on average) regarding all baseline characteristics and hence
also for those relevant to the outcome. Note that we have defined ‘confounding’ and not a ‘confounder’;
as discussed in much detail by VanderWeele and Shpitser (2013), it is not trivial to define the concept of a
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confounder as this may be relative to other variables in the analysis. For example, in Figure 2(i), confounding
is present because X1 is a common cause of treatment and outcome; however, if we adjust for X2 then there
is no residual confounding (under this causal DAG model). VanderWeele and Shpitser (2013) also show that
common associational ‘definitions’ of a confounder are not correct. Confounding must, indeed, be considered
in the context of a causal model.

Selection. Selection occurs when either by design of the study or by the method of analysis we deliberately
or inadvertently condition on certain characteristics (Hernán et al, 2004; Didelez et al, 2010a). This does
not necessarily lead to bias, but needs to be scrutinized. Typical study designs based on selection are, e.g.,
case-control studies (Didelez and Evans, 2018) or test-negative designs (Shrier et al, 2023). Formally, the
problem can be analyzed by introducing a binary indicator S for selection (Didelez et al, 2010a). Suppose we
want to investigate aspects of E(Y (a1) |Z = z) like the CATE, and we have established that identification
holds given data on (Y,A1,X). However, due to selection we can only ‘access’ the conditional distribution
of these variables given selection, P (Y,A1,X |S = 1). For identification we then need to establish, under
defensible assumptions, that relevant aspects of the unconditional distribution can be obtained from the
distribution conditional on selection. Graphically, the problem can often be detected when there is direct or
indirect (through a descendant) selection on a so-called collider node which opens an otherwise blocked path
(Cole et al, 2010; Hernán and Monge, 2023).

Many design-based biases are a form of selection bias, such as some kinds of immortal-time or prevalent-
user bias (Ray, 2003; Suissa, 2008; Hernán et al, 2016; Shrier and Suissa, 2022). Consider the DAG in Figure
2(ii) as an example. With d-separation we establish that, here, there is no open non-causal path between A1

and Y . However, conditionally on S the non-causal path A1 ←− X1 −→ S ←− X2 −→ Y is opened. Due
to the shape of the DAG, this is known as M-bias (Greenland, 2003). An example for a design that induces
M-bias is illustrated by Braitmaier et al (2024): When investigating the effect of screening colonoscopy
on colorectal cancer (CRC), it is common to define exposure A1 as a summary of past attendances at such
screenings X1, with the outcome Y being incident CRC. At the same time, persons with prior CRC diagnosis
are excluded from the study (S = 0) but a prior diagnosis is most likely to occur if there was latent CRC (X2)
and a screening took place in the past. Thus, the eligibility criteria together with the particular exposure
definition which looks into the past mean that this study design systematically reduces the number of latent
CRCs in the ‘exposed’ but not in the ‘unexposed’ subjects leading to an overestimation of the causal effect.

A selection effect could further occur, for instance, when the analysis wrongly adjusts (conditions or
stratifies) for ‘colliders’. While it is well-known that one should not adjust for consequences of treatment as
this may mask the causal effect, there is a second issue: In Figure 2(iv), suppose the analyst is not aware that
X2 is affected by the treatment and decides to simply adjust for all covariates, X1 and X2, e.g., by fitting
a regression model for E(Y |A1, X1, X2). Note that in this example, A1 has no causal effect at all on Y ,
as indicated by the absence of any directed path. However, while conditioning on X1 blocks one non-causal
path, conditioning on the collider X2 opens the non-causal path A1 −→ X2 ←− U −→ Y . A real example
can be found in an analysis of risk factors for COVID-related death (Williamson et al, 2020): The analysis
has been interpreted as suggesting that smoking A1 has a protective effect on the outcome Y . However, one
could plausibly explain this by the simultaneous inclusion of covariates X2 indicating respiratory diseases
which are themselves consequences of prior smoking and may have other common causes U , not included
in the analysis, with the outcome. For instance, smokers who have a respiratory disease would be less likely
to have other unmeasured lung problems, U , than non-smokers with respiratory diseases and thus have a
reduced risk of COVID-related death (van Geloven et al, 2024). A similar causal structure has been proposed
to explain the ‘birth weight paradox’, where infants with low birth weight have a lower mortality if born to
smokers than those born to non-smokers (Hernández-Díaz et al, 2006).

While selection bias is sometimes avoidable by choosing a more suitable design or analysis, it may be that
without further data or information it cannot fully be avoided. Criteria for bounding selection bias in such
situations have been given (Smith and VanderWeele, 2019; Zetterstrom and Waernbaum, 2022).

Treatment-confounding feedback. To understand the issues with treatment-confounding feedback, we
need to combine the two types of structural biases above. Consider two sequential treatments A1 and A2,
where a covariate X2 is observed after the first treatment decision but before the second one; X1 may be a set
of general baseline covariates. A historical example is that of early observational studies with HIV patients,
where the timing of initiation of anti-retroviral treatment (early A1 = A2 = 1, or later A1 = 0, A2 = 1)
was usually decided dynamically depending on the CD4-count X2 which reacts to the presence or absence
of earlier treatment (Hernán et al, 2000). A plausible causal model is depicted in Figure 3(i). Here, X2 is
confounding the effect of later treatment on the outcome while being a consequence of earlier treatment.
Moreover, the change in CD4-count further depends on the underlying unobserved general health U of the
patient. In this model, conditioning on X2 blocks some non-causal paths between A2 and Y . However, it
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also blocks a causal path from A1 to Y potentially masking the overall effect of A1. Further, as a collider it
opens the non-causal path A1 −→ X2 ←− U −→ Y , thus introducing two potential sources of bias. Due to
its subtle role in this collider path, U has been termed a ‘phantom’ variable (Bates et al, 2022). A regression
model for E(Y |A1, A2, X2) would mix the latter two non-causal associations regarding the effect of A1,
while a regression for E(Y |A1, A2) would be biased due to not accounting for confounding by X2 of A2 and
the outcome. However, as we will address further below, the joint causal effect of intervening on A1 and A2

is still identified in such a treatment-confounding feedback case, provided that X2 is measured, just not by
a single regression model.

Treatment-confounding feedback thus constitutes a particular challenge requiring non-standard methods.
The importance of acknowledging treatment-confounding feedback for time-dependent exposures in many, if
not most, epidemiological analysis was uncovered and advocated by Robins (1986) and in much work since.
An early example of Robins’ is the healthy worker survivor effect: Workers who fall sick due to adverse work
conditions tend to drop out or change employment so that those who remain in work tend to be especially
resistant. Combined with naive methods that are unsuitable for analyzing treatment-confounding feedback,
this could make the adverse work conditions appear beneficial instead of harmful.

Fig. 3 (i) Example DAG with sequential treatments (A1, A2) and treatment-confounding feedback via X2; (ii) DAG where
the joint effect of (A1, A2) is identified, but not of A1 alone when U is unmeasured; (iii) IV-assumptions with Z as IV for the
effect of A1 on Y and unmeasured confounder U .

3.3 Structural Assumptions

Structural assumptions enable identifiability: They ensure that the observable data are in principle sufficient
to infer the desired causal quantity, except for sample size issues and parametric assumptions. In the field of
causal inference, there are mainly two types of such assumptions: (i) For one, we could assume that enough
information is available in the data to adjust for confounding. Or, (ii) we could acknowledge unmeasured
confounding and instead rely on natural experiments or specific designs and modeling assumptions. These
are complemented by approaches that gauge the amount of bias or produce bounds for causal quantities
under much weaker assumptions. In this section we address standard assumptions of type (i) for point and
sequential treatments; and as an example for (ii), we briefly describe instrumental variable (IV) designs,
which yield bounds on causal effects or can be supplemented by specific parametric assumptions to obtain
point identification. As mentioned before, the plausibility of structural assumptions will be strengthened if
they can be derived from a defensible causal model. Moreover, the model may help to derive some testable
implications to further support plausibility.

(Causal) consistency. Causal consistency5 is a key assumption that allows us to link the observational
data to the situation under the targeted hypothetical intervention. Formally, causal consistency postulates
that

when we observe A1 = a1 then Y = Y (a1),

or Y = Y (A1). Similarly for multiple treatments: When (A1, A2) = (a1, a2) is observed, then Y = Y (a1, a2).
In words this means that when treatment was observed to be a1, e.g., high physical activity (PA), then the
observable outcome Y equals the potential outcome Y (a1) which would be observed if an intervention, e.g.,
an enhanced PA program, had been applied to enforce A1 = 1. Violations occur if the observational situa-
tion is very different from the envisaged interventional setting, e.g., if an intervention would be too invasive,

5 In the context of causal inference, this is often just called ‘consistency’. It must not be confused with, and is completely
unrelated to, the identically named property of a statistical estimator.



12 Vanessa Didelez

creating a completely different situation, or if there is too much ambiguity in how the intervention could be
imposed (VanderWeele and Hernán, 2013). In the PA example, for instance, it may be implausible that chil-
dren not participating in the enhanced PA program would all have low PA as the absence of such a program
does not prevent them from becoming physically active. Indeed, for many typical epidemiological studies it
is implausible that one can intervene directly on the exposure, such as BMI or sleep duration. In such cases
it may be worthwhile to augment the causal model with additional variables that could be intervened upon
so as to make additional assumptions explicit. For instance, if we envisage changing BMI by increasing PA,
then we must be aware that such an intervention also affects other aspects, such as cardiovascular fitness
and muscle tone, which may be relevant to the outcome. Views on how strict one should be about causal
consistency differ (Cole and Frangakis, 2009; VanderWeele and Hernán, 2013; Hernán, 2016), but being as
explicit as possible about the relationship between available data and targeted intervention can help guide
analysis choices (Young, 2024).

Conditional exchangeability. We begin with the case of a point treatment A1. Conditional exchanga-
bility requires that a set X of pre-treatment covariates is sufficient to adjust for confounding. More formally
this is expressed as

Y (a1) ⊥⊥ A1 |X.

There are many other names for this assumption in the literature: ‘no unmeasured confounding’ (presupposing
that X is measured), ‘conditional ignorability’, ‘unconfoundedness’ (given X), or ‘selection on observables’
(again, presupposing that X is observable). Intuitively, the assumption means that within strata of X, the
observed treatment can be regarded ‘like randomized’ as it retains no further information on the PO. In
other words, treated and untreated subjects are ‘exchangeable’ at baseline given X. The covariates X are
then called sufficient for adjustment.

To see mathematically how this assumption helps, consider

P (Y (a1) = y) =
∑
x

P (Y (a1) = y |X = x)P (X = x)

by total probability6. With conditional exchangeability we now have

P (Y (a1) = y |X = x) = P (Y (a1) = y |A1 = a1,X = x)

which equals P (Y = y |A1 = a1,X = x) by causal consistency. In summary, we obtain

P (Y (a1) = y) =
∑
x

P (Y = y |A1 = a1,X = x)P (X = x). (1)

This yields identification because the right-hand side of equation (1) is now a statistical estimand which
can be estimated from observational data on (Y,A1,X). Equation (1) is the simplest case of the so-called
g-formula (Robins, 1986), and is also known as standardization (Davis, 1984; Keiding and Clayton, 2014).
Note that (unconditional) exchangeability holds if X is empty, which can be ensured by randomizing A1.

