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STATISTICAL ASYMPTOTICS

0.1 Background

These notes are preliminary reading for the APTS module ‘Statistical Asymp-
totics’ which will take place in Nottingham during the week 15-19 April 2013.

Two immediate questions that may come to mind are: (i) What is statistical
asymptotics about? and (ii) Why study this topic?

For the purposes of this module, the answer to question (i) is that statistical
asymptotics is about the study of statistical models and statistical proce-
dures, such as parameter estimation and hypothesis testing, when the sample
size n goes to infinity. Properties such as consistency and asymptotic normal-
ity of parameter estimates fall within the domain of statistical asymptotics
as they entail statements about what happens as n→∞.

There are at least 3 distinct answers to question (ii).

1. Motivating practical approximations. In most statistical models in
a frequentist setting, exact inference is not feasible and so there is a need
to develop approximations. Asymptotic (i.e. large n) results often provide
convenient approximations which are sufficiently accurate for practical pur-
poses. In Bayesian inference, Laplace’s method (an asymptotic procedure)
often provides useful approximations to posterior distributions.

2. Theoretical insight. Asymptotic analyses often provide valuable theo-
retical insight into complex models and complex problems. For example, it
may help us to identify which aspects of a problem are of most importance.

3. Theories of optimality. There is sufficient mathematical tractability
within an asymptotic framework to develop various theories of statistical
optimality. We shall not have much to say about optimality in this module;
see van der Vaart (1998) for discussion of aspects of optimality.

0.2 Module objectives

The objectives of the module are: (i) to provide an overview of the first-order
asymptotic theory of statistical statistical inference, with a focus mainly on
likelihood-based approaches, but with brief consideration of the more general
setting of M -estimators; (ii) to provide an introduction to analytic methods
and tools, in particular approximation techniques that are potentially useful
in applications; (iii) to provide exposure to key ideas in contemporary sta-
tistical theory; and (iv) to provide practice in application of key techniques
to particular problems.
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0.3 Contents of these notes

These preliminary notes consist of three chapters. The first presents limit the-
orems from probability theory, multivariable Taylor expansions, plus material
on exponential families, likelihood, sufficiency and Bayesian inference. Chap-
ter 2 provides a fairly detailed discussion of the first-order asymptotic theory
for parametric likelihoods and maximum likelihood estimators. At the end
of this chapter we briefly consider the more general theory of M -estimators.
Chapter 3 presents introductory material on higher-order methods including
Edgeworth expansions, saddlepoint approximations, Laplace approximations
and Bayesian asymptotics. Many results are stated without proof, as some
of the derivations are hard, and beyond the scope of the course. However,
whenever possible, we shall attempt to provide insight into what is required
in the proof.

0.4 How to read these notes

The two main purposes of these notes are:

(i) to summarise the prerequisite material (the locations of the prerequisite
material are given below);

(ii) to provide a first pass through the main topics covered in the module
(of course, the second pass through the main topics of the module will
be during the APTS week itself).

Most of the prerequisite material is in Chapter 1, but you are also strongly
encouraged to study §2.3. However, Chapter 1 also contains more advanced
material so please do not be surprised or alarmed if there are a number of
topics or results you have not seen before. My advice is to read through the
notes, trying to understand as much as you can, but identifying those topics,
sections or subsections that you have difficulty with. I will be happy to
respond to questions on the notes before the APTS week; my email address
is given below. Alternatively, please feel free to save your questions for the
APTS week itself.

The following subsections of the notes constitute prerequisite material:

• §1.2.1 on modes of convergence in probability theory;

• §1.2.2 on laws of large numbers and the central limit theorem in the
1D case (note: this subsection goes beyond prerequisite material with
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coverage of multivariate limit theorems, which are straightforward gen-
eralisations of their univariate versions, and topics such as the delta
method);

• §1.2.4 on o(.), O(.), op(.) and Op(.) notation;

• §1.3.1 on Taylor expansions in the univariate and multivariate cases
(note: the index notation may be unfamiliar);

• §1.4.1 on exponential families;

• §1.5.1 on likelihoods;

• §1.5.2 on score functions and information;

• §1.5.4 on sufficiency;

• §1.6 on Bayesian inference;

• §2.3 on asymptotic normality of maximum likelihood estimators.

0.5 Literature

In the last 20 years or so a number of excellent books on statistical infer-
ence and statistical asymptotics have been published. A selection of these
includes (in alphabetical order): Barndorff-Nielsen and Cox (1989, 1994),
Davison (2003), Ferguson (1995), Pace and Salvan (1997), Severini (2000)
and Young and Smith (2005). A fine book on statistical asymptotics which
is less rooted in parametric inference is van der Vaart (1998), which covers
a huge amount of ground in concise fashion. An accessible and extensive
account of saddlepoint and Laplace approximations is given in the book by
Butler (2007). Depending on the interests of the student, any of these books
could provide an excellent basis for further study.

0.6 Acknowledgement

I am grateful to Professor Alastair Young of Imperial College, the previous
APTS lecturer for Statistical Asymptotics, for kindly making all his notes
and slides available to me. However, with a topic such as this, it is inevitable
that any two lecturers will want to present the material in somewhat different
ways. This has indeed been the case here and consequently, although much
of the overall structure is similar, there have been some quite substantial
changes to these notes. Please email feedback or notification of errors to
Andrew.Wood@nottingham.ac.uk
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1 Background Material

1.1 Introduction

Statistical asymptotics draws from a variety of sources including (but not
restricted to) probability theory, analysis (e.g. Taylor’s theorem), and of
course the theory of statistical inference. In this opening chapter we give a
brief and selective summary of the material from these sources that will be
needed in the module.

In §1.2 we review basic results from probability theory on different modes of
convergence relevant to sequences of random variables and random vectors,
and then go on to state the classical laws of large numbers and the central
limit theorem. The moment generating function and the cumulant generating
function are also defined, and the op and Op notation for quantifying the
limiting behaviour of a sequence of random variables is introduced. In §1.3
we present some further mathematical material including details on Taylor
expansions. For many readers, the index notation introduced in §1.3.1 may
be unfamiliar. The remaining sections of the chapter review key elements
of statistical inference including exponential families, likelihood, sufficiency
and Bayesian inference.

1.2 Basic results from probability theory

1.2.1 Modes of convergence

Various different types of convergence that arise in probability theory are
recalled below.

Convergence in distribution: univariate case. A sequence of real-
valued random variables {Y1, Y2, . . .} is said to converge in distribution if
there exists a (cumulative) distribution function F such that

lim
n→∞

P (Yn ≤ y) = F (y)

for all y that are continuity points of the limiting distribution F . If F is the

distribution function of the random variable Y , we write Yn
d−→ Y .

Convergence in distribution: vector case. The extension to random
vectors is immediate once we have defined the distribution function of a
random vector: if Y = (Y1, . . . , Yd)

T is a random vector and y = (y1, . . . , yd)
T

then the distribution function of Y is given by

F (y) = P (Y1 ≤ y1, . . . , Yd ≤ yd), y ∈ Rd.
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Now let {Y1, Y2, . . .} be a sequence of random vectors, each of dimension d,
and let Y denote a random vector of dimension d. For each n = 1, 2, . . ., let
Fn denote the distribution function of Yn, and let F denote the distribution
function of Y . Then the sequence Yn converges in distribution to Y as n→∞
if

lim
n→∞

Fn(y) = F (y),

for all y ∈ Rd at which F is continuous.

Remark. In this module, the limiting distribution will usually be a familiar
one, e.g. a univariate or multivariate normal distribution or a chi-squared
distribution.

Convergence in probability. A sequence {Y1, Y2, . . .} of real random vari-
ables is said to converge in probability to a random variable Y if, for any
ε > 0,

lim
n→∞

P (|Yn − Y | > ε) = 0.

We write Yn
p−→ Y . [Note: for this definition to make sense, for each n, Y

and Yn must be defined on the same sample space, a requirement that does
not arise in the definition of convergence in distribution.] The extension to
d−dimensional random vectors is again immediate: the sequence of random
vectors Yn converges in probability to Y if, for any ε > 0,

lim
n→∞

P (‖ Yn − Y ‖> ε) = 0,

where ‖ · ‖ denotes Euclidean distance on Rd.

Remark. Convergence in probability implies convergence in distribution. An
important special case is where the sequence converges in probability to a
constant, c; i.e. Yn

p−→ Y , where P (Y = c) = 1. In this case convergence in
probability is equivalent to convergence in distribution.

Almost sure convergence. A stronger mode of convergence is almost sure
convergence, in the sense that almost sure convergence implies convergence
in probability but the implication does not go the other way. A sequence of
random vectors {Y1, Y2, . . .} is said to converge almost surely to Y if

P ( lim
n→∞

‖ Yn − Y ‖= 0) = 1.

We write Yn
a.s−→ Y .

Lp convergence. Finally, a sequence of random vectors {Y1, Y2, . . .} is said
to converge to Y in Lp (or p-th moment) if

lim
n→∞

E(‖ Yn − Y ‖p) = 0,
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where p > 0 is a fixed constant. We write Yn
Lp−→ Y . Lp convergence implies

convergence in probability (cf. the Markov and Chebychev inequalities; see
below).

Exercise. Chebychev’s inequality states that, for any real random variable
Y , and any ε > 0, P (|Y | > ε) ≤ E(Y 2)/ε2. Use this inequality to prove that,
if {Y1, Y2, . . .} is a sequence of random variables converging to 0 in L2, then

Yn
p−→ 0.

Remark. A very useful result is Slutsky’s Theorem which states that if

Xn
d−→ X and Yn

p−→ c, where c is a finite constant, then:

(i) Xn + Yn
d−→ X + c,

(ii) XnYn
d−→ cX,

(iii) Xn/Yn
d−→ X/c, if c 6= 0.

Remark. In this module, the most relevant modes of convergence will be
convergence in distribution and convergence in probability.

1.2.2 Laws of large numbers and the CLT

These classical results, and more general versions of them, play a fundamental
role in statistical asymptotics.

Laws of large numbers. Let X1, . . . , Xn be independent, identically dis-
tributed (IID) real-valued random variables with finite mean µ. The strong
law of large numbers (SLLN) states that the sequence of random variables
X̄n = n−1(X1 + · · · + Xn) converges almost surely to µ if and only if the
expectation of |Xi| is finite. The weak law of large numbers (WLLN) states

that if E|X1| <∞ and E(X1) = µ, then X̄n
p−→ µ.

Central limit theorem. The central limit theorem (CLT) states that,
under the condition that the Xi are IID and have finite variance σ2, and
E(X1) = µ, a suitably standardised version of X̄n, Zn = n1/2(X̄n − µ)/σ,
converges in distribution to a random variable Z having the standard normal
distribution N(0, 1). We write

Zn = n1/2(X̄n − µ)/σ
d−→ N(0, 1).

Delta method. Another useful result is the ‘delta method’, which is derived

via a Taylor expansion (see §1.3.1 below): if Yn has a limiting normal distri-
bution, then so does g(Yn), where g is any smooth function. Specifically, if
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√
n(Yn − µ)/σ

d−→ N(0, 1), and g is a differentiable function with derivative
g′ continuous at µ, then

n1/2(g(Yn)− g(µ))
d−→ N(0, {g′(µ)}2σ2).

The CLT and the delta method have natural multivariate generalisations.

Multivariate CLT. Let X1, . . . , Xn be independent, identically distributed
random d−dimensional vectors with var (X1) = Σ a finite d×d matrix. Then

n−1/2

n∑
i=1

(Xi − EX1)
d−→ Nd(0,Σ),

where Nd(ξ,Σ) is the d-dimensional mutivariate normal distribution with
mean ξ ∈ Rd and d× d variance matrix Σ; see §1.3.3.

Multivariate delta method. Let X1, X2, . . . , Y be random d−dimensional

vectors satisfying an(Xn − c)
d−→ Y , where c ∈ Rd and {an} is a sequence of

positive numbers with an → ∞ as n → ∞. If g is a function from Rd to R
which is continuously differentiable at c, then if Y is Nd(0,Σ), we have

an[g(Xn)− g(c)]
d−→ N(0, [∇g(c)]TΣ[∇g(c)]),

where ∇g(x) denotes the d−vector of partial derivatives of g evaluated at x.

A further important result is the following.

Continuous mapping theorem. Suppose the sequence X1, X2, . . . of ran-

dom d−dimensional vectors is such that Xn
d−→ X and g is a continuous

function. Then g(Xn)
d−→ g(X).

Remark. There are many extensions of these classical results which have
important applications to statistical asymptotics in the context of general
statistical models. For example, Martingale CLTs extend the classical CLT
to a broad class of settings in which the random variables concerned are
neither independent nor identically distributed. However, in this module we
shall mainly be working within the IID setting and the above results will
generally be sufficient.

1.2.3 Moments and cumulants

The moment generating function of a scalar random variable X is defined
by MX(t) = E{exp(tX)}, whenever this expectation exists. Note that
MX(0) = 1, and that the moment generating function is defined in some
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interval containing 0 (possibly containing just 0 itself). If MX(t) exists for
t in an open interval (−c, d) with c, d > 0, then all the moments µ′r = EXr

exist, and for t ∈ (−c, d) we have the absolutely convergent expansion

MX(t) = 1 +
∞∑
r=1

µ′r
tr

r!
.

The cumulant generating function KX(t) is defined by KX(t) = log{MX(t)},
and is finite on the same interval as MX(t). Provided MX(t) exists in an open
interval (−c, d), for t ∈ (−c, d) we have the absolutely convergent expansion

KX(t) =
∞∑
r=1

κr
tr

r!
.

where the coefficient κr is defined as the rth cumulant of X.

The rth cumulant κr can be expressed in terms of the rth and lower-order mo-
ments by equating coefficients in the expansions of exp{KX(t)} and MX(t).
We have, in particular, κ1 = E(X) = µ′1 and κ2 = var(X) = µ′2 − µ′21 . The
third and fourth cumulants are called the skewness and kurtosis respectively.
For the normal distribution, all cumulants of third and higher order are 0.

Exercise.

(i) By equating coefficients of powers of t on both sides of the identity
MX(t) = exp{KX(t)}, find expressions for µ′3 and µ′4 in terms of the
cumulants κ1, κ2, . . ..

(ii) By equating coefficients of powers of t on both sides of the identity
KX(t) = log{MX(t)}, find expressions for κ3 and κ4 in terms of the
moments µ′1, µ

′
2, . . .. [Hint: recall the expansion log(1+x) = x−x2/2+

x3/3− x4/4 + . . ..]

Note that, for a, b ∈ R, KaX+b(t) = bt + KX(at), so that if κ̃r is the rth
cumulant of aX + b, then κ̃1 = aκ1 + b, κ̃r = arκr, r ≥ 2. Also, if X1, . . . , Xn

are independent and identically distributed random variables with cumulant
generating function KX(t), and Sn = X1 + . . .+Xn, then KSn(t) = nKX(t).

Extension of these notions to vector X involves no conceptual complication:
see Pace and Salvan (1997, Chapter 3).
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1.2.4 Mann-Wald notation

In asymptotic theory, the so-called Mann-Wald notation is useful for de-
scribing the order of magnitude of specified quantities. For two sequences of
positive constants (an), (bn), we write an = o(bn) when limn→∞(an/bn) = 0,
and an = O(bn) when lim supn→∞(an/bn) = K <∞.

For a sequence of random variables {Xn} and a sequence of positive constants

{an}, we write Xn = op(an) if Xn/an
p−→ 0 as n → ∞; and Xn = Op(an)

when Xn/an is bounded in probability as n→∞, i.e. given ε > 0 there exist
k > 0 and n0 such that, for all n > n0,

Pr(|Yn/an |< k) > 1− ε.

In particular, for a constant c, Yn = c+ op(1) means that Yn
p−→ c.

Exercise. Prove, or provide a counter-example to, each of the following
statements:

(i) op(an) = anop(1);

(ii) Op(an) = anOp(1);

(iii) Op(an)op(bn) = op(anbn);

(iv) if an → 0 and Xn = op(an), then X2
n = op(an);

(v) if an →∞ and Xn = op(an) then (1 +Xn)−1 = op(1).

1.3 Some Further Mathematical Material

1.3.1 Taylor’s theorem; index notation

Let f(x), x ∈ R, denote a function with continuous (n+1)th derivative. The
Taylor expansion of f about x = a is given by

f(x) = f(a)+f (1)(a)(x−a)+
1

2!
f (2)(a)(x−a)2 + . . .+

1

n!
f (n)(a)(x−a)n+Rn,

where

f (l)(a) =
dlf(x)

dxl

∣∣∣∣
x=a

,

and the remainder Rn is of the form

1

(n+ 1)!
f (n+1)(c)(x− a)n+1,

6



1.3 Some Further Mathematical Material APTS/April 2013

for some c ∈ [a, x].

Some particular expansions therefore are:

log(1 + x) = x− x2/2 + x3/3− x4/4 . . . (|x| < 1)

exp(x) = 1 + x+ x2/2! + x3/3! + x4/4! . . . (x ∈ R)

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2! + . . . (x ∈ R)

The Taylor expansion is generalised to a function of several variables in a
straightforward manner. For example, the expansion of f(x, y) about x = a
and y = b is given by

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!
{fxx(a, b)(x− a)2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2}+ . . . ,

where

fx(a, b) =
∂f

∂x

∣∣∣∣
x=a,y=b

and fxy(a, b) =
∂2f

∂x∂y

∣∣∣∣
x=a,y=b

,

and similarly for the other terms. More generally,

f(x+ h) = f(x) +∇f(x)Th+ hT∇∇Tf(x)h/2! + . . . (x ∈ Rp),

where ∇f(x) is the vector of partial derivatives of f and ∇∇Tf(x) is the
Hessian matrix of second partial derivatives of f , all evaluated at x.

When higher-order terms are needed, a more convenient way to represent
Taylor expansions in the multivariable case is to use index notation combined
with a summation convention. Suppose now that f : Rd → R, and let
x = (xr)dr=1, δ = (δr)dr=1, i.e. we use superscripts here rather than subscripts
for components of vectors. Our goal is to Taylor expand f(x+δ) about f(x).

In index notation, the third-order Taylor expansion, assuming that all third-
order derivatives of f are continuous, is written

f(x+ δ)− f(x) = frδ
r +

1

2!
frsδ

rδs +
1

3!
f ∗rstδ

rδsδt,

where fr and frs are evaluated at x; f ∗rst is evaluated at a point x + λδ for
some λ ∈ [0, 1]; and we use the convention that whenever an index appears
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as a subscript and superscript in the same expression, summation is implied.
So, in the above,

frδ
r =

d∑
r=1

∂f

∂xr
δr and frsδ

rδs =
d∑
r=1

d∑
s=1

∂2f

∂xr∂xs
δrδs.

Index notation is particularly useful in higher-order expansions involving
several variables; see, for example, Barndorff-Nielsen and Cox (1989).

1.3.2 Inverse of a block matrix

The following result from linear algebra will be needed later. Suppose we

partition a matrix A so that A =

[
A11 A12

A21 A22

]
, with A−1 correspondingly

written A−1 =

[
A11 A12

A21 A22

]
. If A11 and A22 are non-singular, let

A11.2 = A11 − A12A
−1
22 A21,

and
A22.1 = A22 − A21A

−1
11 A12.

Then,

A11 = A−1
11.2, A22 = A−1

22.1, A12 = −A−1
11 A12A

22,

A21 = −A−1
22 A21A

11.

1.3.3 Multivariate normal distribution

Of particular importance is the multivariate normal distribution, which, for
nonsingular Σ, has density

f(y;µ,Σ) =
1

(2π)p/2|Σ|1/2
exp{−1

2
(y − µ)TΣ−1(y − µ)}

for y ∈ Rp, µ ∈ Rp. We write this as Np(µ,Σ). If Y ∼ Np(µ,Σ) then EY = µ,
varY = Σ.

If Y ∼ Np(0,Σ), call QY = Y TΣ−1Y the covariance form associated with Y .
Then a key result is that QY ∼ χ2

p. To see this, note the following.

1. The covariance form is invariant under non-singular transformation of
Y . This is because if Ỹ = AY where A is a non-singular p× p matrix,
then Ỹ ∼ Np(0, Σ̃), where Σ̃ = AΣAT, and

QỸ = Ỹ TΣ̃−1Ỹ = Y TAT(AΣAT)−1AY = Y −1Σ−1Y = QY .
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2. Y can be transformed to independent components of unit variance (set
Z = Σ−1/2Y , where Σ−1/2 is a matrix square root of Σ−1).