A famous graphical rule in point-treatment settings is the backdoor criterion which establishes conditional
exchangeability given X (Pearl, 1995). In a causal DAG representing the plausible causal structure, the
criterion states that the set of nodes representing X must not be descendants of A1 and block all backdoor
paths from treatment to outcome, i.e., any paths between A1 and Y that begins with an edge out of the
former, A1 ←− · · · ; see Chapter on Causal Directed Acyclic Graphs by R. Foraita et al in this book.
Intuitively, any unblocked backdoor path would potentially induce a non-causal association and therefore
needs to be blocked. In the example of Figure 2(i), the single backdoor path A1 ←− X1 −→ X2 −→ Y
is blocked by either X1 or X2 or both but not by the empty set (illustrating that a sufficient adjustment
set is not unique). In contrast, in Figure 2(ii), the single backdoor path A1 ←− X1 −→ S ←− X2 −→ Y
is blocked by the empty set. However, conditioning on S, e.g., through selection or by analysis opens this
path (inducing a non-causal association) so that, again, either X1 or X2 would need to be included for
identification. Alternatively, making the POs explicit, conditional exchangeability can be read off from a
SWIG by checking if the node Y (a1) is d-separated from the node A1 by X. For instance, in Figure 2(iii)
they are separated by either X1 or X2.

The assumption of conditional exchangeability and the backdoor criterion can be extended to multi-
ple treatments and joint interventions. Suppose that (A1, A2) are two not necessarily temporally ordered
treatments. Conditional exchangeability then requires that X must be prior to both (A1, A2) and satisfy
Y (a1, a2) ⊥⊥ (A1, A2) |X. Using the backdoor criterion, the set X would then need to block all backdoor

6 At this stage, we use that X is pre-treatment, i.e., not itself affected by treatment so that X(a1) ≡ X.
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paths out of (A1, A2), jointly. Equation (1) is then extended by including A2. Note that joint interventions
can be identified even if individual ones are not; see Figure 3(ii): Here, the (total) effect of A1 alone is not
identified if U is unmeasured due to the open backdoor path A1 ←− U −→ A2 −→ Y that cannot be blocked
by A2 as this is itself affected by A1, but the joint effect of (A1, A2) is identified in this DAG.

Importantly, for time-dependent treatments conditional exchangeability is often too stringent an assump-
tion, and the backdoor criterion does not capture all causal structures under which the causal effects are
identifiable. Conditional exchangeability does not hold in case of treatment-confounding feedback as in Fig-
ure 3(i), and the backdoor criterion does not apply because, here, X2 is a descendant of (and thus affected
by) A1. In particular, equation (1) cannot be extended to sequential treatments by simply replacing A1 with
(A1, A2). The following assumption is therefore more appropriate for sequential treatments.

Sequential conditional exchangeability. Let us consider the setting with two sequential treatments
A1 and A2; assume X1 is a set of pre-A1 covariates and X2 are pre-A2 but possible causally affected by A1.
Formally, sequential conditional exchangeability is given if

Y (a1, a2) ⊥⊥ A1 |X1 and Y (a1, a2) ⊥⊥ A2 | (X1,X2, A1 = a1).

In Figure 3(i), sequential conditional exchangeability holds without the need to adjust for U as long as X1

and X2 are given. The assumption has also been described as ‘sequential randomization’ given (X1,X2)
because it requires that observationally A1 and A2 be ‘like randomized’ within strata of X1 and within
strata of (X1,X2, A1), respectively (Robins, 1997). The graphical check is more involved (Pearl and Robins,
1995; Robins, 1997): Loosely speaking, we need X1 to block all backdoor paths out of A1 (except if they are
blocked by future treatment nodes) and (A1,X1,X2) to block all backdoor paths out of A2.

With causal consistency, sequential conditional exchangeability allows the representation

P (Y (a1, a2) = y) =
∑
x1,x2

P (Y = y |A1 = a1, A2 = a2,X1 = x1,X2 = x2)

P (X2 = x2 |A1 = a1,X1 = x1)P (X1 = x1). (2)

This is known as the g-formula (Robins, 1986) and can be interpreted as sequential version of standardization
for point treatments; see equation (1). The right-hand side of equation (2) yields a statistical estimand in
terms of observables. We see from (2) that the g-formula makes use of P (Y |A1, A2,X1,X2) which could
be modeled as a regression of the outcome Y on A1, A2 and all the covariates; however, for the weighted
averaging an additional model for P (X2 |A1,X1) is required (averaging over X1 could be done empirically
without model). Fitting parametric models for these two conditional distributions in (2) to obtain an esti-
mate for P (Y (a1, a2) = y) is known as the parametric g-formula (cf. Section 4, below). Note that standard
regression-based methods neglect the role of P (X2 |A1,X1).

Positivity. Causal consistency and (sequential) conditional exchangeability are not yet sufficient for
the identifiability of P (Y (a1)) or P (Y (a1, a2)). A further important assumption demands that a sufficient
variety of treated and untreated subjects are observable. For a point treatment, this means that for the
chosen adjustment set X there is a positive probability

0 < P (A1 = a1 |X = x) for all values of (a1,x).

We can see that there will be insufficient information to estimate the right-hand side of equation (1) if there
are no observations for some combinations (A1 = a1,X = x)7. For example, in a pharmacoepidemiological
study, some types of patients may never receive the more aggressive treatment while other types of patients
may never receive the less aggressive treatment. For those two groups, it is not only empirically impossible
to compare the two treatments, it may also not make much medical sense. For the sequential treatment
case, positivity similarly demands that each treatment value has positive probability in any stratum of past
covariates in the adjustment set.

No interference. A common, and often implicit, assumption is that of no interference which essentially
states that the treatment of one individual in the population does not affect the outcome of another individ-
ual. An obvious violation occurs in the context of infectious diseases where vaccination of some individuals
(grandchildren) may protect other individuals (their grandparents). More generally, the relevance of social
networks must be considered from the outset for certain research questions. For instance, to investigate
adolescent uptake of smoking or alcohol consumption and its consequences, it could be important to take

7 Strictly, we only need positivity for those x that can occur, i.e., with P (X = x) > 0
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the structure of the peer network into account. In fact, there may be subtle issues of selection bias, as it
cannot easily be disentangled if adolescents choose their friends because they have similar attitudes (e.g.,
towards smoking) or if the attitudes are chosen to match those of their friends (Shalizi and Thomas, 2011).
For overviews on the topic of causal inference under interference we refer to Hudgens and Halloran (2008)
or Ogburn et al (2020); in the remainder of this chapter we assume no interference.

Instrumental variable assumptions. As one example of a natural experiment we briefly explain instru-
mental variables (IVs) which are especially popular in econometrics (Angrist and Pischke, 2009; Wooldridge,
2010). Assume that we are interested in a causal effect of A1 on Y but that unmeasured confounding cannot
be ruled out, i.e., it is implausible that any set of measured covariates is sufficient to fully adjust for con-
founding. An IV Z can be thought of as an imperfect randomization device that induces some variation in
A1 without being itself confounded. Examples in epidemiology are, for instance, Mendelian randomization,
where a genetic predisposition to an exposure is exploited as an IV (Davey Smith and Ebrahim, 2003; Didelez
and Sheehan, 2007; Lawlor et al, 2008), or in parmacoepidemiology the physician’s preference for a certain
version of drug that influences the actually prescribed drug irrespective of patient characteristics (Brookhart
et al, 2006; Swanson et al, 2015).

Formally, the IV must be associated with the treatment, A1 ̸⊥⊥ Z, and it must not itself have an effect
other than through A1 on, nor be confounded with, the outcome Y (possibly after accounting for observed
covariates). In a causal DAG, Figure 3(iii), these assumptions are reflected by the absence of any edge
between Z and the unmeasured confounder U , reflecting that Z is like randomized; further, the only causal
path from Z to Y is through A1 and there is no other open path between Z and Y .

For a basic idea of why an IV is helpful, consider the special case where the edge A1 −→ Y is removed,
i.e., where treatment has no causal effect on the outcome. The IV and the outcome are then marginally inde-
pendent. This is analogous to the case of an RCT with imperfect adherence, where the random assignment
and the outcome are independent if treatment has no causal effect. Thus, a valid test of the null hypothesis
of no causal effect is given by testing for an association between IV and outcome.

Fig. 4 Diagnostics in causal analyses using the example of hormonal treatment for breast cancer patients. (i) Histograms of
covariate ‘number of positive lymph nodes’ by treatment status reveals a positivity violation: Patients with value zero never
receive treatment. (ii) Smoothed density plot of propensity score by treatment group reveals that there is clear confounding
but, despite (i), overlap appears satisfactory. (iii) Balancing (‘Love’) plot of the absolute standardized mean difference between
the treated and untreated subjects for each covariate included in the propensity score without versus with adjustment.

Checking assumptions. Of the above assumptions, only positivity can be checked empirically as it
presupposes a sufficient adjustment set X and then only concerns the distribution of observable variables.
There are many visualizations that can be used to check positivity, such as histograms or box plots of all
covariates in X by treatment group (see Figure 4(i)). The most common method for inspecting positivity,
or in fact the amount of overlap between treated and untreated subjects, is to fit a model for the propensity
score P (A1 = 1 |X = x) and plot the predicted values separately for treated and untreated subjects (see
Figure 4(ii)); a positivity violation would be evident if one group has values near zero or one, but details
could be blurred as the fitted propensity score model may extrapolate (cf. Section 4). Alternatively, one can
use machine learning approaches to determine the (possibly high-dimensional) subset of x-values for which
positivity holds (Oberst et al, 2020).
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The other structural assumption given above, and many alternative ones found in causal inference, are
not empirically testable as they involve POs; one would need observational and interventional data from
otherwise entirely comparable settings to check them8. Sometimes the assumptions do have testable impli-
cations that can be exploited in the sense that if the implications do not hold then the assumptions can be
falsified, but vice versa they cannot be verified. In Figure 2(i) we can test, for instance, if Y ⊥⊥ X1 | (A1, X2),
which would allow us to rule out X1 for the adjustment set. This strategy can be generalized, but must still
be considered with care as a non-significant statistical test does not guarantee that there is no dependence
(De Luna et al, 2011; VanderWeele and Shpitser, 2013; Witte and Didelez, 2019). Tennant et al (2021)
discuss possibilities of empirically scrutinizing the assumptions encoded in a causal DAG. Further, the IV
assumptions impose empirical constraints on the observables in form of bounds on certain frequencies when
all variables are discrete; these can and should be checked to support an IV analysis (Balke and Pearl, 1994;
Palmer et al, 2011; Guo et al, 2023; Sachs et al, 2023).

Bibliographic notes: More details on the backdoor criterion and a complete characterization can be
found in Perković et al (2018). Also, when there is a choice of sufficient adjustment sets, we can graphically
determine which one is the most efficient in the sense that it leads to most precise estimation (Witte et al,
2020). For instance, in Figure 2(i) it is more efficient to adjust for X2 than for X1. A different graphical
structure is exploited by the frontdoor criterion which yields identification under unmeasured confounding if
a perfect unconfounded mediator of the treatment effect is given (Pearl, 1995). The frontdoor criterion has
rarely been used in practice, so far, but Piccininni et al (2023) provide a convincing real example investigating
the causal effect of deploying mobile stroke units on patients’ 3-month functional outcomes. Graphical rules
dealing with identification of joint or dynamic causal effects under treatment-confounding feedback can be
found in various versions, an early reference being Pearl and Robins (1995); see also Dawid and Didelez
(2010). Natural experiments other than IVs, with different model assumptions, are exploited by designs
such as difference-in-differences (Kennedy-Shaffer, 2024), regression discontinuity (Geneletti et al, 2015), or
interrupted time-series (Linden, 2018).