3. The chi-squared distribution then follows directly, QY ≡ QZ = ZTZ.

Now suppose that Y is partitioned into two parts Y T = (Y T
(1), Y

T
(2)) where Y(j)

is pj × 1, p1 + p2 = p. It is immediate that QY(1) ∼ χ2
p1

, but in addition

QY(1).Y(2) = QY −QY(1) ∼ χ2
p2

independently of QY(1) . To see this, apply a transformation to Y so that
the first p1 components are Y(1) and the last p2 components, Y ′(2) say, are
independent of Y(1). Then, by the invariance of the covariance form under
non-singular transformation of Y ,

QY = QY(1) +QY ′
(2)
,

so that QY ′
(2)
≡ QY(1).Y(2) . The stated properties of QY ′

(2)
clearly hold.

1.4 Exponential families

1.4.1 (m,m) exponential families

Suppose that the distribution of Y depends on m unknown parameters, de-
noted by φ = (φ1, . . . , φm)T, to be called natural parameters, through a
density of the form

fY (y;φ) = h(y) exp{sTφ−K(φ)}, y ∈ Y , (1.1)

where Y is a set not depending on φ. Here s ≡ s(y) = (s1(y), . . . , sm(y))T, are
called natural statistics. The value of m may be reduced if the components
of φ satisfy a linear constraint, or if the components of s are (with probability
one) linearly dependent. So assume that the representation (1.1) is minimal,
in that m is as small as possible. Provided the natural parameter space Ωφ

consists of all φ such that∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m) exponential
family.

If we wish, we may measure φ from some suitable origin φ0 ∈ Ωφ, by rewriting
(1.1) as

fY (y;φ) = fY (y;φ0) exp[sT(φ− φ0)− {K(φ)−K(φ0)}].
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We refer to fY (y;φ) as the (m,m) exponential family generated from the
baseline fY (y;φ0), by exponential tilting via s. We can generate all the
members of the family by tilting a single baseline density. This exponential
tilting idea will be used later, in Chapter 3.

We have from (1.1) that the joint moment generating function of the random
variable S = (S1, . . . , Sm)T = s(Y ) corresponding to the natural statistic s
is, writing t = (t1, . . . , tm),

MS(t, φ) = Eφ{exp(STt)}

=

∫
h(y) exp{sT(φ+ t)}dy × exp{−K(φ)}

= exp{K(φ+ t)−K(φ)},

from which we obtain

Eφ(Si) =
∂M(s; t, φ)

∂ti

∣∣∣∣
t=0

=
∂K(φ)

∂φi
,

or
Eφ(S) = ∇φK(φ),

where ∇φ is the gradient operator (∂/∂φ1, . . . , ∂/∂φm)T. Also,

covφ(Si, Sj) =
∂2K(φ)

∂φi∂φj
.

To compute E(Si) etc. it is only necessary to know the function K(φ).

1.4.2 Inference in exponential families

Let s(y)T = (t(y)T, u(y)T) be a partition of the vector of natural statistics,
where t has k components and u has m − k components. Consider the
corresponding partition of the natural parameter φ = (τ, ξ). The density of
a generic element of the family can be written as

fY (y; τ, ξ) = exp{τTt(y) + ξTu(y)−K(τ, ξ)}h(y).

Two important results hold, which make exponential families particularly
attractive, as they allow inference about selected components of the natural
parameter, in the absence of knowledge about the other components.

First, the family of marginal distributions of U = u(Y ) is an (m − k)-
dimensional exponential family,

fU(u; τ, ξ) = exp{ξTu−Kτ (ξ)}hτ (u),
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say.

Secondly, the family of conditional distributions of T = t(Y ) given u(Y ) = u
is a k-dimensional exponential family, and the conditional densities are free
of ξ, so that

fT |U=u(t;u, τ) = exp{τTt−Ku(τ)}hu(t),

say.

A proof of both of these results is given by Pace and Salvan (1997, p. 190).
The key is to observe that the family of distributions of the natural statistics
is an m dimensional exponential family, with density

fT,U(t, u; τ, ξ) = exp{τTt+ ξTu−K(τ, ξ)}p0(t, u),

where p0(t, u) denotes the density of the natural statistics when τ = 0 and
ξ = 0, assuming without loss of generality that 0 ∈ Ωφ.

1.4.3 Curved exponential families

In the situation described above, both the natural statistic and the natural
parameter lie in m-dimensional regions. Sometimes, φ may be restricted to
lie in a d-dimensional subspace, d < m. This is most conveniently expressed
by writing φ = φ(θ) where θ is a d-dimensional parameter. We then have

fY (y; θ) = h(y) exp[sTφ(θ)−K{φ(θ)}]

where θ ∈ Ωθ ⊆ Rd. We call this system an (m, d) exponential family,
noting that we required that no element of φ is a linear combination of the
other elements, so that (φ1, . . . , φm) does not belong to a v-dimensional linear
subspace of Rm with v < m: we indicate this by saying that the exponential
family is curved. Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} defines a
curve in the plane, rather than a straight line, as θ ∈ R varies.

The following simple model, which is actually of some importance in many
biological and agricultural problems, is a simple example of a curved ex-
ponential family. It concerns a normal distribution ‘of known coefficient of
variation’.

Example: normal distribution, known coefficient of variation. The
normal distribution, N(µ, σ2), represents an example of a full exponential
family model. However, when the variance σ2 is constrained to be equal to
the square of the mean, µ2, so that the coefficient of variation, the ratio of
the mean to the standard deviation, is known to equal 1, the distribution

11
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represents an example of a curved exponential family. Let Y1, . . . , Yn be IID
N(µ, µ2). The joint density in curved exponential family form is

PY (y;µ) ∝ exp

{
− 1

2µ2

∑
y2
i +

1

µ

∑
yi − n log µ

}
.

1.5 Likelihood and Sufficiency

1.5.1 Definitions

Consider a parametric model, involving a model function fY (y; θ) for a ran-
dom variable Y and parameter θ ∈ Ωθ. The likelihood function is

LY (θ; y) = L(θ; y) = L(θ) = fY (y; θ).

Usually we work with the log-likelihood

lY (θ; y) = l(θ; y) = l(θ) = log fY (y; θ),

sometimes studied as a random variable

lY (θ;Y ) = l(θ;Y ) = log fY (Y ; θ).

In likelihood calculations, we can drop factors depending on y only; equiva-
lently, additive terms depending only on y may be dropped from log-likelihoods.
This idea can be formalised by working with the normed likelihood L̄(θ) =
L(θ)/L(θ̂), where θ̂ is the value of θ maximising L(θ). We define the score
function by

ur(θ; y) =
∂l(θ; y)

∂θr

uY (θ; y) = u(θ; y) = ∇θl(θ; y),

where ∇θ = (∂/∂θ1, . . . , ∂/∂θd)T.

To study the score function as a random variable (the ‘score statistic’) we
write

uY (θ;Y ) = u(θ;Y ) = U(θ) = U.

These definitions are expressed in terms of arbitrary random variables Y .
Often the components Yj are assumed to be IID, in which case both the
log-likelihood and the score function are sums of contributions:

l(θ; y) =
n∑
j=1

l(θ; yj),

12
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u(θ; y) =
n∑
j=1

∇θl(θ; yj) =
n∑
j=1

u(θ; yj),

say, and where l(θ; yj) is found from the density of Yj.

Quite generally, even for dependent random variables, if Y(j) = (Y1, . . . , Yj),
we may write

l(θ; y) =
n∑
j=1

lYj |Y(j−1)
(θ; yj | y(j−1)),

each term being computed from the conditional density given all the previous
values in the sequence.

Example: log-likelihood in (m,m) exponential models. LetX1, . . . , Xn

be an independent sample from a full (m,m) exponential density

exp{xTθ − k(θ) +D(x)}.

Ignoring an additive constant, the log-likelihood is

l(θ) =
∑

xT
j θ − nk(θ).

Since θ̂ satisfies the likelihood equation∑
xj − nk′(θ) = 0,

the log-likelihood may be written

l(θ; θ̂) = nk′(θ̂)TTθ − nk(θ);

i.e. it is a function of θ and θ̂ only.

1.5.2 Score function and information

For regular problems for which the order of differentiation with respect to θ
and integration over the sample space can be reversed, we have

Eθ{U(θ)} = 0. (1.2)

To verify this, note that a component of the left-hand side is∫ {
∂ log fY (y; θ)

∂θr

}
fY (y; θ)dy

=

∫
∂fY (y; θ)

∂θr
dy

=
∂

∂θr

∫
fY (y; θ)dy =

∂

∂θr
1 = 0.

13
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Also, when (1.2) holds,

covθ{Ur(θ), Us(θ)}

= Eθ

{
∂l(θ;Y )

∂θr
∂l(θ;Y )

∂θs

}
= Eθ

{
−∂

2l(θ;Y )

∂θr∂θs

}
.

More compactly, the covariance matrix of U is

covθ{U(θ)} = E{−∇θ∇T
θ l}.

This matrix is called the expected information matrix for θ, or sometimes
the Fisher information matrix, and will be denoted by i(θ). The Hessian
−∇θ∇T

θ l is called the observed information matrix, and is denoted by j(θ).
Note that i(θ) = E{j(θ)}.

In the (m,m) exponential family model (1.1),

U(φ) = ∇φl = S −∇φK(φ)

and ∇φ∇T
φ l = −∇φ∇T

φK(φ).

1.5.3 Change of parametrisation

Note that the score u(θ; y) and the information i(θ) depend not only on the
value of the parameter θ, but also on the parameterisation. If we change
from θ to ψ by a smooth one-to-one transformation and calculate the score
and information in terms of ψ, then different values will be obtained.

Write (U (θ), i(θ)) and (U (ψ), i(ψ)) for quantities in the θ- and ψ-parameterisation
respectively. Using the summation convention whereby summation is under-
stood to take place over the range of an index that appears twice in an
expression (see §1.3.1), the chain rule for differentiation gives

U (ψ)
a (ψ;Y ) =

∂l{θ(ψ);Y }
∂ψa

= U (θ)
r (θ;Y )

∂θr

∂ψa
,

or

U (ψ)(ψ;Y ) =

[
∂θ

∂ψ

]T

U (θ)(θ;Y ),

14
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where ∂θ/∂ψ is the Jacobian of the transformation from θ to ψ, with (r, a)
element ∂θr/∂ψa.

Similarly,

i
(ψ)
ab (ψ) =

∂θr

∂ψa
∂θs

∂ψb
i(θ)rs (θ),

or

i(ψ)(ψ) =

[
∂θ

∂ψ

]T
i(θ)(θ)

[
∂θ

∂ψ

]
.

The notion of parameterisation invariance is a valuable basis for choosing
between different inferential procedures. Invariance requires that the conclu-
sions of a statistical analysis be unchanged by reformulation in terms of ψ,
any reasonably smooth one-to-one function of θ.

Consider, for example, the exponential distribution with density ρe−ρy. It
would for many purposes be reasonable to reformulate in terms of the mean
1/ρ or, say, log ρ. Parameterisation invariance would require, for example,
the same conclusions about ρ to be reached by: (i) direct formulation in terms
of ρ, application of a method of analysis, say estimating ρ; (ii) formulation in
terms of 1/ρ, application of a method of analysis, say estimating 1/ρ, then
taking the reciprocal of this estimate.

Suppose that θ = (ψ, χ), with ψ the parameter of interest and χ a nuisance
parameter. A nuisance parameter is one which is not of primary interest
but is needed in the model. For example, if we wish to compare two nested
hypotheses H0: ψ = ψ0, χ unrestricted, and H1: ψ, χ both unrestricted, then
we would normally think of χ as being a nuisance parameter.

In such cases it is reasonable to consider one-to-one transformations from θ
to θ̃ = (ψ̃, χ̃), where ψ̃ is a one-to-one function of ψ and χ̃ is a function of
both ψ and χ. Such transformations are called interest-respecting reparam-
eterisations; see, for example, Barndorff-Nielsen and Cox (1994).

1.5.4 Sufficiency

Let the data y correspond to a random variable Y with density fY (y; θ), θ ∈
Ωθ. Let s(y) be a statistic such that if S ≡ s(Y ) denotes the corresponding
random variable, then the conditional density of Y given S = s does not
depend on θ, for all s, so that

fY |S(y | s; θ) = g(y, s) (1.3)

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.

15
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The definition (1.3) does not define S uniquely. We usually take the minimal
S for which (1.3) holds, the minimal sufficient statistic. S is minimal sufficent
if it is sufficient and is a function of every other sufficient statistic.

The determination of S from the definition (1.3) is often difficult. Instead
we use the factorisation theorem: a necessary and sufficient condition that S
is sufficient for θ is that for all y, θ

fY (y; θ) = g(s, θ)h(y),

for some functions g and h. Without loss of generality, g(s, θ) may be taken
as the unconditional density of S for given θ.

The following result is easily proved and useful for identifying minimal suffi-
cient statistics. A statistic T is minimal sufficient iff

T (x) = T (y)⇔ L(θ;x)

L(θ; y)
is independent of θ ∈ Ωθ.

Example: normal distribution, known coefficient of variation. Let
Y1, . . . , Yn be IID N(µ, µ2). It is easily seen from the form of the joint density
that a minimal sufficient statistic is (

∑
Yi,
∑
Y 2
i ).

Remark In exponential models, the natural statistic S is a (minimal) suf-
ficient statistic. In a curved (m, d) exponential model with d < m, the
dimension m of the sufficient statistic exceeds that of the parameter.

1.6 Bayesian Inference

In the Bayesian approach to statistical inference, the parameter θ in a model
fY (y|θ) is itself regarded as a random variable. The main idea is that we
represent our prior knowledge about θ through a probability distribution
with pdf π(θ), and then use Bayes’ Theorem to determine the posterior pdf
π(θ|Y = y) for θ. More specifically, by Bayes’ Theorem,

π(θ|y) ∝ fY (y|θ)π(θ),

where the constant of proportionality is {
∫
fY (y|θ)π(θ)dθ}−1.

Later in the module we shall see that in broad generality the posterior
π(θ|y) is asymptotically normal as the sample size n increases, where Y =
(Y1, . . . , Yn)T. We shall also see how the Laplace’s approximation (an asymp-
totic procedure) is often useful in posterior calculations.
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2 Large Sample Theory

2.1 Motivation

In many situations, statistical inference depends on being able to derive ap-
proximations because exact answers are not available. Asymptotic (i.e. large
n) results often provide convenient and sufficiently accurate approximations
for practical purposes. Among the most important of such results are the
asymptotic normality of maximum likelihood estimators (MLEs), and the χ2

approximation for the null distribution of a log-likelihood ratio for nested
models. In this chapter we look in some detail at the derivation of some of
these results. We first look at simple situations with no nuisance parameters
and then consider the more typical situation where nuisance parameters are
present.

In the final section of the chapter we briefly study a broader class of es-
timators which possess some of the properties of MLEs, the so-called M -
estimators. For this class of estimators the proof of asymptotic normality is
rather similar to that for MLEs. However, an important difference is that
the asymptotic variance matrix for M -estimators is given by the so-called
sandwich variance formula rather than the inverse of the Fisher information
matrix.

2.2 Some important likelihood statistics

Recall the definitions of the score function and expected and observed infor-
mation in §1.5.1 and §1.5.2.

Denote by lr the rth component of U(θ), lrs the (r, s)th component of∇θ∇T
θ l,

and denote the (r, s)th component of the inverse of the matrix [lrs] by lrs.
The maximum likelihood estimate for given observations y is, for regular
problems, defined as the solution, assumed unique, of the ‘likelihood equa-
tion’

u(θ̂; y) = 0.

Consider testing the null hypothesis H0 : θ = θ0, where θ0 is an arbitrary,
specified, point in Ωθ. We can test H0 in many ways equivalent to first-order,
i.e. using statistics that typically differ by Op(n

−1/2). Three such statistics
are:

1. the likelihood ratio statistic

w(θ0) = 2{l(θ̂)− l(θ0)}, (2.1)
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2. the score statistic

wU(θ0) = UT (θ0)i−1(θ0)U(θ0), (2.2)

3. the Wald statistic

wp(θ0) = (θ̂ − θ0)T i(θ0)(θ̂ − θ0). (2.3)

In (2.3) the suffix p warns that a particular parameterisation is involved.

For a scalar θ, (2.1) may be replaced by

r(θ0) = sgn(θ̂ − θ0)
√
w(θ0), (2.4)

the directed likelihood or ‘signed root likelihood ratio statistic’. In the above,

sgn(x) =


1, if x > 0
0, if x = 0
−1, if x < 0.

Also (2.2) and (2.3) may be replaced by

rU(θ0) = U(θ0)/
√
i(θ0) (2.5)

and
rp(θ0) = (θ̂ − θ0)

√
i(θ0) (2.6)

respectively.

In a first-order asymptotic theory, the statistics (2.1)–(2.3) have, asymptot-
ically, the chi-squared distribution with dθ = dim(Ωθ) degrees of freedom.
The signed versions (2.4)–(2.6) have, asymptotically, an N(0, 1) distribution.

Confidence regions at level 1− α are formed approximately as, for example,

{θ : w(θ) ≤ χ2
dθ,α
},

where χ2
dθ,α

is the upper α point of the relevant chi-squared distribution.

Note that in (2.5)
√
i(θ0) is the exact standard deviation of U(θ0), while in

(2.6) 1/
√
i(θ0) is the approximate standard deviation of θ̂ when θ = θ0.

In asymptotic calculations, because U(θ0) and i(θ0) refer to the total vector
Y of dimension n, then as n→∞ and subject to some general conditions:

U(θ0) ≡
√
nŪ(θ0) = Op(n

1/2),

i(θ0) ≡ nī(θ0) = O(n),

θ̂ − θ0 = Op(n
−1/2),

18
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where ī(θ0) is the average information per observation and Ū(θ0) is a nor-
malised score function. If the observations are IID, ī is the information for a
single observation.

Note that, as n→∞, we have in probability that, provided i(θ) is continuous
at θ = θ0,

j(θ̂)/n → ī(θ0),

j(θ0)/n → ī(θ0).

Therefore, in the definitions of the various statistics, i(θ0) can be replaced
by i(θ̂), j(θ̂), j(θ0) etc. etc., in the sense that, if θ = θ0, the various modified
statistics differ typically by Op(n

−1/2), so that their limiting distributions are
the same under H0.

2.3 Distribution theory for §2.2: 1-dimensional case

We now look more closely at the derivation of asymptotical normality of the
MLE in the case of a single parameter θ. Consider an IID probability model

L(θ) = L(θ;x) = pX(x|θ) =
n∏
i=1

f(xi|θ), x = (x1, . . . , xn)>,

where for simplicity we assume for the moment that θ ∈ R. We define the
log-likelihood by

l(θ) = l(θ;x) = log{L(θ)},

and the score statistic

U(θ) =
∂l

∂θ
(θ) =

n∑
i=1

∂ log f

∂θ
(θ;xi). (2.7)

Our goal is to derive the asymptotic (i.e. large sample/large n) distribution
of θ̂, the maximum likelihood estimator (MLE) of θ. We write the ‘true’
value of θ as θ0.

Assumptions: we shall assume (i) that l(θ) has a continuous third derivative
(in θ), and (ii) that the model is sufficiently regular for the standard results

Eθ[U(θ)] = 0, and Varθ{U(θ)} = i(θ) (2.8)

to hold, where i(θ) is the Fisher information.
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In regular models the MLE will satisfy

U(θ̂) = 0.

Using a 3-term Taylor expansion in which we expand U(θ̂) about θ0 we obtain

0 = U(θ̂) = U(θ0)− j(θ0)(θ̂ − θ0) +
1

2

∂3l

∂θ3
(θ∗)(θ̂ − θ0)2

= n−1/2U(θ0)− {n−1j(θ0)}n1/2(θ̂ − θ0) + n−1/2R(θ∗), (2.9)

where by Taylor’s theorem, θ∗ lies between θ0 and θ̂, U(θ0) is the score
statistic, θ0 is the solution to the first equation in (2.8),

j(θ0) = − ∂
2l

∂θ2
(θ0) = −

n∑
i=1

∂2 log f

∂θ2
(θ0;xi)

is the observed Fisher information, and

R(θ∗) =
1

2

∂3l

∂θ3
(θ∗)(θ̂ − θ0)2

is the remainder term.

We now study the terms on the RHS of (2.9) one by one.