4 Principles of Causal Effect Estimation

After determining the causal research question of interest (possibly by referring to a target trial), formalizing
it as a causal estimand, and referring to a causal model with which identifiability assumptions can be derived
or justified, the next step is the statistical estimation. This is essentially a statistical task, but the field of
causal inference has produced specialized methods to tackle the specific challenges involved, especially for
sequential treatments. We restrict the exposition to the most basic principles with references to the vast
literature on this topic. A useful practical introduction including software is, e.g., given by Brumback (2021).

4.1 Inference under Exchangeability

A first intuitively plausible approach to causal inference under the ‘no unmeasured confounding’ assumption
is direct matching on the covariates in the adjustment set (Rosenbaum, 1989). Matching constructs an
independence between treatment and covariates, i.e., balances the covariates, in the matched sample (see
Figure 5(i)). While attractive as a nearly non-parametric approach, this quickly becomes difficult with
continuous or other high dimensional covariates requiring some bias-variance trade-off, and faces special
challenges with time-dependent treatments (Stuart, 2010). Therefore we address, here, the basic principles
underlying alternative approaches to account for (possibly time-dependent) confounding (for an excellent
overview see Daniel et al (2013)).

First, we note that under causal consistency, conditional (sequential) exchangeability and positivity, aver-
age causal effects of point and sequential treatments, respectively, are identified. The former is identified by
equation (1) and the latter by equation (2). These equations suggest estimating P (Y = y |A1 = a1,X = x)
or P (Y = y |A1 = a1, A2 = a2,X1 = x1,X2 = x2) via regression models and plug these into the respective
formulas, where we still need to average over the respective covariate distributions either empirically or via
modeling. Such approaches adjust for confounding by incorporating the adjustment set into a model for the
outcome. Alternative approaches incorporate the covariates into a treatment model. The underlying rationale

8 However, such an empirical verification is in principle feasible, unlike cross-world assumptions mentioned earlier which are
not even in principle testable (Robins and Richardson, 2011).
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Fig. 5 Illustration of estimation principles under exchangeability for a point treatment A1 with outcome Y and sufficient
adjustment set X. (i) Matching to balance X. (ii) ‘Remove’ X −→ A1 by using a treatment model. (iii) ‘Remove’ X −→ Y
by using an outcome model.

is that equation (1) is equivalent to

P (Y (a1) = y) =
∑
x

P (Y = y,A1 = a1,X = x)

P (A1 = a1 |X = x)
(3)

and equation (2) is equivalent to

P (Y (a1, a2) = y) =
∑
x1,x2

P (Y = y,A1 = a1, A2 = a2,X1 = x1,X2 = x2)

P (A1 = a1 |X1 = x1)P (A2 = a2 |A1 = a1,X1 = x1,X2 = x2)
. (4)

These alternative identifying formulas motivate why the treatment models given past covariates, which occur
in the denominators, are useful for causal inference. Figures 5(ii,iii) illustrate the two basic principles of es-
timation under exchangeability (conditionally on X), exploiting a treatment model or an outcome model. In
the remainder, we address some of the ways these two principles can be put into practice for the estimation
of causal effects.

The propensity score. In case of a binary point treatment, A1 ∈ {0, 1}, the quantity

π(x) = P (A1 = 1 |X = x)

is known as the propensity score (PS) (Rosenbaum and Rubin, 1983). The PS can be used in multiple ways
for causal inference because it has the desirable property of being a so-called balancing score, i.e.,

A1 ⊥⊥ X |π(X).

This property implies that given π(x) the possibly high-dimensional adjustment set X carries no further
information on the treatment, i.e., X are conditionally balanced between treated and control group given
units with the same PS. This is exploited by methods such as PS matching or PS stratification (Stuart,
2010; Goetghebeur et al, 2020). It is also implicit in the use of the PS for inverse probability of treatment
weighting (IPTW), whereby the treated are weighted with 1/π(x) and the controls with 1/(1 − π(x)) thus
making treatment independent of X in the weighted population (Robins et al, 2000).

In practice, the PS is usually not known and must be estimated from data. It is popular to use a simple
logistic regression to estimate the PS, but more flexible models have also been suggested (Watkins et al, 2013;
Shortreed and Ertefaie, 2017). Of note, the aim of modeling the PS is not to predict treatment as accurately as
possible, but to achieve balance of the covariates in the adjustment set in the matched or weighted population
(Sjölander, 2009; Waernbaum, 2012; Naimi et al, 2021). Including too many unnecessary predictors in the
model for π, e.g., IVs like Z in Figure 3(iii), can even lead to bias amplification (Greenland and Pearl, 2011;
Stokes et al, 2022)

PS methods are popular, presumably due to their simplicity and transparency but also because they are
easily combined with standard methods. For instance, after matching treated and controls on the PS, the
remaining analysis can proceed almost as if the matched sample came from an RCT (standard errors need
to be considered (Austin and Small, 2014)), or any survival curve estimator can be adjusted for baseline
confounding by IPTW (Cole and Hernán, 2004; Denz et al, 2023). However, some of the simplicity of PS
methods is lost when it comes to continuous, multiple and especially time-dependent treatments. As addressed
below, IPTW becomes more complicated in the latter case.

Diagnostic checks as in Figure 4 are often based on the treatment and covariates, or use the PS, and do
not involve the outcome. Positivity and amount of overlap can be checked by simply considering the covariate
distribution by treatment groups. Further, a basic impression of successful balancing by adjustment, e.g.,
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by matching or weighting, is obtained by comparing the standardized mean differences in each covariate
between the treatment groups before and after adjustment in a so-called Love plot (Love, 2002). However,
it has to be remembered that this can only assess balance on measured covariates, not on unmeasured ones.
The assumption of conditional exchangeability itself cannot be checked by such plots.

Sequential treatments: IPTW and marginal structural models. Suppose we want to model the
joint effect of two sequential treatments (A1, A2) on an outcome Y under the causal model of Figure 3(i). We
may wish to specify a (semi-parametric) model µ(θ) for E(Y (a1, a2)), e.g., a linear, logistic, or proportional
hazards regression model. Such models are called marginal structural models (MSMs) because they model
the effect of (sequential) interventions on (A1, A2) marginally over the time-dependent covariates X2 (Robins
et al, 2000; Havercroft and Didelez, 2012). The representation given in equation (4) suggests the following
approach: Fit µ(θ) to the weighted data using, for each individual, the denominator of equation (4), i.e., the
inverse of the product of the treatment models given past covariates

weights = {P (A1 = a1 |X1 = x1)P (A2 = a2 |A1 = a1,X1 = x1,X2 = x2)}−1,

where (a1, a2,x1,x2) are the values actually observed for that individual. The estimator θ̂ obtained by
fitting µ(θ) to the weighted data can be shown to consistently estimate the parameter θ if the MSM is
correctly specified. In practice, the weights are usually not known and need to be estimated. For consistent
estimation, the treatment models must then also be correctly specified. In particular, in the weighted data, the
covariates must be balanced at all treatment times which can be checked empirically by suitably modifying
the Love plots (Jackson, 2019). Due to the multi-step estimation, standard errors are typically computed via
individual-level bootstrap (Enders et al, 2018).

There are some practical problems with (sequential) IPTW, e.g., issues with extreme weights when the
denominator is near zero. This is often related to (near) violations of the sequential positivity assumption.
Thus, MSMs tend to yield rather unstable inference, with large standard errors, alerting the analyst that
there are subgroups for which there is little information in the data to compare the treatment sequences
of interest. As a remedy, it is common to use stabilized weights which additionally reweight according to
the marginal treatment distribution in the population (Hernán et al, 2000). MSMs can be used for non-
binary sequential treatments, but due to the stability issues such applications are rare in practice. Improved
performance is obtained by augmenting the IPTW estimator yielding a doubly robust estimator (Orellana
et al, 2010); see below.

There have been numerous practical applications of MSMs and IPTW for time-dependent treatments in
epidemiology over the last two decades. The earliest examples investigated immediate versus delayed initia-
tion of antiretroviral therapy for HIV patients before RCTs were available (Hernán et al, 2000; Sterne et al,
2005; Cain et al, 2011) and are still used today, e.g., in a South African HIV cohort study (Bell Gorrod et al,
2020). A recent psychosocial application of MSMs investigates the longitudinal effects of community violence
exposure on youths’ internalizing and externalizing symptoms (Kennedy et al, 2023).

Sequential treatments: The parametric g-formula. Consider again the estimation of the joint effect
of two sequential treatments (A1, A2) on an outcome Y under the causal model of Figure 3(i). Now, we
do not specify an explicit model for E(Y (a1, a2)), but make use of the representation given in equation
(2), instead. An obvious approach would be to posit and fit models for all ‘ingredients’ of this formula,
including in particular the possibly high-dimensional conditional distribution P (X2 |A1,X1). All these are
then combined for the estimation of E(Y (a1, a2)) under those treatment sequences (a1, a2) of interest, e.g.,
‘never treat’ or ‘always treat’. This idea forms the basis of the parametric g-formula approach (Taubman
et al, 2009). It is ‘parametric’ as it relies on fully parametric models for all time-varying covariates in X2 and
for the outcome, Y , while MSMs are semi-parametric models. Note that in realistic cases with more than two
time points, there are also more time-varying covariates to be modeled. Moreover, in many typical realistically
complex applications of the g-formula there are no explicit ways of obtaining E(Y (a1, a2)) so Monte-Carlo
approximations are used instead (Young et al, 2011). This means that simulated data are generated from the
fitted models, under the specified hypothetical treatment sequences- The simulated outcomes can be seen as
predicted POs Ŷ (a1, a2) from which summaries and estimates of causal contrasts are computed. In addition,
and as a check of model fit, the so-called ‘natural course’ under no intervention can be estimated with the
g-formula and should approximate the observational outcomes’ average trajectory.

The g-formula is straightforward to adapt for more complex, especially dynamic hypothetical interventions.
For instance, we may want to compare an intervention that increases physical activity (PA) only for those
individuals and at those time points where the ‘natural’ level is below some threshold. Hence, we first need to
predict the natural value (under past hypothetical treatments) and then ‘change’ it if necessary. Alternatively,
an intervention could be considered that shifts the natural level of PA. Similarly, a hypothetical strategy
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could determine the dosage of a treatment as a function g(·) of some recently measured blood parameter.
Such an adaptive strategy would require restricting equation (2) to values of the second treatment, say
a2 = g(x2), that correspond to the desired hypothetical treatment rule. It is also possible to represent
uncertainty about the exact treatments under an intervention; for instance, a delayed treatment may not
occur deterministically at a specific point in time, but during some plausible interval. Such more general
treatments can be incorporated by, e.g., an additional term P̃ (A2 = a2 |X1,X2) in equation (2) representing
a stochastic intervention on A2. The resulting extension is called the generalized g-formula (Young et al,
2014). Hypothetical interventions that shift, possibly stochastically, the natural value of treatment have the
advantage of not requiring full positivity because they remain ‘closer’ to the observed treatment patterns.
Otherwise, the g-formula relies on the parametric models to extrapolate over treatment-covariate values with
positivity violations which can yield misleading results. Positivity should therefore be checked in a separate
step when using the g-formula.

Despite the seemingly hopeless task of correctly specifying a very large number of models for all time-
dependent covariates, an increasing variety of convincing analyses using the parametric g-formula can be
found in epidemiological research. Chiu et al (2021) investigate the 20-year risk of all-cause mortality un-
der the sustained implementation of food-based goals of the American Heart Association using data from
three observational studies, carefully discussing the strong assumptions underlying their analysis. Börnhorst
et al (2023) employ the parametric g-formula to assess the effect of hypothetical behavioral interventions in
early childhood on the 13-year risk of overweight/obesity based on a children’s cohort study. In a sensitivity
analysis addressing ambiguity about the causal model in view of large intervals between the study waves,
the authors could show that results remained largely robust towards different choices of lagged dependencies.

Doubly robust estimation and double/debiased machine learning. In view of the instability of
IPTW, on the one hand, and the parametric assumptions of the g-formula, on the other hand, it is possible
to combine the two approaches. Indeed, a special class of estimators combines the treatment model and
the outcome model, and these estimators have the property of double-robustness (Bang and Robins, 2005):
It suffices that either the treatment or the outcome model are correctly specified for the estimator to be
(statistically) consistent for the causal estimand.

In view of the options to use either the treatment model, as for IPTW, or the outcome model, as for
the g-formula, one may ask if they can be chosen in a data-driven manner in order to reduce the risk of
misspecification. For instance, machine learning algorithms such as random forests allow non-linearities and
interactions without prespecification. However, it can be shown that simple methods of causal inference when
combined with data-driven model selection do not perform well; this is because they need to be regularized
to prevent over-fitting, which in turn leads to bias specifically when covariates are very imbalanced in some
subgroups (Naimi et al, 2021). In contrast, exploiting machine learning approaches to fit both models for
doubly robust estimators leads to a much better performance. The approach is known as double/debiased-
machine learning (Chernozhukov et al, 2018; Knaus, 2022) and is also implicit in targeted learning (van der
Laan and Rose, 2011).

Bibliographic notes: Popular alternatives for dealing with extreme weights in IPTW are ‘overlap weight-
ing’ (Li et al, 2019) or generalized balancing scores (Chattopadhyay et al, 2020); see overview by Matsouaka
et al (2024). Moreover, different estimands based on shifting the PS have been proposed to deal with positivity
issues (Kennedy, 2019) or to extend IPTW for continuous treatments (Kennedy et al, 2017).

While most of traditional causal inference deals with average treatment effects and its variants, much
interest and work has recently emerged for heterogenuous treatment effects especially in connection with
machine learning (Wager and Athey, 2018; Künzel et al, 2019); see overview by Shah et al (2021). We
have not touched on so-called structural nested models, which are used especially in survival analysis, and
g-estimation which is closely related to doubly robust estimation (Robins et al, 1992; Vansteelandt and
Sjölander, 2016).

4.2 Inference without Exchangeability

Assuming conditional exchangability, as in the previous section, amounts to believing that the information
in the data is, in principle, sufficient to fully adjust for confounding. In some settings, this might be a ‘heroic’
assumption. The social sciences, e.g., econometrics, psychology, or sociology tend to not find exchangeability
defensible for their typical observational data sources, such as panel data, so that other principles for the
identification and inference for causal effects are pursued. Here, we address IVs as one example to give the
reader a flavor, but various other designs can be found. Introductions to IVs for epidemiology are given by
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Greenland (2000) and Hernán and Robins (2006).

IV: Testing the null and bounding causal effects. The IV assumptions detailed in Section 3.3 (see
Figure 3(iii)) do not fully identify causal effects under unmeasured confounding. However, they are sufficient
to test the null hypothesis of no causal effect (Didelez and Sheehan, 2007): Under the IV assumptions, if
we find that there is no association between the IV and the outcome then there is no causal effect of the
treatment A1. The principle of using an IV as an indication for the presence of a causal effect is, in fact, at
the heart of the original idea by Katan (1986) when formulating the first idea of Mendelian randomization.
As a slight caveat, we have to be aware that ‘no causal effect’ can also occur if positive and negative effects
in different strata of the unmeasured confounding U cancel each other out.

Further, when all variables are discrete, bounds on the average causal effect can be derived using an IV
(Balke and Pearl, 1994; Palmer et al, 2011; Sachs et al, 2023). Lower and upper bounds for a causal effect
mean that the observable data are consistent with any causal effect value in this interval, the unmeasured
confounding prevents us from pin-pointing one single value (not be confused with confidence intervals which
are about statistical uncertainty). Moreover, a similar principle leads to an empirical test of the IV conditions
which can sometimes be falsified (Guo et al, 2023).

IV: The Wald ratio estimator. A simple semi-parametric assumption motivates a popular IV-
estimator. Supplementing the causal model of Figure 3(iii) by the additive structural mean model

E(Y − Y (0)|A1 = a1, Z) = βa1,

where β is the ATT, an estimating equations for β is obtained by exploiting the fact that under the IV
assumption, we must have Y (0) ⊥⊥ Z. This principle of estimation is known as g-estimation (Hernán and
Robins, 2006). In the present case, it can be shown that β = Cov(Y,Z)/Cov(A1, Z) (Wooldridge, 2010;
Didelez et al, 2010b). A consistent estimator for the parameter β is thus given by the ratio of coefficients
from a linear regression of Y on Z and of A1 on Z. This procedure has desirable statistical properties of
robustness and efficiency (Vansteelandt and Didelez, 2018), and it can also be used when data on the outcome
and the treatment are not jointly available, e.g., in two-sample Mendelian randomization (Lawlor, 2016).

There are numerous extensions and variations on the principle of the Wald ratio estimator which has dif-
ferent interpretation under different assumptions (Didelez et al, 2010b). For instance, it has been extended
to the case where multiple candidate IVs are available, but not all of them are valid (Bowden et al, 2015).
Returning to our general message that treatments (or exposures) in epidemiology rarely occur at a single
point in time, Morris et al (2022) suggest an interpretation of the Wald ratio estimator (or its estimand)
when A1 is just a single measurement of a time-dependent treatment process. The authors augment the
underlying causal model to include a latent ‘liability’ through which the IV affects the treatment process
over time, so that the effect of a hypothetical intervention on this liability becomes the target of inference.
Their data example addresses the effect of BMI on blood-pressure: The authors consider hypothetically in-
tervening on the liability in a way such that average BMI is increased by one standard deviation at the
age of 53 years, and this is estimated to increase mid-life blood pressure by 12.78 mmHg. However, further
work is still needed to develop robust and practical IV-based approaches for time-dependent treatments in
epidemiology, e.g., for life course studies.

Other natural experiments. The presence of an IV can be seen as a natural experiment where the
IV represents an imperfect randomization which partly but not fully determines the treatment. Other study
designs using natural experiments are difference-in-differences (DiD) and its generalization, the synthetic
control method for comparative case studies, regression discontinuity, or interrupted time-series. These ap-
proaches exploit changes of exposures, treatments, or policies that are not simultaneously adopted across
time or space. An early example was an analysis prompted by the introduction of tobacco control through a
tax in California, without such a tax being introduced in other states (Abadie et al, 2010). Another example
exploited that during the COVID pandemic, different regions adopted the face-mask policy at different points
in time allowing the identification of causal effects under other assumptions than exchangeability (Mitze et al,
2020). The methods still require some form of ‘common trend’ assumption. While promising, one possible
downside of such designs is that the implicit or explicit causal estimands tend to be very specific to the
considered settings and the generalizability of study findings might be unclear. Methods based on natural
experiments are increasingly used in (pharmaco)epidemiology (Bonander et al, 2021; Kennedy-Shaffer, 2024).

Quantitative bias analysis. Suppose a causal analysis using methods from Section 4.1 has been carried
out but some doubts exist about residual confounding that may not have been accounted for. The pres-
ence of unmeasured confounding can be investigated by using so-called negative controls. For instance, if
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an alternative outcome variable is available, which cannot possibly be causally affected by the exposure or
treatment, but would be affected by the same (unobserved) confounding factors, then this helps detect or rule
out residual confounding; for an overview see Lipsitch et al (2010). A variety of methods have been proposed,
known as quantitative bias analysis, to obtain a correction of a biased estimate. The correction terms or
factors require some assumptions, e.g., based on domain knowledge, about the unmeasured confounder(s) so
that the confounding can be ‘removed’ from the estimate (Fox et al, 2021) (cf. Chapter Sensitivity Analysis
and Bias Analysis by S. Greenland in this book). Related to this, the so-called e-value quantifies how strong
confounding bias by unmeasured factors would need to be so as to ‘explain away’ an estimated causal effect
(VanderWeele and Ding, 2017). For a critical discussion of the e-value see Sjölander and Greenland (2022).

Bibliographic notes: Useful introductions to IVs in the context of Mendelian randomization are given by
Didelez and Sheehan (2007), to quasi-experimental methods for pharmacoepidemiology by Kennedy-Shaffer
(2024), and to quantitative bias analysis by Fox et al (2021). The reporting of IV analyses is addressed
by Davies et al (2013) or Skrivankova et al (2021). Triangulation is advocated as a way of obtaining more
reliable answers to research questions through integrating results from several different approaches, where
each approach has different key sources of potential bias that are unrelated to each other; see overview by
Lawlor et al (2016). Moreover, a promising new avenue for dealing with unmeasured confounding is proximal
inference, where proxies for the unmeasured common causes are systematically exploited; an introduction is
given by Tchetgen Tchetgen et al (2020).

4.3 Causal Interpretation of Multivariable Regressions

In most introductory courses to statistical methods, multivariable regressions play a key role. It is therefore
worth addressing the question when, if at all, these yield valid causal inference and which causal estimands
can be obtained. This is also discussed in Chapter on Regression Methods for Epidemiological Analyses by
S. Greenland in this book.

Regression adjustment for a point treatment. Consider a single point treatment A1 and an outcome
Y . It is common to adjust for covariates X = (X1, . . . , Xp) in a multivariable regression, which is essentially
a model for E(Y |A1, X1, . . . , Xp), say, a linear or logistic regression. With the causal concepts, assumptions,
and methods covered so far, we can conclude that this regression describes the conditional treatment effect
(CATE) of A1 on Y given X if the model is correctly specified, causal consistency and positivity hold, and
X is a sufficient adjustment set; in particular these covariates must not themselves be affected by A1. This
CATE may or may not correspond to a single coefficient in the regression model depending on whether
there is effect modification by X. If there is no effect modification and the model is a linear regression, then
the coefficient of A1 equals the average causal effect (ACE). Note that this is not the case in a logistic or
proportional hazards regression due to lack of collapsibility (Greenland et al, 1999; Daniel et al, 2021).