The score statistic. By (2.7) and (2.8), U(θ0) is a sum of IID random
variables with mean 0 and variance i(θ0). Consequently, by the CLT for IID
random variables (see §1.2.2),

n−1/2U(θ0)
d−→ N(0, n−1i(θ0)).

The observed Fisher information. The quantity j(θ0), is a sum of IID
random variables with mean ī(θ0), where ī(θ0) = i(θ0)/n is the expected
Fisher information for a single observation. Therefore, by the Strong Law of
Large Numbers (SLLN),

n−1j(θ0)
a.s−→ ī(θ0), as n→∞.

Recall that the SLLN implies the Weak Law of Large Numbers, so that it is
also the case that n−1j(θ0)

p−→ ī(θ0), which is sufficient for our purposes.

The remainder term. The heuristic reasoning goes as follows. If n1/2(θ̂ −
θ0) = Op(1), as would be the case if n1/2(θ̂− θ0) were asymptotically normal

with finite asymptotic variance, then (θ̂ − θ0)2 = Op(n
−1/2)2 = Op(n

−1).
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Moreover, since, for each θ, ∂3l(θ)/∂θ3 is a sum of n IID random variables,
it is reasonable to hope that ∂3l(θ)/∂θ3 is Op(n), provided Eθ{∂3l(θ)/∂θ3} is
finite for θ in a neighbourhood of θ0. In this case R(θ∗) = Op(n

−1)Op(n) =
Op(1), i.e. R(θ∗) is bounded in probability, and so n−1/2R(θ∗) is Op(n

−1/2).

We now return to (2.9). Dividing through by n−1j(θ0) and rearranging, and
assuming that the remainder term R(θ∗) is bounded in probability, it is seen
that

n1/2(θ̂ − θ0) = {n−1j(θ0)}−1n−1/2U(θ0) +Op(n
−1/2)

d−→ ī(θ0)−1N{0, ī(θ0)} [Slutsky; see §1.2.2]

d
= N{0, ī(θ0)−1}, (2.10)

i.e. the limit distribution of n1/2(θ̂ − θ0) is normal with mean 0, variance
ī(θ0)−1.

Remark. Although this conclusion holds in broad generality, it is impor-
tant to note that it is a rather non-trivial matter to make the argument
that R(θ∗) = Op(1) fully rigorous, in the sense that further assumptions and
some powerful mathematical machinery is needed. A serious issue concerns
the asymptotic existence, uniqueness and consistency of the maximum like-
lihood estimate. There are no entirely satisfactory general theorems on such
questions. A general result on the existence of a solution of the maximum
likelihood equation asymptotically close to the true parameter value is pos-
sible, but is less than is required. See for example van der Vaart (1998,
Chapter 5) for further details. For simplicity we assume from here on that θ̂
is well defined and consistent.

2.4 Further asymptotic likelihood calculations

We now return to the case where θ is a vector. By the multivariate CLT,
we conclude that U(θ) = U(θ;Y ) = [lr(θ)]

d
r=1 is asymptotically Nd(0, i(θ)),

formally

n−1/2ī(θ)−1/2U(θ)
d−→ Nd

(
0, Id

)
, (2.11)

where Id the d×d identity matrix, and with ī(θ)−1/2 interpreted as the (unique
symmetric positive definite) matrix square root of ī(θ)−1. We review what
this implies about θ̂. Now adopt the summation convention and expand the
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score lr(θ) in a Taylor series around θ, writing

lr(θ) = Ur(θ) =
√
nl̄r(θ) =

√
nŪr(θ),

lrs(θ) = nl̄rs(θ) = −jrs(θ) = −nj̄rs(θ),
δ̄r =

√
n(θ̂r − θr), lrst(θ) = nl̄rst(θ),

i(θ) = nī(θ), etc.

Then, lr(θ̂) = 0, so

√
nl̄r(θ) + nl̄rs(θ)δ̄

s/
√
n

+ 1
2
nl̄rst(θ)δ̄

sδ̄t/n+ · · · = 0,

so that to a first-order approximation, ignoring the third term, we have

δ̄r = −l̄rs(θ)l̄s(θ) +Op(n
−1/2)

= j̄rs(θ)l̄s(θ) +Op(n
−1/2).

Now jrs/irs
p−→ 1 for r, s = 1, . . . , d, so

δ̄r = īrs(θ)l̄s(θ) +Op(n
−1/2),

a linear function of asymptotically normal variables of zero mean. It follows
from (2.11) that [δ̄r] is asymptotically normal with zero mean and covariance
matrix [̄irs]. We have √

nī(θ)(θ̂ − θ) d−→ Nd

(
0, Id

)
. (2.12)

Note that the normality relations (2.11) and (2.12) are asymptotically parametri-
sation invariant. This means, in particular, that to show normality for arbi-
trary parametrisations it is enough to do so for one parametrisation. The con-
sequence is simplification of theoretical derivations in many circumstances.

It is now explained why the asymptotic χ2 distribution of w = w(θ) =
2{l(θ̂)− l(θ)} follows from the above. By direct expansion in θ around θ̂ we
have, writing ĵ ≡ j(θ̂) = [ĵrs],

w(θ) = ĵrs(θ̂ − θ)r(θ̂ − θ)s + op(1)

or equivalently
w(θ) = irslrls + op(1),

so w(θ)
d−→ χ2

d. Note that this entails the application of several results
from §1.2.1 and §1.2.2: the WLLN, the CLT, Slutsky’s theorem and the
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continuous mapping theorem. The asymptotic χ2 distribution of the Wald
and score statistics follows similarly.

When the dimension of θ is d = 1, we have that the signed root likelihood
ratio statistic

r = sgn(θ̂ − θ)
√
w(θ)

satisfies
r = ĵ−1/2U + op(1)

so that r
d−→ N(0, 1). Also, i(θ̂)1/2(θ̂ − θ) is asymptotically N(0, 1), so that

an approximate 100(1− α)% confidence interval for θ is

θ̂ ∓ i(θ̂)−1/2Φ−1(1− α/2),

in terms of the N(0, 1) distribution function Φ.

2.5 Multiparameter problems: profile likelihood

Consider again the multiparameter problem in which θ = (θ1, . . . , θd) ∈ Ωθ,
an open subset of Rd.

Typically, interest lies in inference for a subparameter or parameter function
ψ = ψ(θ). The profile likelihood Lp(ψ) for ψ is defined by

Lp(ψ) = sup
{θ:ψ(θ)=ψ}

L(θ),

the supremum of L(θ) over all θ such that ψ(θ) = ψ.

The log profile likelihood is lp = logLp. It may be written as lnp if it is to
be stressed that it is based on a sample of size n.

Often ψ is a component of a given partition θ = (ψ, χ) of θ into sub-vectors
ψ and χ of dimension dψ = d − dχ and dχ respectively, and we may then
write

Lp(ψ) = L(ψ, χ̂ψ),

where χ̂ψ denotes the maximum likelihood estimate of χ for a given value of
ψ. We assume this is the case from now on.

The profile likelihood Lp(ψ) can, to a considerable extent, be thought of and
used as if it were a genuine likelihood. In particular, the maximum profile
likelihood estimate of ψ equals ψ̂, the first dψ components of θ̂. Further, the

profile log-likelihood ratio statistic 2{lp(ψ̂)− lp(ψ0)} equals the log-likelihood
ratio statistic for H0 : ψ = ψ0,

2{lp(ψ̂)− lp(ψ0)} ≡ 2{l(ψ̂, χ̂)− l(ψ0, χ̂0)} ≡ w(ψ0),
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where l ≡ ln is the log-likelihood and we have written χ̂0 for χ̂ψ0 . The
asymptotic null distribution of the profile log-likelihood ratio statistic is χ2

dψ
:

this follows from general distribution theory considered later.

The inverse of the observed profile information equals the ψ component of
the full observed inverse information evaluated at (ψ, χ̂ψ),

j−1
p (ψ) = jψψ(ψ, χ̂ψ),

where jp denotes observed profile information, minus the matrix of second-
order derivatives of lp, and jψψ is the ψψ-block of the inverse of the full
observed information j.

For scalar ψ, this result follows on differentiating lp(ψ) = l(ψ, χ̂ψ) twice with
respect to ψ. Let lψ and lχ denote the partial derivatives of l(ψ, χ) with
respect to ψ, χ respectively. The profile score is lψ(ψ, χ̂ψ), on using the
chain rule to differentiate lp(ψ) with respect to ψ, noting that lχ(ψ, χ̂ψ) = 0.
The second derivative is, following the notation, lψψ(ψ, χ̂ψ)+lψχ(ψ, χ̂ψ) ∂

∂ψ
χ̂ψ.

Now use the result that

∂χ̂ψ/∂ψ = −jψχ(ψ, χ̂ψ)j−1
χχ (ψ, χ̂ψ).

This latter formula follows by differentiating the likelihood equation lχ(ψ, χ̂ψ) =
0 with respect to ψ. This gives

lχψ(ψ, χ̂ψ) + lχχ(ψ, χ̂ψ)
∂

∂ψ
χ̂ψ = 0,

from which
∂

∂ψ
χ̂ψ = −(lχχ(ψ, χ̂ψ))−1lχψ(ψ, χ̂ψ).

It follows that
jp(ψ) = −(lψψ − lψχ(lχχ)−1lχψ),

where all the derivatives are evaluated at (ψ, χ̂ψ). Then, using the formulae
for the inverse of a partitioned matrix, as given in §1.3.2, the result is proved.
The vector case follows similarly.

When ψ is scalar, this implies that the curvature of the profile log-likelihood
is directly related to the precision of ψ̂. We have seen that a key property
of the log-likelihood l(θ) when there are no nuisance parameters is that the
observed information j(θ̂) can be as an estimate of the inverse asymptotic
covariance matrix of θ̂ (which is actually i(θ)). The above result shows that
the corresponding function computed from the profile log-likelihood,

jp(ψ̂) = −[∇ψ∇T
ψ lp(ψ)]ψ=ψ̂

determines an estimate of the inverse asymptotic covariance matrix for ψ̂.
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2.6 Effects of parameter orthogonality

Assume now the matrices i(ψ, λ) and i−1(ψ, λ) are block diagonal. Therefore,
ψ̂ and λ̂ are asymptotically independent and the asymptotic variance of ψ̂
where λ is unknown and estimated is the same as that where λ is known.
In this case ψ and λ are said to be orthogonal; see Cox and Reid (1987).
A related property is that λ̂ψ, the MLE of λ for specified ψ, varies only

slowly in ψ in the neighbourhood of ψ̂, and that there is a corresponding
slow variation of ψ̂λ with λ. More precisely, if ψ − ψ̂ = Op(n

−1/2), then

λ̂ψ − λ̂ = Op(n
−1). For a nonorthogonal nuisance parameter χ, we would

have χ̂ψ − χ̂ = Op(n
−1/2).