In comparison to the formal causal estimation approaches, we note the following differences: When esti-
mating the ACE, regardless of effect modification or not, we would additionally average over the covariate
distribution (see g-formula, equation (1)) and thus obtain a single parameter estimate, or we estimate directly
the causal effect by PS matching or IPTW without constructing a model for how Y depends on X. The
latter is sometimes seen as an advantage because misspecification of the dependence of Y on the possibly
high-dimensional X can bias the causal effect estimation, while with PS matching or weighting the empirical
checks for balance are, arguably, simpler.

Regression adjustment for sequential treatments. Consider now two sequential treatments (A1, A2)
and sets of covariates X1 and X2. Assume causal consistency, conditional sequential exchangeability as
in Figure 3(i), and positivity. Here, a (correctly specified) multivariable regression, say, a model for
E(Y |A1, A2,X1,X2), does not typically have an immediate causal interpretation due to the treatment-
confounding feedback problem, whereby X2 confounds A2 and Y while being itself affected by A1. Thus,
a multivariable regression does not correctly identify the joint effect if treatment-confounding feedback is
present. Such a single regression does not correspond to equation (2) which would identify the joint effect in
such a situation as long as sequential exchangeability given measured time-dependent covariates holds.

We could impose stronger assumptions than sequential exchangeability. Consider, for instance, the special
case that U is empty in the causal model of Figure 3(i). A regression E(Y |A1, A2,X1,X2) then describes
the conditional association of Y and A1 given (A2,X1,X2), which would be informative for the conditional
controlled direct effect of A1 on the outcome fixing both mediators (A2,X2). The regression further describes
the conditional association of Y and A2 given (A1,X1,X2), which would be informative for the conditional
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causal effect of A2 on the outcome. The multivariable regression would not describe a joint effect of (A1, A2)
as this needs to allow the effect of A1 to ‘flow’ through X2. Even more restrictive, we could assume that
X2 is empty, i.e., that any confounding between A1 or A2 and Y is fully captured by baseline covariates
X1, even though this will be implausible in many longitudinal settings. However, in this special case the
multivariable regression does contain information on the joint conditional effect of (A1, A2) given X1, or on
the conditional controlled direct effect of A1 controlling for A2 and the conditional average treatment effect
of A2 given (A1,X1). Both interpretations are not symmetric in A1 and A2 due to the fact that A1 may
affect A2 (and X2) but not vice versa; if we wanted the total effect of A1 (possibly given X1) we would need
to omit A2 (and X2) from the model. The intricacies of the correct causal interpretation of a multivariable
regression under specific assumptions are linked to the ‘table 2 fallacy’ described by Westreich and Greenland
(2013).

Comparing multivariable regression with the above formal causal methods, the main difference is that
with time-dependent IPTW or with the g-formula we do not need to assume that U or X2 in Figure 3(i) are
empty for the identification of effects of joint interventions. Moreover, we have the possibility to combine the
outcome model and the treatment model for doubly robust estimation. Nevertheless, multivariable regressions
are still key ingredients in the estimation of causal effects, e.g., when using the g-formula of equations (1) or
(2). But they are then used as a mere tool which must be complemented by further computations to obtain
the targeted causal parameter.

5 Target Trial Emulation

In Section 2.1 we introduced the concept of a target trial to help elicit and communicate transparently
one’s causal research question. It requires specifying the following trial components: Eligibility, treatment
strategies, assignment to treatment strategies, length of follow-up, outcome of interest, causal contrast and
analysis plan. The next step is to design the emulation of the target trial (TTE) with available data. For
this we need to consider how these target trial components are to be implemented with available data.

The methods of Section 4 address one aspect: How to emulate randomization by adjusting for (or otherwise
dealing with) confounding. There are many methods to choose from for the emulation of randomization, and
a very large part of methodological research in causal inference is dedicated to refining, generalizing, and
improving robustness of such methods. We stress that the careful emulation of the other components of a
target trial are just as important. While residual confounding is always a threat in observational studies,
other sources of bias are, in contrast, often avoidable or can be minimized by choosing a suitable design for
the emulation. In this section, we therefore consider those other aspects of TTE and common techniques to
minimize design-related biases.

5.1 Basic Techniques to Avoid Self-Inflicted Bias

Here we address a selection of principles and techniques that can be found in the context of emulating a
target trial. However, this is not a complete list, nor are these techniques confined to TTE.

Eligibility, treatment strategies and positivity. The population of interest is defined by the inclu-
sion and exclusion criteria. The emulation step determines how this can be implemented with the available
data. In view of the earlier structural assumption, an important point to note is that eligibility should be
defined so that positivity for all treatment arms is plausible, i.e., for everyone in the eligible population it
should be possible to be assigned to any of the trial arms. Moreover, the available database should provide
empirical support for positivity. This can be achieved by prior descriptive analysis of, e.g., drug-user profiles
illustrating typical drug usage over time. For instance, it would not be sensible to define a trial arm with
‘five years of continual use of drug ABC’ if nobody in the database ever used the drug for more than three
years. For an example consider the analysis by Börnhorst et al (2021), where second line treatment for type
2 diabetes patients is investigated and the trial arms had to be adapted to the actual usage so as to have
sufficient empirical support for a comparison.

Alignment at time-zero. Any real trial has a clear baseline (time-zero) at the point when randomization
takes place. For every individual in an RCT, it is therefore unambiguous which measurements were before and
which were after time-zero. As no actual randomization or assignment to a trial arm occurs in observational
data, time-zero needs to be determined as part of the emulation design. There are essentially two cases,
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Table 1 Potential limitations of study designs: RCTs versus observational studies with or without explicit TTE (adapted from
Braitmaier and Didelez (2022)).

Observational studies with RWD
Potential limitation RCT

with TTE without TTE

Prevalent user bias
(Ray, 2003)

Low risk: Randomization
marks treatment start

Low risk: Avoided by alignment
at time zero

High risk, if exposure
assignment uses pre-baseline
information

Immortal time bias
(Suissa, 2008)

Low risk: Assignment to arms
with randomization

Low risk: Avoided by alignment
at time zero

High risk, if exposure
assignment uses post-baseline
information

Unclear research
question (Didelez,
2016)

Low risk in both, due to definition of (hypothetical)
interventions determining treatment arms

High risk, if no explicit
intervention on exposure
described

Baseline confounding
Low risk: Avoided by baseline
randomization

High risk in both; can be corrected for by appropriate adjustment
(if data are sufficiently informative)

Time-dependent
confounding (Hernán
and Hernández-Díaz,
2012)

High risk in all, if (differential) loss to follow-up, treatment switching (non-adherence), artificial
censoring, among others; can be adjusted for if data are sufficiently informative (e.g., using
inverse probability weights, g-formula)

Lack of external
validity

High risk: Trial population is
highly selected and possibly
differs substantially from
target population

Depends on data source: Registry or claims data contain
information on subgroups routinely excluded from RCTs and are
more informative for real-life use or exposure. However, volunteer
bias (among others) can occur in other data sources

Economic and time
costs High risk Low risk in both, if existing (routine) data can be used

(i) there is a natural unique time-zero for each individual, or (ii) time-zero is not unique for some or all
individuals.

Case (i) occurs, for example, when comparing two treatment options that are both indicated at a fixed
time, such as at first diagnosis or at a specific progression stage. In the analysis of Börnhorst et al (2021),
time-zero is at diagnosis of type 2 diabetes in the target trial and at the first recorded dispensation of first-
line antidiabetic treatment in the emulation, from which point onwards patients were followed with respect
to the timing of their second-line treatment.

Case (ii) occurs when the treatment or the control arm definitions are not linked to a unique point in
time. For example, Braitmaier et al (2022) consider the effect of screening colonoscopy which is offered in
Germany any time from the age of 55 years onwards. Moreover, this is to be compared with no attendance
at a screening colonoscopy which is also not specific to any particular time or age. It is tempting to declare
the ‘exposed’ as those who attend a screening colonoscopy at some point during their lifetime and as ‘not
exposed’ those who never attend a screening colonoscopy; but this would clearly induce immortal time bias
(Suissa, 2008; Hernán et al, 2016). The issue is that for such an exposure definition we would ‘look into the
future’ and violate the requirement that treatment assignment occurs at time-zero. Instead, one may opt for
constructing a unique time-zero, e.g., when the eligibility criteria are met for the first time. Or, alternatively,
it is common to design a sequence of emulated trials and allow individuals to enter multiple trials, which
could be pooled in the analysis. Using such a sequence has the advantage of efficiently making use of all
the data as illustrated in an empirical comparison by García-Albéniz et al (2017). A correct assessment of
standard errors can be achieved by individual-level bootstrap. The biases induced by designs without align-
ment at time-zero are further illustrated by Braitmaier et al (2024) with the example of screening colonoscopy.

Artificial censoring, cloning and weighting. A related issue occurs when comparing sustained or
dynamic treatment strategies, where it may not be obvious how to achieve alignment at time-zero. Consider,
for instance, a (control) strategy of never attending screening colonoscopy; it may seem that we need to
look into the future of a 55-year old patient’s data in order to asses that they comply with this strategy.
However, this could re-introduce bias (García-Albéniz et al, 2017). One technique to address this problem is
that of artificial censoring: Each individual is assigned to, and retained on, any treatment strategy arm(s)
as long as their history complies with the definition of that strategy, but once they deviate from the strategy
they are artificially censored. ‘Artificial’ refers to the fact that data on the individual may still have been
measured beyond that point in time, but as far as the strategy in question is concerned they are censored.
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For instance, a person who becomes eligible for screening colonoscopy at the age of 55, but does not attend
such a procedure until the age of 60 years is retained in the treatment arm of sustained ‘never-screen’ for
those 5 years, together with the information about any diagnosis of colorectal cancer during that time.
But they are artificially censored for this strategy at the age of 60 years because from then onwards they
do not contribute any information to the ‘never-screen’ strategy anymore. As there may be reasons for the
deviation, artificial censoring is not ‘random’ and must be accounted for by weighting to avoid re-introducing
selection bias. Screening attendance, for example, could have been prompted by a general check-up after a
diagnosis of another disease. Avoiding selection bias due to artificial censoring requires re-weighting of the
uncensored individuals. The weights are given as the inverse probability of adherence to the strategy in
question conditioned on relevant past covariate information. These past covariates need to be sufficient to
reasonably assume that in the re-weighted population artificial censoring is like randomized. The inverse
weighting for artificial censoring is analogous to the IPTW for sequential treatments (Hernán, 2018b), i.e.,
it relies on the structural assumption of conditional sequential exchangeability and any time-dependent
confounding must be accounted for.

For the comparison of particular treatment strategies, an individual’s data might also be compatible with
multiple trial arms. Hernán (2018b) considers the question of how to assess the effect of ‘duration of treatment’
on a survival outcome. Obviously those who take treatment for longer live longer or, vice versa, one has to
live longer to be in a position to take the treatment for longer — again, a potential source of immortal-time.
Thus, when comparing short (e.g., 6 months) and long (e.g., 12 months) duration of treatment, all patients
who take treatment for 8 months, contribute to both arms until 6 months and would then be artificially
censored for the first arm; they would also be artificially censored at 8 months for the second arm, while
uncensored patients are re-weighted. The ‘trick’ of assigning an individual to all strategy arms with which
they comply for as long as possible is a data augmentation technique known as ‘cloning’ (Hernán, 2018b). It
makes full use of the available data and avoids bias which could otherwise be introduced by looking into the
future and systematically assigning certain patients to one and others to the other arm. Alternatively, cloning
can be avoided by randomly assigning individuals to a single strategy out of those with which they comply
(without taking their future data into account). As before, the artificial censoring at the point when an
individual deviates from an strategy must be accompanied by suitable inverse weighting of those individuals
who are not censored with the conditional probability of adhering given past covariates. This can be thought
of as up- or down-weighting the uncensored individuals according to how representative they are for those
artificially censored ones.