We sketch a proof of this result for the case where both the parameter of
interest and the nuisance parameter are scalar. If ψ−ψ̂ = Op(n

−1/2), χ−χ̂ =
Op(n

−1/2), we have

l(ψ, χ) = l(ψ̂, χ̂)

−1
2

{
ĵψψ(ψ − ψ̂)2 + 2ĵψχ(ψ − ψ̂)(χ− χ̂) + ĵχχ(χ− χ̂)2

}
+Op(n

−1/2).

It then follows that

χ̂ψ − χ̂ =
−ĵψχ
ĵχχ

(ψ − ψ̂) +Op(n
−1)

=
−iψχ
iχχ

(ψ − ψ̂) +Op(n
−1).

Then, because ψ − ψ̂ = Op(n
−1/2), χ̂ψ − χ̂ = Op(n

−1/2) unless iψχ = 0, the
orthogonal case, when the difference is Op(n

−1).

Note also that, so far as asymptotic theory is concerned, we can have χ̂ψ = χ̂
independently of ψ only if χ and ψ are orthogonal. In this special case we can
write lp(ψ) = l(ψ, χ̂). In the general orthogonal case, lp(ψ) = l(ψ, χ̂) + op(1),
so that a first-order theory could use l∗p(ψ) = l(ψ, χ̂) instead of lp(ψ) =
l(ψ, χ̂ψ).

2.7 Distribution theory in nuisance parameter case

First-order asymptotic distribution theory when nuisance parameters are
present follows from basic properties of the multivariate normal distribution
given in §1.3.3.

The log-likelihood ratio statistic w(ψ0) can be written as

w(ψ0) = 2
{
l(ψ̂, χ̂)− l(ψ0, χ)

}
− 2
{
l(ψ0, χ̂0)− l(ψ0, χ)

}
,
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as the difference of two statistics for testing hypotheses without nuisance
parameters.

Taylor expansion about (ψ0, χ), where χ is the true value of the nuisance
parameter, gives, to first-order (i.e. ignoring terms of order op(1)),

w(ψ0) =

[
ψ̂ − ψ0

χ̂− χ

]T

i(ψ0, χ)

[
ψ̂ − ψ0

χ̂− χ

]
−(χ̂0 − χ)Tiχχ(ψ0, χ)(χ̂0 − χ). (2.13)

Note that the linearised form of the maximum likelihood estimating equations
is [

iψψ iψχ
iχψ iχχ

] [
ψ̂ − ψ0

χ̂− χ

]
=

[
Uψ
Uχ

]
,

so [
ψ̂ − ψ0

χ̂− χ

]
=

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
.

Also χ̂0 − χ = i−1
χχUχ, to first-order. Then, we see from (2.13) that to first-

order

w(ψ0) = [UT
ψU

T
χ ]

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
− UT

χ i
−1
χχUχ. (2.14)

From (2.14), in the notation of subsection 1.3.3,

w(ψ0) ∼ QU −QUχ = QUψ .Uχ ,

and is thus asymptotically χ2
dψ

.

The Wald statistic wp(ψ0) is based directly on the covariance form of ψ̂−ψ0,
and so can be seen immediately to be asymptotically χ2

dψ
. Note that to

first-order we have

wp(ψ0) = [iψψUψ + iψχUχ]T(iψψ)−1[iψψUψ + iψχUχ]. (2.15)

Correspondingly, we can express the statistic wU(ψ0) in terms of the score
vector U . To first-order we have

wU(ψ0) = (Uψ − iψχi−1
χχUχ)Tiψψ(Uψ − iψχi−1

χχUχ). (2.16)

This follows since, to first-order,

Uψ(ψ0, χ̂0) = Uψ +
∂Uψ
∂χ

(χ̂0 − χ)

= Uψ − iψχi−1
χχUχ.
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The equivalence of the three statistics, and therefore the asymptotic distri-
bution of wU(ψ0), follows on showing, using results for partitioned matrices
given in subsection 1.3.2, that the three quantities (2.14), (2.15) and (2.16)
are identical.

As an illustration, write[
Uψ
Uχ

]
=

[
U1

U2

]
,

[
iψψ iψχ
iχψ iχχ

]
=

[
i11 i12

i21 i22

]
for ease of notation.

Multiplying out (2.14) gives

w(ψ0) = UT
1 i

11U1 + UT
2 i

21U1 + UT
1 i

12U1 + UT
2 [i22 − i−1

22 ]U2. (2.17)

Multiplying out (2.15) gives

wp(ψ0) = UT
1 i

11U1 + UT
1 i

12U2 + UT
2 i

21U1 + UT
2 i

21(i11)−1i12U2, (2.18)

since (i11 − i12i
−1
22 i21)−1 = i11. Equivalence of (2.17) and (2.18) follows on

noting that

i21(i11)−1i12 = i−1
22 i21i

−1
11 i12i

22 = i−1
22 [i22 − (i22)−1]i22 = i22 − i−1

22 .

2.8 An example: possible censoring

Suppose that we observe a realization z of Z = (Z1, ..., Zn), where the Zi
are independent, identically distributed exponential random variables, with
parameter θ, so that the likelihood is

f(z; θ) = θn exp{−θ
n∑
j=1

zj}. (2.19)

Now suppose that the observations are censored at c > 0, so that instead of
z we actually observe y, where

yj = zjI(zj ≤ c) + cI(zj > c), j = 1, ..., n.

The yj are realizations of independently distributed random variables Yj
which have density θ exp(−θx) if x < c, and equal c with probability P (Zj >
c) = e−θc. Thus in this censored case, the likelihood is

g(y; θ) = θr exp{−θ
n∑
j=1

yj}, (2.20)
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where r =
∑n

j=1 I(zj ≤ c) is the random number of uncensored observations.

If we draw a sample in which none of the observations is actually actually
greater than c, no censoring occurs and we have zj = yj, r = n and

g(y; θ) = f(z; θ).

Under (2.20) the Fisher information in a single observation is

ī(θ) ≡ i(θ)/n = E{r/(nθ2)} =
1− e−θc

θ2
.

The likelihood is maximized at θ̂ = r/(nȳ). The observed information is
j̄(θ̂) ≡ j(θ̂)/n = nȳ2/r. Therefore, under (2.20) an approximate 100(1−α)%
confidence interval for θ based on ī(θ̂) is

r

nȳ
∓ 1

n1/2(nȳ/r)[1− exp{−cr/(nȳ)}]1/2
Φ−1(1− α/2). (2.21)

Under (2.19) the likelihood is maximized by θ̂ = 1/z̄. The expected and
observed Fisher information are equal and ī(θ̂) ≡ j̄(θ̂) = 1/θ̂2 = z̄2. An
approximate 100(1− α)% confidence interval for θ is

1

z̄
∓ 1

n1/2z̄
Φ−1(1− α/2). (2.22)

When no censoring occurs (2.21) reduces to

1

z̄
∓ 1

n1/2z̄{1− exp(−c/z̄)}1/2
Φ−1(1− α/2), (2.23)

which is wider than (2.22).

The difference between (2.22) and (2.23) is that the asymptotic variances
based on the expected Fisher information reflect the dependence on the sam-
pling scheme. If we use the observed information j̄(θ̂) = r/(nθ̂2) in the
censored case, we find that an approximate 100(1− α)% confidence interval
for θ is

r

nȳ
∓ r1/2

nȳ
Φ−1(1− α/2),

which reduces to (2.22) when censoring does not actually occur.
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2.9 Asymptotic behaviour of M-estimators

So far in this chapter we have focused on maximum likelihood estimators
(MLEs). We now consider a broader class of estimators called M -estimators
which contains, and is much larger than, the class of MLEs.

The asymptotic theory of M -estimators is relevant in a number of contexts.

(i) Misspecified models. Here, we would like to know what happens when the
’wrong’ likelihood is maximised.

(ii) Estimating equations. If for some reason (e.g. because the likelihood is
too complicated) we prefer not to work with the likelihood for the model
but rather to set up an alternative system of equations to estimate θ. An
example of this is partial likelihood in survival analysis.

(iii) Robust estimation. In this setting, we may wish to set up a system
of equations for estimating θ which produces an estimator of θ which is
insensitive to outliers.

Let X1, . . . , Xn denote an IID sample from a population with distribution
function F . Suppose that we wish to construct an estimator of a parameter
vector θ ∈ Ωθ ⊆ Rd based on the sample X1, . . . , Xn and using an estimating
function given by

G(θ) ≡
n∑
i=1

Gi(θ) ≡
n∑
i=1

G(Xi, θ), (2.24)

where G(Xi, θ) ∈ Rd, i.e. G has the same dimension as θ.

Assume θ0 is such that

EF{G(X1, θ0)} ≡
∫
G(x, θ0)dF (x) = 0, (2.25)

and consider the sequence of estimating equations for θ given by

G(θ) ≡
n∑
i=1

Gi(θ) = 0, n = d, d+ 1, . . . (2.26)

Theorem. Under mild conditions, (2.26) admits a sequence of solutions
(θ̂n)∞n=d with the following properties: as n→∞,

(i) θ̂n
p−→ θ0, i.e. θ̂n is a consistent estimator of θ0;
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(ii) n1/2(θ̂n − θ0)
d→ Nd(0, H(θ0)V (θ0)H(θ0)>) where

V (θ) = Var{G(X1, θ)} and H(θ) = [EF{∇T
θG(X, θ)}]−1.

Remark. From the results stated in §1.2 we can deduce that (ii) implies (i),
but nevertheless (i) is worth stating explicitly.

This theorem is an important result in first-order statistical asymptotics.
Some comments are given below.

Comments.

1. The slightly vague wording ‘...(2.26) admits a sequence of solutions...’ is
necessary because, in general, for each n the solution to (2.26) may not be
unique.

2. The even vaguer wording ‘Under mild conditions...’ is to avoid having
to state conditions which are cumbersome and/or may be difficult to check.
For further discussion of technical details and proofs, see for example van der
Vaart (1998, Chapter 5).