The above ‘clone-censor-weight’ approach is limited to comparisons of relatively simple and few treatment
strategy arms and to survival or time-to-event outcomes. For more complex dynamic treatments, there may
not be sufficient information left if artificial censoring occurs early. In such situations, the g-formula could
be a feasible alternative.

Emulation for complex treatment strategies. Let us consider the study by Chiu et al (2021) as an
example for a more complex TTE. The authors investigate the 20-year risk of all-cause mortality under the
sustained implementation of several food-based goals of the American Heart Association using data from
three prospective observational studies. The goals were represented in 14 different treatment strategies, sep-
arate and joint ones on, e.g., minimum servings of fruit and vegetables and maximum servings of processed
meat etc. As mentioned earlier, the strategies depend on the natural value: The intervention is only applied
if and when the individual naturally consumes insufficient fruits and vegetables. To implement such rather
complex strategies with observational data and to account for treatment-confounding feedback, the paramet-
ric (generalized) g-formula was used. Moreover, the target trial principle was especially useful in this context
as it helped to make the analyses of the three cohorts as comparable as possible, while strong differences
remained due to rather different study populations. The results showed that especially in the studies with
older populations full adherence to all six dietary goals considerably reduced the mortality risk.

5.2 Some Caveats

TTE is sometimes confused or equated with trial replication (Wang et al, 2023). Trial replication typically
refers to the replication of existing RCTs, where actual trial protocols exist and the challenge lies in emulating
these as closely as possible with observational data. The aim is typically to identify databases and methods
that yield similar results to RCTs. However, for replication the emulation will typically be confined to
the observational analogue of an ‘intention-to-treat’ (ITT) analysis, i.e., the effect of a point treatment
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representing initiation of treatment versus control9. This is because the randomization in RCTs can only
guarantee unconfounded inference for the ITT contrast as non-adherence or post-randomization switching are
not randomized. Moreover, replication necessarily needs to restrict the target population to be comparable
to those in the RCT so that the effects can reasonably be expected to be similar.

In contrast, the strength and potential of TTE is that it offers an option, often the only one, for addressing
important decision questions when RCTs are not (yet) available. Examples include the early studies on
COVID vaccine effectiveness and safety (Dagan et al, 2021), or drug safety studies during pregnancy (Yland
et al, 2022). Moreover, TTE does not need to be restricted to ITT contrasts; the clone-censor-weight approach
or the parametric g-formula (and similar methods) allow us to consider sustained (‘per-protocol’) or more
complex strategies. These methods could also be used with data from RCTs to obtain per-protocol effects
of sustained treatment strategies if sufficient information on time-dependent covariates is recorded (Hernán
and Hernández-Díaz, 2012).

For a convincing TTE there are high demands on data quality and informativeness. The data should
provide sufficient information on the relevant baseline and time-dependent confounding. Alternatively, in-
strumental variables or other natural experiments need to be found. Typically, for many causal research
questions longitudinal information at sufficiently frequent time points is crucial. However, even when such
desirable data are not available, it is worthwhile to formulate and attempt to emulate a target trial: The
process highlights possible sources of bias and will better inform future data collection. The above study by
Chiu et al (2021), for instance, had to rely on cohort data with large time gaps between measurements; the
authors carefully outlined the additional assumptions needed to address this issue pointing out that more
detailed data are currently not available.

Finally, we re-emphasize that even though a carefully designed TTE using high-quality and detailed ob-
servational data can eliminate many types of design-based and time-related biases, it can never guarantee
that there is no residual confounding bias. In Table 1, we contrast some of the strengths and weaknesses of
RCTs versus observational studies with and without TTE.

Bibliographic notes: Early work using the idea of TTE, without using the term, was given by Hernán
et al (2008); the term was later coined by Hernán and Robins (2016). An overview on how to structure and
report a TTE is provided by Hansford et al (2023).

6 Causal Mediation Analysis

It comes very naturally to speak of direct and indirect (causal) pathways or effects, in epidemiology, and
in life course epidemiology in particular. However, the formal treatment of (in)direct effects is surprisingly
complicated, so we dedicate this section entirely to the topic of causal mediation. We aim to give the reader
a flavor of the key issues, with no claim to mathematical precision for which we refer to the original articles;
see the textbook by VanderWeele (2015).

6.1 Controlled Direct Effects

When we consider a causal DAG model such as Figure 6(i) we could say that treatment A1 potentially
has a direct effect symbolized by the edge A1 −→ Y , but also a potentially indirect effect through A2

symbolized by the path A1 −→ A2 −→ Y . Indeed, if we consider the strict meaning of a causal DAG, the
edge A1 −→ Y indicates that under a hypothetical intervention holding fixed A2, varying the value of A1

still affects the distribution of Y (remember that the notion of ‘direct’ effect is relative to the nodes in the
DAG or the variables in our causal model); moreover, the edge A1 −→ A2 means that manipulating A1 by an
intervention may affect the distribution of A2 and the edge A2 −→ Y indicates that manipulating A2 under
a hypothetical intervention holding fixed A1 may affect the distribution of Y . All of these interpretations
refer to the notion of controlled direct (causal) effect (CDE) which is encoded in the edges of a causal DAG
(Spirtes et al, 2000).

The CDE can be regarded as a special case of a joint intervention effect. Consider the PO for two
treatments Y (a1, a2). In this context, the total effect of A1 on Y is a contrast of E(Y (a1 = 1, A2)) versus
E(Y (a1 = 0, A2)) allowing the second treatment to adopt its natural value (which may depend on a1).

9 Here we neglect the fact that an individual may not even initiate the treatment to which they are assigned in an RCT due to
non-adherence.



Causal Inference 25

Fig. 6 DAGs illustrating causal mediation of treatment A1 possibly mediated by mediator A2. (i) Simple but unrealistic case of
no confounding between any pair of the three nodes. (ii) Mediator-outcome confounding by X2, possibly induced by treatment
if dashed edge present. (iii) Under the null of no direct or indirect effect we still have Y ̸⊥⊥ A1 |A2 due to the collider at A2.

Instead, a contrast between E(Y (a1 = 1, a2)) versus E(Y (a1 = 0, a2)) is the effect of intervening on A1

not mediated through A2 because we fix the latter by a second intervention at the constant value a2 (see
illustration in Figure 7(i)). Such an effect may be of interest if the research question aims to establish that,
while A1 may have a large total effect on Y , A2 is thought to be the actual ‘critical’ element, which would
be the case if there was little or no direct effect of A1 after we intervene to fix A2. For instance, we may have
the hypothesis that diet affects certain health outcomes only through its effect on the gut microbiome in the
sense that if a medication were available to keep the gut microbiome at a desirable balance, then different
diets would not much affect those health outcomes anymore.

As a special case of a sequential joint intervention, the CDE is identified and estimation can proceed in
similar ways as for sequential treatments. In equations (2) or (4) contrasts can be chosen where a2 remains
at the same value. It is worth emphasizing that the structural assumptions are also the same. In particular
(conditional) sequential exchangeability is still required, i.e., confounding between the mediator A2 and the
outcome Y must be accounted for, including the case where this confounding is itself affected by A1. The
case of Figure 6(i) is rather unrealistic as this structure cannot be guaranteed even by randomizing treatment
A1. The structure of Figure 6(ii) is more realistic, where there is mediator-outcome confounding by X2, for
which we would need to adjust to obtain the CDE.

For further illustration, consider the DAG in Figure 6(iii), where there is no direct or indirect causal effect
of A1 on Y . Under this causal model, if the analyst inadvertently attempts to estimate the direct effect of A1

by including the suspected mediator A2 in a regression model, a non-causal association due to the collider
at A2 will typically bias their findings (Cole and Hernán, 2002). Here, with U being unmeasured, only the
total effect of A1 can be identified. Note also that in Figure 6(ii), the CDE of A1 controlling for A2 subsumes
the possible indirect effect via X2 if the latter is not also controlled for.

Structural equation models and path analysis. SEMs assume (more or less explicitly) functional
dependencies for every CDE represented by a directed edge in a causal DAG (Pearl, 2009). As such, we can
mathematically define any ‘path-wise effect’ from one node to another by a cascade of CDEs. Particularly
simple formulas for path-wise effects are obtained in the case of linear SEMs. However, the methodology
has attracted some criticism as it typically relies on restrictive and often implausible parametric model-
ing assumptions including, e.g., absence of interactions or effect modification. More importantly, it is not
self-evident how to interpret the resulting objects as actionable causal effects in the sense of contrasts of
hypothetical interventions (VanderWeele, 2015).

Beyond controlled direct effects? The notion of CDE has a clear practical interpretation in terms of
hypothetical interventions. However, it also has certain features of which one has to be aware for a correct
interpretation. For instance, the CDE of A1 controlling for a possible mediator A2 does not reflect if and
how much the treatment A1 affects the suspected mediator A2: The CDE of A1 on Y controlling for A2 can
be different from its total effect simply through effect modification by A2. In other words, even without any
causal effect of A1 on A2, and thus without any ‘indirect effect’, the total effect may not equal a controlled
direct effect.

This brings us to a second issue, namely that there is no corresponding notion of ‘controlled indirect effect’:
While controlling the mediator by intervention isolates the direct path(s) (those not through A2) there is
no corresponding way of isolating the indirect path by controlling something else via some hypothetical
intervention, except perhaps if all paths are indirect and can separately be interrupted by controlling the
corresponding mediators.

Lastly, the CDE may not be viewed as a useful notion when manipulation of the mediator A2 is not
considered possible or not relevant to the research question, as is the case, e.g., in some examples in psychology
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(Imai et al, 2013; Lok, 2016). It then becomes interesting to elicit in what way direct or indirect causal
pathways are relevant to the research question, i.e., what actionable inference is targeted. As before, we
emphasize that a clear research question is a prerequisite to choosing a suitable statistical analysis.

6.2 Causal Mediation: What are the Questions?

Summarizing the above, investigating joint interventions on (A1, A2), including the CDE, does not quite
reflect an intuitive notion of causal mediation as these effects are agnostic to whether A2 is itself causally
affected by A1 or not, or even vice versa. At this stage, it may be worth reflecting on some of the motivations
typically given for causal mediation analyses.

Where best to intervene? A popular motivation for a causal mediation analysis is the wish to find
out where best to intervene given several possible and interconnected targets for hypothetical interventions.
However, this is not a question that requires assessing direct or indirect effects; it requires assessing the
effect of the different options for interventions and comparing their effects on the relevant outcomes. In our
running example with two treatments A1 and A2, this amounts to comparing, say E(Y (a1 = 1)−Y (a1 = 0))
versus E(Y (a2 = 1)− Y (a2 = 0)), which are each causal effects of two different point treatments.

As an example, Do et al (2024) investigate the role of emotional behaviors in sweet and fatty food
choices and aimed at comparing whether hypothetically intervening on psychosocial well-being (PWB) or on
emotion-driven impulsiveness (EDI) is more promising. In the underlying causal model, EDI is thought to
be a potential mediator of PWB. However, this means primarily that PWB needs to be included in the set
of covariates used for adjustment when estimating the causal effect of EDI. Taking the various causal effect
estimates at face value (putting aside the wide confidence intervals) the analysis would suggest that both
hypothetical interventions have small effects and an intervention on EDI would be slightly more effective
than on PWB in reducing the consumption of sweet and fatty foods. A causal mediation analysis with the
same data investigating mediation of the PWB effect via EDI suggests that roughly 50% of the effect is
mediated — from this result it is not clear how to decide where best to intervene.

In another example, Aitken et al (2018) investigate material, psychosocial and behavioral factors as me-
diators between disability acquisition and mental health. Among others, the conclusion states that income
support would be especially important for those with disability; however, the actual analysis does not target
the effect of hypothetical income support for those with (compared to those without) disabilities. Instead of
the performed mediation analysis, one could have assessed the potential of separate hypothetical interven-
tions on either material or psychosocial or behavioral factors for those with disabilities.

Many interrelated outcomes. A further typical motivation for causal mediation analyses is that an
intervention on the treatment is thought to have effects on many different, possibly interrelated outcomes.
For instance, returning to the HIV example, anti-retroviral treatment affects AIDS-free survival ‘through’
various biological changes, e.g., it increases the CD4-count. A careful analysis of the various effects of a treat-
ment by considering separately or jointly the components of a multivariate outcome does not in itself require
any notion of mediation or (in)direct effects. Such an analysis, on its own, could suggest new hypotheses to
be considered or help better assess the harms and benefits of an intervention.

H0: There is no ‘direct’ effect. Some research questions essentially appear to seek confirmation or
refutation of the hypothesis that there is no actual direct effect of a treatment or exposure. Put differently,
the question is whether all mediators are captured by measured information so that the given set of mediators
explains at least most of the total effect; an example may be the above gut microbiome example. At first
glance, the CDE should suffice to address the question whether there is no or only a small direct effect after
controlling for a set of mediators. However, such questions often occur in contexts where ‘controlling’ the
mediators by some intervention is not practically feasible.

Examples are typically related to questions of fairness, e.g., it is well-known that deprivation or low so-
cioeconomic status (SES) is associated with worse health outcomes (Li et al, 2016; Naimi et al, 2016; Schlüter
et al, 2022). In this setting, an interesting question might be: If those with low SES had the same access to
the same quality and intensity of health care as those with high SES, would the association disappear? Again,
we find that the question is about an intervention in the suspected mediators, albeit a very hypothetical
intervention and one that must be informed by the distribution of the mediators in the comparator group
with high SES (called ‘randomized intervention’ in the next subsection).
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Understanding mechanisms. The most common motivation for causal mediation analyses is the desire
to better understand ‘causal mechanisms’. This aim is in stark contrast to the typical mediation analyses,
where (i) strong prior assumptions about the causal mechanisms are required in the first place, e.g., in SEMs,
and (ii) the main result reported is typically that a certain proportion of the effect of A1 is mediated though
A2. Suppose this proportion is near zero, then we do not know if the treatment A1 has no effect on the
mediator A2, if A2 has no effect on the outcome Y , or if the change that A1 effects in A2 is just not sufficient
to subsequently produce much change in Y . Without a detailed description of the individual causal relations
it appears difficult to obtain any insights into the causal mechanisms.

Separable treatments. In the seminal paper on direct and (in)direct effects, Pearl (2001) motivates his
particular notion of indirect effect by a hypothetical experiment, where a novel type of cigarette would contain
no nicotine, and the entire effect of nicotine on myocardial infarction is thought to go through hypertensive
status while the other toxins in cigarettes have no effect on hypertension. In the novel cigarettes, the indirect
pathway through hyptertension would be comparable to nonsmokers and thus ‘interrupted’, so that the
effect of smoking these new versus no cigarettes would be the direct effect of smoking not mediated through
hypertension. A similar example is given by Shrier and Suzuki (2022), describing research questions where
the effect of exposure on the mediator can be ‘broken’ while leaving other causes of the mediator intact and
its value therefore random. As argued by Robins and Richardson (2011), this is, however, the effect of a
‘modified treatment’ where components of the original treatment are separated, e.g., nicotine versus other
toxins in cigarettes (see more details in Robins et al (2022)). More formally, the treatment A1 is made-up of
different components (AY

1 , A
M
1 ) which could (hypothetically) be manipulated separately and are thought to

separately activate different causal paths via or avoiding the mediator (Robins and Richardson, 2011; Robins
et al, 2022).

A similar example is that of placebo-controlled blinded clinical trials, where the two components of a
treatment are the ‘awareness’ of being treated and the ‘active ingredient’. Both components are separated
in such designs, with awareness being separately manipulated by using placebos that have no active ingre-
dient. Such a design isolates the direct effect of the active ingredient but could also be modified to isolate
the indirect ‘placebo effect’ (Didelez, 2013). Separable treatments occur in various contexts, e.g., in drug
development, vaccine, or dementia studies (Stensrud and Dukes, 2022; Andrews et al, 2023; Stensrud et al,
2024).

Bibliographic notes: The CDE is useful to clarify certain approaches of dealing with competing events
in time-to-event analyses, e.g., where the competing event is eliminated by an intervention (Young et al,
2020; Rojas-Saunero et al, 2023). Stensrud and Dukes (2022) discuss a number of examples from clinical
trials, where it was suggested that some of the research questions relating to so-called intercurrent events
in trials could be answered by causal mediation analyses. However, the authors show that many of the
verbal descriptions of the research questions can more appropriately be formulated as joint (sequential)
interventions, as controlled direct effects or separable treatment effects. The notion of fairness has been
linked to path specific effects (Kusner et al, 2017; Nabi and Shpitser, 2018; Chiappa, 2019).

6.3 Alternative Notions of (In)Direct Causal Effects

Other notions of direct and indirect causal effects have been proposed to supplement the notion of CDE, but
also to provide an alternative to the restrictive parametric assumptions underlying typical SEM approaches.
Interestingly, these alternatives have in common that they are identified by a version of the generalized
g-formula, but each have a different interpretation and are identified under different structural assumptions.
Let us consider the causal model of Figure 6(ii), without the dashed edge, where the treatment A1 is not
affected by any confounding, e.g., because A1 was randomized, and X2 is the only common cause of the
mediator A2 and the outcome Y . In this case, the generalized g-formula can be given as follows.

Φ(a1, ã1) =
∑
a2,x2

E(Y |A1 = a1, A2 = a2, X2 = x2)

P (A2 = a2 |A1 = ã1, X2 = x2)P (X2 = x2). (5)

Note that in equation (5) we average over the conditional distribution of A2 given A1 = ã1 (and X2 = x2),
where ã1 is possibly different from a1 in the conditional expectation of Y . We will now consider three alter-
native mediational concepts and how they relate to the above formula.



28 Vanessa Didelez

Natural direct and indirect effects. The notions of natural direct and indirect effects (NDE, NIE)
have been propagated by Pearl (2001), but go back to Robins and Greenland (1992). Recall that A2(a1) is
the PO for the mediator A2 under an intervention on the treatment A1; then, Y (a1, A2(ã1)) is the nested
counterfactual outcome if A1 were set to a1 and A2 were set to its ‘natural’ value, A2(ã1), that it would
take had A1 been set to ã1 (see illustration in Figure 7(ii)). When a1 ̸= ã1 the nested counterfactual is
a cross-world counterfactual because the same treatment A1 is set to two different values simultaneously.
Within this setup, varying a1 yields the natural direct effect, while varying ã1 yields the natural indirect
effect of A1 on Y relative to the mediator A2. Under specific structural assumptions E(Y (a1, A2(ã1))) is
identified by Φ(a1, ã1) from equation (5). These assumptions are (informally): Conditional exchangeability
regarding A1 and A2, A1 and Y , and A2 and Y (given A1), possibly using different sets of covariates for each,
and an additional cross-world independence assumption Y (a1, a2) ⊥⊥ A2(ã1) (given covariates). The latter
would be violated if, e.g., in the DAG of Figure 6(ii) the dashed edge A1 −→ X2 is present even when X2 is
measured and can be adjusted for. This problem is known as ‘treatment-induced confounding’ (or ‘recanting
witness’) of the mediator and the outcome (Avin et al, 2005; Andrews and Didelez, 2021).

The literal interpretations as well as the actionable use of the NDE and NIE are awkward as one can hardly
imagine any actual manipulations of A1 and A2 that would result in these effects, even in idealized experi-
mental trials; Robins and Richardson (2011) therefore call them ‘non-manipulable’ effects. An exception is
discussed in Imai et al (2013), who consider special crossover study designs that are sometimes possible, e.g.,
in psychological experiments. Due to the cross-world nature and underlying assumption, the NDE and NIE
have been described as unscientific (Robins and Richardson, 2011; Naimi et al, 2014). Moreover, it has been
shown that the NDE or NIE are never identified in settings where Y is a survival outcome and mediation
is through a longitudinal process (Didelez, 2019). This is related to the above issue of treatment-induced
confounding, where it has also been suggested that the natural effects are not just unidentifiable but even
not well-defined (Shrier, 2024). Nevertheless, these mediational concepts have attracted much interest and
have been widely applied in epidemiological studies (VanderWeele, 2015).

Fig. 7 DAGs illustrating types of interventions on mediator: (i) Controlled direct effect if a2 is fixed; or randomized inter-
ventional direct effect if a2 is randomly chosen from P (A2 = a2 | do(A1 = ã1)). (ii) Natural causal mediation effects setting
mediator to its PO A2(ã1). (iii) Augmented DAG for separable treatment A1 = (AM

1 = aM , AY
1 = aY ).

Randomized interventional effects. Formula (5) can be interpreted as the expected outcome under
a joint intervention fixing A1 = a1 while the intervention on A2 is such that the value is randomly drawn
from its conditional distribution given an intervention setting A1 = ã1 (Geneletti, 2007). Since perfect
manipulation of the mediator is often regarded as infeasible, such stochastic interventions on A2 have been
proposed as an alternative basis to define (in)direct causal effects (VanderWeele et al, 2014; Lok, 2016; Díaz
et al, 2021). As such it can be seen as generalization of the CDE (see Figure 7(i)). In particular, it has been
applied in settings of fairness, where the aim might be to investigate, for instance, how health outcomes
would change if access to the quality and intensity of health care for those with low SES were distributed
like it is for those with high SES (Li et al, 2016).

The approach has the advantage of requiring weaker structural assumptions for identifiability, analogously
to sequential treatments (Didelez et al, 2006), and no cross-world assumption is needed. In exchange, the
distribution of the PO A2(ã1) must be identified. However, the randomized interventional (in)direct effects
have been shown to not satisfy certain criteria one might expect of indirect effects (Miles, 2023). They have
also been described as a technical work-around without the subtly different interpretation being correctly
reflected in the analyses (Sarvet et al, 2023).