3. In the case in which θ̂n is an MLE, G is the score statistic S so that,
from standard likelihood theory, V = ī(θ0), the expected Fisher information
for a single observation, and H(θ0) = ī(θ0)−1, so that the standard result

n1/2(θ̂n − θ0)
d−→ Nd(0, ī(θ0)−1) is recovered.

4. The expression HVH> is known as the ‘sandwich variance formula’. It
depends on quantities that will usually be unknown but, provided the Xi are
independent, in broad generality it can be estimated consistently by

ĤV̂ ĤT = [n−1∇T
θG(θ̂n)]−1{n−1

n∑
i=1

Gi(θ̂n)Gi(θ̂n)T}[n−1∇θG(θ̂n)T ]−1,

(2.27)
which depends only on sample (i.e. observed) quantities.

5. Approximate confidence intervals for individual parameters and confidence
regions for subsets of the parameters can be derived using the asymptotic
normality given in the theorem.

6. The theorem generalises to many situations where the observationsX1, . . . , Xn

are neither independent nor identically distributed.
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3 Higher-order Theory

In this chapter we investigate various topics in higher-order statistical asymp-
totics including Edgeworth expansions, saddlepoint approximations, Laplace
approximations, Bartlet correction and Bayesian asymptotics. In different
ways each of the above goes beyond the most basic first-order asymptotic
analysis. Moreover, these approaches lead to numerically accurate approxi-
mation and inference in a wide variety of applications.

3.1 Asymptotic expansions

Various technical tools are of importance in the development of higher-order
statistical theory and approximation. Key methods, which we describe in
subsequent sections, used to obtain higher-order approximations to densities
and distribution functions are: Edgeworth expansion, saddlepoint approxi-
mation and Laplace’s method. Here we consider first two important general
ideas, those of asymptotic expansion, and stochastic asymptotic expansion.

Asymptotic expansions typically arise in the following way. We are inter-
ested in a sequence of functions {fn(x)}, indexed by n, and write

fn(x) = γ0(x)b0,n + γ1(x)b1,n + γ2(x)b2,n + . . .+ γk(x)bk,n + o(bk,n),

as n → ∞, where {br,n}kr=0 is a sequence, such as {1, n−1/2, n−1, . . . , n−k/2}
or {1, n−1, n−2, . . . , n−k}. An essential condition is that br+1,n = o(br,n) as
n→∞, for each r = 0, 1, . . . , k − 1.

Often the function of interest fn(x) will be the exact density or distribution
function of a statistic based on a sample of size n at a fixed x, and γ0(x)
will be some simple first-order approximation, such as the normal density
or distribution function. One important feature of asymptotic expansions is
that they are not in general convergent series for fn(x) for any fixed x: taking
successively more terms, by letting k → ∞ for fixed n, will not necessarily
improve the approximation to fn(x).

We will concentrate here on asymptotic expansions for densities, but later
state some of the key formulae in distribution function approximation.

For a sequence of random variables {Yn}, a stochastic asymptotic expan-
sion is expressed as

Yn = X0b0,n +X1b1,n + . . .+Xkbk,n + op(bk,n),
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where {bk,n} is a given set of sequences, and {X0, X1, . . .} are random vari-
ables which are Op(1) and typically have distributions which are only weakly
dependent on n.

There are several examples of the use of stochastic asymptotic expansions
in the literature, but they are not as well defined as asymptotic expansions,
as there is usually considerable arbitrariness in the choice of the coefficient
random variables {X0, X1, . . .}, and it is often convenient to use instead of
X0, X1, . . . random variables for which the asymptotic distribution is free of
n. A simple application of stochastic asymptotic expansion is the proof of
asymptotic normality of the maximum likelihood estimator, as sketched in
Chapter 2: we have

i(θ)1/2(θ̂ − θ) = i(θ)−1/2U(θ) +Op(n
−1/2),

in terms of the score U(θ) and Fisher information i(θ). The quantity i(θ)−1/2U(θ)
plays the role of X0. By the CLT we can write

i(θ)−1/2U(θ) = X0 +Op(n
−1/2),

where X0 is N(0, 1).

3.2 Edgeworth expansion

In this section and in §3.3 we assume, for simplicity, that the random variables
concerned are real-valued. Extensions to the multivariate case are straight-
forward and are summarised, for example, by Severini (2000, Chapter 2).

3.2.1 Edgeworth density approximation

Let X1, X2, . . . , Xn be IID random variables with cumulants κ1, κ2, . . .. Let
Sn =

∑n
1 Xi, S

∗
n = (Sn − nµ)/(n1/2σ) where µ ≡ κ1 = E(X1), σ2 ≡ κ2 =

var (X1). Define the rth standardised cumulant by ρr = κr/κ
r/2
2 .

The Edgeworth expansion for the density of the standardised sample mean
S∗n can be expressed as:

fS∗n(x) = φ(x)

{
1 +

ρ3

6
√
n
H3(x)

+
1

n

[
ρ4H4(x)

24
+
ρ2

3H6(x)

72

]}
+O(n−3/2). (3.1)
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Here φ(x) is the standard normal density and Hr(x) is the rth degree Hermite
polynomial defined by

Hr(x) = (−1)r
drφ(x)

dxr

/
φ(x)

= (−1)rφ(r)(x)/φ(x), say.

We have H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3 and H6(x) = x6 − 15x4 +
45x2 − 15. The asymptotic expansion (3.1) holds uniformly for x ∈ R.

The leading term in the Edgeworth expansion is the standard normal density,
as is appropriate from the CLT. The remaining terms may be considered as
higher order correction terms. The n−1/2 term is an adjustment for the main
effect of the skewness of the true density, via the standardised skewness ρ3,
and the n−1 term is a simultaneous adjustment for skewness and kurtosis. If
the density of X1 is symmetric, ρ3 = 0 and a normal approximation to the
density of S∗n is accurate to order n−1, rather than the usual n−1/2 for ρ3 6= 0.
The accuracy of the Edgeworth approximation, say

fS∗n(x)
.
= φ(x)

{
1 +

ρ3

6
√
n
H3(x) +

1

n

[
ρ4H4(x)

24
+
ρ2

3H6(x)

72

]}
,

will depend on the value of x. In particular, Edgeworth approximations tend
to be poor, and may even be negative, in the tails of the distribution, as |x|
increases, but are typically accurate in the centre of the distribution.

Exercise. For α, β > 0 let Gamma(α, β) denote the gamma distribution
with pdf

f(x|α, β) =
1

Γ(α)
βαxα−1e−βx (3.2)

on x > 0 and zero elsewhere. Let X1, . . . , Xn denote a random sample from
Gamma(1,β), the Exp(β) distribution.

(i) Show that the moment generating function of the Gamma(α, β) distri-
bution is given by M(t) = {β/(β − t)}α for t < β.

(ii) Using (i), deduce that Sn =
∑n

i=1Xi ∼ Gamma(n, β).

(iii) Calculate ρ3, the third standardised cumulant for X1.

(iv) Putting µ = β−1, and noting that E(X1) = µ and Var(X1) = µ2, define
the standardised sum by S∗n = (Sn− nµ)/(n1/2µ). Hence determine the
one-term Edgeworth expansion for fS∗n(x), i.e.

f̂S∗n(x) ≡ φ(x)

{
1 +

ρ3

6
√
n
H3(x)

}
.
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(v) For several choices of n, e.g. n = 5, 20, 50, 100, plot fS∗n(x) against x

and f̂S∗n(x) against x on the same graph. What are your findings and
conclusions? [Warning: part (ii) gives the pdf of Sn, not S∗n, so you
will need to apply a simple linear transformation to the Gamma(n,β)
density to obtain the correct expression for the pdf of S∗n.]

Later we shall consider the same example but using the saddlepoint density
approximation.

3.2.2 Edgeworth distribution function approximation

Integrating the Edgeworth expansion (3.1) term by term (a procedure whose
justification is non-trivial), using the properties of the Hermite polynomials,
we obtain an expansion for the distribution function of S∗n:

FS∗n(x) = Φ(x)− φ(x)

{
ρ3

6
√
n
H2(x)

+
ρ4

24n
H3(x) +

ρ2
3

72n
H5(x)

}
+O(n−3/2).

Also, if Tn is a sufficiently smooth function of S∗n, then a formal Edgeworth
expansion can be obtained for the density of Tn. Further details and refer-
ences are given by Severini (2000, Chapter 2).

When studying the coverage probability of confidence intervals, for example,
it is often convenient to be able to determine x as xα say, so that FS∗n(xα) = α,
to the order considered in the Edgeworth approximation to the distribution
function of S∗n. The solution is known as the Cornish-Fisher expansion and
the formula is

xα = zα +
1

6
√
n

(z2
α − 1)ρ3 +

1

24n
(z3
α − 3zα)ρ4

− 1

36n
(2z3

α − 5zα)ρ2
3 +O(n−3/2),

where Φ(zα) = α.

The derivation of the Edgeworth expansion stems from the result that the
density of a random variable can be obtained by inversion of its characteristic
function. A form of this inversion result useful for our discussion here is that
the density for X̄, the mean of a set of independent, identically distributed
random variables X1, . . . , Xn, can be obtained as

fX̄(x̄) =
n

2πi

∫ τ+i∞

τ−i∞
exp
[
n{K(φ)− φx̄}

]
dφ, (3.3)
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where K is the cumulant generating function of X, and τ is any point in
the open interval around 0 in which the moment generating function M
exists. For details, see Feller (1971, Chapter 16). In essence, the Edgeworth
expansion (3.1) is obtained by expanding the cumulant generating function in
a Taylor series around 0, exponentiating and inverting term by term. Details
are given in Barndorff-Nielsen and Cox (1989, Chapter 4).

3.3 Saddlepoint approximations

3.3.1 Saddlepoint density approximations

Saddlepoint density approximations, first discussed in a statistical context
by Daniels (1954), have some excellent theoretical properties and typically
have excellent numerical accuracy. For a full account see the book by Butler
(2007).

There are two principal approaches to deriving saddlepoint approximations:

(I) a complex variable approach which involves studying the inversion inte-
gral the moment generating function (MGF) via contour integration in
the complex plane;

(II) a real-variable approach making use of a procedure known as exponential
tilting.

For deeper study of saddlepoint approximations it is essential to follow ap-
proach (I). However, when first meeting this topic, approach (II) is preferable
for a statistical audience because it has a more statistical flavour and is easier
to understand than (I).