Separable treatment effects. Suppose that the research question can be represented as one of separable
treatment effects with components (AY

1 , A
M
1 ), where AM

1 is thought to act through the mediator A2 (see
Figure 7(iii)), as in the earlier nicotine-free cigarette example or placebo-controlled trial. As target of inference
consider E(Y (AY

1 = a1, A
M
1 = ã1)), i.e., the PO under separate manipulation of the treatment components.
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One can view manipulation of a1 while holding ã1 fixed as the direct separable effect (not through A2), and
manipulation of ã1 while holding a1 fixed as the indirect separable effect. Given certain structural assumptions
this is identified by the generalized g-formula (5). These assumptions are (informally) that AY

1 and AM
1 have

no direct effects on A2 and Y , respectively, and that X2 sufficiently accounts for any confounding between
A2 and Y . Again, no cross-world assumption is required, but we need to envisage settings where components
(AY

1 , A
M
1 ) are meaningful and separately manipulable.

Formalizing direct and indirect effects using separable treatments can be seen as a way to elaborate a
research question to potentially modifiable factors when those represented by the measured variables are
not (Rojas-Saunero et al, 2024). The concept has been extended to settings with survival outcomes and
longitudinal mediating processes (Didelez, 2019), and has also been modified for dealing with competing
events (Stensrud et al, 2022).

Bibliographic notes: Recent reviews on the reporting of (causal) mediation studies found many short-
comings, e.g., regarding the statement of assumptions or their justification, confounding control, sensitivity
analyses, or simply stating the effect sizes (Cashin et al, 2019; Rizzo et al, 2022). Moreover, most studies
used cross-sectional data. However, causal mediation should be considered over time and much recent work
has considered time-varying settings (VanderWeele and Tchetgen Tchetgen, 2017; Vansteelandt et al, 2019;
Didelez, 2019; Janvin et al, 2024), including separable effects for dynamic path analysis (Aalen et al, 2020).
Further, the topic of multiple mediators has attracted much interest (Daniel et al, 2015; Steen et al, 2017)
of which time-varying mediation can sometimes be regarded as special case.

7 Causal Discovery

In the previous section we mostly considered the situation where the causal research question is rather
specific such that it can be formulated as a target trial, and mainly of the form ‘what is the effect of one,
multiple or sequential treatments on one or more (possibly time-dependent) outcomes’. Moreover, inference
on causal effects typically relies on sufficient causal background knowledge, often represented by a causal
DAG expressing the domain knowledge, to determine sufficient adjustment sets or motivate, say, an IV
analysis. Usually, the construction of the causal DAG in epidemiology is expert-driven.

However, some causal questions may be more exploratory in nature, e.g., because the development of a
research question is at an earlier stage and specific expert knowledge to draw a causal DAG is not yet available.
This is where causal discovery (or causal search, (causal) structure learning) can make a contribution (Spirtes
et al, 2000). The aim of causal discovery is to construct a causal DAG in a data-driven way, where some
expert input or constraints such as temporal ordering can still be incorporated. The underlying principle
reverses the fact that causal structures imply specific patterns of marginal and conditional independencies:
Investigating and detecting such independencies in the data can help to (partially) recover the DAG. Basic
examples are shown in Figure 8, where (i) shows DAGs that cannot be distinguished from each other because
they encode the same conditional independencies; while (ii) shows examples that can be distinguished from
(i) but have different intepretations depending on whether we allow latent (unmeasured) variables or not.

Causal discovery relies on a number of stringent assumptions and the methodology should mainly be
viewed as an exploratory tool. There are also several sources of uncertainty which have to be considered: Not
all causal structures are identifiable from data, e.g., if all variables are interconnected then we may not be
able to find sufficient independencies to make much progress. Further, the outputs of DAG-search algorithms
are often rather unstable in the sense that small changes to the data result in large changes in the discovered
(set of) DAGs. An analysis should therefore investigate and report the stability of its findings by suitable
resampling procedures, such as the bootstrap (Pigeot et al, 2015). We do not go into the details of any causal
discovery algorithms here; some basic approaches are addressed in the Chapter on Causal Directed Acyclic
Graphs by R. Foraita et al in this book. Recent methodological developments facilitate the application to
typical epidemiological data by tackling missing values, mixed measurement scales and temporal structure
(Witte et al, 2022; Foraita et al, 2024).

Despite the caveats regarding causal discovery, the methodology is an important one as it provides a data-
driven alternative to the traditional entirely expert-driven construction of (causal) DAGs which is likely to be
accompanied by ‘confirmation bias’, i.e., the analysis is set up so as to support what was believed beforehand.
Injecting some empirical checks against data might sometimes generate original hypotheses (Tennant et al,
2021; Didelez, 2024; ?). Especially in life course studies, causal discovery has the potential to suggest novel
direct or indirect, potentially causal pathways (or the lack thereof). In view of the very formal approaches
to (in)direct effects of Section 6, we note that due to the exploratory nature of causal discovery we speak
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rather informally of (in)direct causal relations, here.

Fig. 8 Basic DAG patterns. (i) Equivalent DAGs, all representing X1 ⊥⊥ X3 |X2; the whole set of DAGs is represented as
undirected graph in the last line. (ii) DAGs without (top), with explicit (middle) and with implicit (bottom) latent variables,
the latter are shown with bidirected edges; in all three graphs we have X1 ⊥⊥ X3 but X1 ̸⊥⊥ X3 |X2.

Causal discovery in life course epidemiology. Recent examples of applications of causal discovery
in life course epidemiology produced interesting insights, especially into the lack of direct causal relations
between many, but not all, early life factors and later outcomes. The studies of Petersen et al (2021) and Pe-
tersen et al (2023) investigate the development of depression in Danish men based on a birth cohort followed
to the age of 65 years. In particular, they find that some of the directed edges detected by the data-driven
DAG-search algorithm are plausible even though the experts did not predict them, e.g., from social class (at
birth) to childhood and youth’ intelligence scores. Similarly, Foraita et al (2024) analyze the development of
risk factors, health behaviors and health outcomes in a European children’s cohort by determining plausible
causal structures supported by the data. The authors find unexpectedly few and weak potentially causal
links between early childhood behaviors and teenage health. For example, modifiable behaviors in a child’s
life such as diet, physical activity or sleep quality have no direct effects but statistically robust indirect effects
on adolescent BMI. According to domain experts, the findings could indicate support for the somewhat dis-
regarded ‘systems hypothesis’ claiming that the general environment has a strong influence, that is difficult
to break, on individual health. In a careful application of causal discovery to postoperative length of stay in
cardiac surgery, Lee et al (2023) also find that many of the known predictors of length of stay were in fact
indirect causes and few were direct causes.

Assumptions of causal discovery. To give a basic idea, we address some of the typical key assumptions
underlying many algorithms for causal discovery. Due to the variety of approaches to causal discovery there
are many more subtle assumptions specific to the different methods; we refer to the Chapter on Causal
Directed Acyclic Graphs by R. Foraita et al, in this book, and further literature for more details (Heinze-
Deml et al, 2018; Glymour et al, 2019; Vowels et al, 2022).

First and foremost, the variables included in the dataset and input into a search algorithm must be
chosen in a way so that they can meaningfully be connected by a causal DAG. This would, for instance,
often be implausible with cross-sectional data on time-varying processes (Aalen et al, 2016). The field of
‘causal representation learning’ has emerged in this context, aiming to automatically determine semantically
meaningful variables from raw data (Schölkopf et al, 2021). For instance, a distinction must be made between
high-dimensional low-level data, such as sensory measurements from wearables, versus high-level variables,
such as hours of vigorous physical activity per day; the latter may be more suitable for causal discovery than
the former.

Given data on a carefully chosen set of variables, a common assumption is faithfulness (Spirtes et al,
2000): It requires that any conditional or marginal independence in the data distribution must correspond
to a d-separation in the underlying DAG. This assumption reverses the (causal) Markov assumption and
means that associations induced by different pathways cannot cancel each other out. While this is unlikely
to occur exactly, ‘near’ cancellations are not unlikely and can still lead to bad performance of data-driven
DAG-searches with finite samples.

A final important and rather restrictive assumption typical for many causal-search algorithms is causal
sufficiency. It requires that the set of variables includes all common causes of every pair of variables, i.e.,
there is no latent confounding of any variables. In many applications, this is rather implausible. Causal
sufficiency often holds approximately, at best, e.g., if the case can be made that all confounding domains
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are represented by some measured variables, and that measurements are sufficiently frequent to adequately
capture any time-dependent confounding and feedback processes. While causal discovery can be relaxed by
some algorithms (cf. methods used by Lee et al (2023)), the computational costs are then often very high.

Interpretation of causal discovery. In view of the special assumptions of DAG-search algorithms, the
discovered (set of) DAGs should be interpreted with care, especially if instability is also an issue. Directed
paths may suggest novel indirect causal relationships that would not typically be found in any regression-
based approaches. However, a key focus should also be on the absence of edges and paths. These can be
interpreted as evidence for the absence of (in)direct causal relations even when causal sufficiency is violated. A
caveat, here, is that searching for independencies in the data requires sufficiently large sample sizes to ensure
the power to detect weak causal relations. Again, we emphasize that assessing the stability of interesting
causal structures, such as presence or absence of certain paths, plays an important role (cf. analysis by
Foraita et al (2024)).

Most recent causal discovery algorithms use machine learning, such as various types of neural networks
or variational autoencoders, with the aim to relax restrictive assumptions on the shape of the associations
(Vowels et al, 2022). However, these advanced approaches to causal discovery, while promising, have yet to
be tried and tested in epidemiological studies (Petersen et al, 2024).

Bibliographic notes: It is tempting to first estimate the DAG, and then proceed as if this DAG had
been known: Estimate any relevant causal effects using adjustment sets identified from this DAG. This is
suggested by Maathuis et al (2010) and is known as IDA algorithm (‘Intervention when the DAG is Absent’).
However, the following two issues occur: (i) When the DAG is not fully identifiable then the adjustment set
is not unique and more than one estimate may be obtained. (ii) There is an issue of post-selection inference
because any default standard errors or confidence intervals do not account for the estimation of the DAG.
First ideas on how to address post-selection inference are developed by Gradu et al (2022) and Chang et al
(2024).

8 Conclusions

Historically, in epidemiology, the causal interpretation of statistical associations would refer to Hill’s famous
criteria (Hill, 1965). In this chapter we presented an approach to formal causal inference combing potential
outcomes, dating back to the 70s (Rubin, 1974), methods for generalized time-dependent treatments, dating
back to the 80s (Robins, 1986) and causal DAGs, dating back to the 90s (Pearl, 1995). VanderWeele (2020)
discusses the relation between Hill’s criteria and the more formal approach: The former is inductive while
the latter is deductive, but both have common principles. For instance, a stronger association is less likely
to be explained away by confounding as typically confirmed by formal bias analyses; or, the requirement for
a causal association to be sufficiently specific is reflected in the idea of using negative controls as a check for
unobserved confounding. However, which associations are more or less relevant seems hard to decide without
a clear causal question, embedded in a causal model, as the starting point. The formal framework for causal
reasoning and inference has been much extended and enthusiastically adopted since the 90s, and remains a
very active field of research. It has considerably strengthened observational epidemiological research and will
certainly continue to do so.
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