We focus here on the univariate case. Let X be a continuous random vari-
able with probability density function (pdf) f0(x) and cumulant generating
function (CGF) K0(t) = log[E{exp(tX)}]. It is assumed that K0(t) is finite
for all t ∈ (−a, b) for some a, b > 0. The reason for the zero subscript in f0

and K0 will become clear below when we consider exponential tilting.

The situation of interest here is when K0(t) is available in closed form, f0 is
not known explicitly, and we would like an approximation to f0 at the point
x. This type of problem arises frequently in statistics and applied probability.

First we define the exponentially tilted pdf ft(x) by

ft(x) = exp{xt−K(t)}f0(x). (3.4)
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Observe that the definition of ft is ‘correct’ at t = 0 because K(0) = 0. Also,
ft is a pdf since (i) it is non-negative, and (ii) it integrates to 1, because∫
x∈R

ft(x)dx = exp{−K(t)}
∫
x∈R

exp(tx)f0(x)dx = exp{−K(t) +K(t)} = 1.

Main idea. For given x, at which we want to approximate f0(x), choose t̂ so
that the mean of the distribution with pdf ft̂ is x; and then approximate ft̂(x)
by a normal density with the same mean and variance as the distribution with
pdf ft̂. This makes especially good sense when X is itself a sum of continuous
IID random variables.

Remark. The normal approximation is likely to be better at the mean, which
is at or near the centre of the distribution, than in the tails, especially when
the random variable X is itself a sum of IID random variables.

We shall now show how to put this idea into practice. But first...

Exercise. Show that, for given x, the CGF of the distribution with pdf ft̂ is
given by Kt̂(φ) = K0(t̂+φ)−K0(t̂). Hence show that the mean and variance

of this distribution are given by K
(1)
0 (t̂) and K

(2)
0 (t̂), where the bracketed

superscripts indicate the number of derivatives.

From the main idea, we choose t̂ so that the mean of the distribution with
pdf ft̂ is equal to x, i.e. we choose t̂ to solve

K
(1)
0 (t) = x. (3.5)

This is known as the saddlepoint equation.

The idea now is to approximate ft̂(x) by a normal density with mean K
(1)
0 (t̂)

and variance K
(2)
0 (t̂), evaluated at its mean K

(1)
0 (t̂). From our knowledge of

the normal density, the latter is given by {2πK(2)
0 (t̂)}−1/2. Substituting this

into the LHS of (3.4) gives

1

{2πK(2)
0 (t̂)}1/2

≈ exp{t̂x−K0(t̂)}f0(x);

equivalently, by multiplying both sides by exp{K0(t̂)− t̂x},

f0(x) ≈ f̂0(x) ≡ 1

{2πK(2)
0 (t̂)}1/2

exp{K0(t̂)− t̂x}, (3.6)

where f̂0(x) defined above is the first-order saddlepoint density approxima-
tion.
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So far we have not introduced the sample size n. Suppose we replace X in
the above by the sum Sn = (X1 + . . .+Xn) where the Xi are IID each with
cumulant generating function (CGF) K0(t). Then the CGF of Sn is nK0(t).
Writing f̂Sn(s) for the saddlepoint approximation to fSn(s), the pdf of Sn,
and substituting into (3.6), we obtain

fSn(s) ≈ f̂Sn(s) ≡ 1

{2πnK(2)
0 (t̂)}1/2

exp{nK0(t̂)− t̂s}, (3.7)

where now the saddlepoint equation takes the form K0(t̂) = s/n.

Exercise. As in the exercise in the previous section, let X1, . . . , Xn be an IID
sample from the Exp(β) distribution or, equivalently, from the Gamma(1,β)
distribution in the notation of (3.2).

(i) Show that the cumulant generating function (CGF) of the sum Sn =∑n
i=1Xi is K(t) = n{log(β)− log(β − t)}.

(ii) Derive the saddlepoint equation for this CGF (cf. (3.5)) and then solve
it.

(iii) Hence determine the saddlepoint approximation f̂Sn(s) to fSn(s), the
pdf of Sn.

(iv) For various values of n, e.g. n = 1, 5, 10, plot f̂Sn(s) against x and
plot fSn(s) against s on the same graph. What are your findings and
conclusions? How do the results compare with those for the Edgeworth
approximation considered in the previous section?

Theoretically, saddlepoint approximations have good absolute accuracy in
the centre of the distribution being approximated, and excellent relative ac-
curacy in the tails. Further details will be given in the lectures. Numerically,
saddlepoint approximations are often remarkably accurate, even in many
cases which are not asymptotic.

In the lectures we will consider various extensions and further topics includ-
ing: the multivariate case, where X is a random vector; higher-order sad-
dlepoint approximations obtained via Edgeworth expansion; and Barndorff-
Nielsen’s p∗ formula.

A case of special interest is when f(x) is itself in the exponential family,
f(x; θ) = exp{xθ − c(θ) − h(x)}. Then since K(t) = c(θ + t) − c(θ) is the
CGF of the corresponding random variable X, it follows that φ̂ = θ̂ − θ,
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where θ̂ is the MLE based on s = x1 + · · · + xn. Then, following (3.6) and
(3.7), in this case the saddlepoint approximation is given by

fSn(s; θ) ≈ exp
[
n{c(θ̂)− c(θ)} − (θ̂ − θ)s

]
{2πnc′′(θ̂)}−1/2,

which can be expressed as

c exp{l(θ)− l(θ̂)}|j(θ̂)|−1/2 (3.8)

where l(θ) is the log-likelihood function based on (x1, . . . , xn), or s, and j(θ̂)
is the observed Fisher information. Since θ̂ = θ̂(s) is a one-to-one function
of s, with Jacobian |j(θ̂)|, (3.8) can be used to obtain an approximation to
the density of θ̂

fθ̂(θ̂; θ) ≈ c exp{l(θ)− l(θ̂)}|j(θ̂)|1/2. (3.9)

This latter approximation is a particular example of Barndorff-Nielsen’s p∗-
formula which will be discussed in the lectures.

3.3.2 Lugananni-Rice CDF approximation

It is not easy to integrate the saddlepoint density approximation exactly to
obtain an approximation to the distribution function of Sn. An alternative to
numerical integration is to use the Lugannani and Rice (1980) approximation

FSn(s) = Φ(rs) + φ(rs)
( 1

rs
− 1

vs

)
+O(n−1),

where

rs = sgn(φ̂)

√
2n{φ̂K ′X(φ̂)−KX(φ̂)}

vs = φ̂

√
nK ′′X(φ̂),

and φ̂ ≡ φ̂(s) is the saddlepoint, satisfying nK ′X(φ̂) = s. The expansion can
be expressed in the asymptotically equivalent form

FSn(s) = Φ(r∗s){1 +O(n−1)},

with

r∗s = rs −
1

rs
log

rs
vs
.
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3.4 Laplace approximation of integrals

Suppose g : R → R is a smooth function, and that we wish to evaluate the
integral

gn =

∫ b

a

e−ng(y)dy.

The main contribution to the integral, for large n, will come from values of
y near the minimum of g(y), which may occur at a or b, or in the interior
of the interval (a, b). Assume that g(y) has a unique minimum over [a, b] at
ỹ ∈ (a, b) and that g′(ỹ) = 0, g′′(ỹ) > 0. The other cases may be treated
in a similar manner. For a useful summary of Laplace approximation see
Barndorff-Nielsen and Cox (1989, Chapter 3).

Then, using a Taylor expansion about y = ỹ in the exponent, we can write

gn =

∫ b

a

e−n{g(ỹ)+
1
2

(ỹ−y)2g′′(ỹ)+··· }dy

≈ e−ng(ỹ)

∫ b

a

e−
n
2

(ỹ−y)2g′′(ỹ)dy

≈ e−ng(ỹ)

√
2π

ng′′(ỹ)

∫ ∞
−∞

φ

(
y − ỹ;

1

ng′′(ỹ)

)
dy

where φ(y − µ;σ2) is the density of N(µ, σ2). Since φ integrates to one,

gn ≈ e−ng(ỹ)

√
2π

ng′′(ỹ)
. (3.10)

A more detailed analysis gives

gn = e−ng(ỹ)

√
2π

ng′′(ỹ)

{
1 +

5ρ̃2
3 − 3ρ̃4

24n
+O(n−2)

}
, (3.11)

where

ρ̃3 = g(3)(ỹ)/{g′′(ỹ)}3/2,

ρ̃4 = g(4)(ỹ)/{g′′(ỹ)}2.

A similar analysis gives∫ b

a

h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)

√
2π

ng′′(ỹ)
{1 +O(n−1)}. (3.12)
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Remark. When evaluation the Laplace approximation for an integral such as∫ b
a
h(x)e−ng(x)dx, the following convention is adopted: the term outside the

exponent, in this case h(x), plays no role in the maximisation; it is only the
exponent which is maximised, which is equivalent to minimisation of g(x).

A further refinement of the method, available in the common situation where
h(y) is strictly positive, and which allows g(y) to depend weakly on n, gives∫ b

a

e−n{g(y)− 1
n

log h(y)}dy

=

∫ b

a

e−nqn(y)dy, say,

= e−ng(y
∗)h(y∗)

√
2π

nq′′n(y∗)
{1 + (5ρ∗23 − 3ρ∗4)/(24n) +O(n−2)},(3.13)

where
q′n(y∗) = 0, ρ∗j = q(j)

n (y∗)/{q′′n(y∗)}j/2.

Exercise: Stirling’s approximation. Stirling’s approximation, Γ̂(n), to

the gamma function, Γ(n) =
∫∞

0
xn−1e−xdx, is given by Γ̂(n) ≡

√
(2π)nn−

1
2 e−n,

as n → ∞. Derive Stirling’s approximation using Laplace’s method. [Hint:
you will need to take care in the specification of the functions g(x) and h(x)
in (3.12), remembering that it is only the exponent that is maximised.]

The multi-dimensional version of (3.12) is

gn =

∫
D

h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ) (2π)m/2√
n|g′′(ỹ)|

{1 +O(n−1)},

where it is assumed that g(y) has a unique minimum in the interior of the
region D ⊂ Rm, where the gradient is zero and the Hessian g′′(ỹ) is positive
definite.

The Laplace approximation is particularly useful in Bayesian inference: see
§3.7.

3.5 Conditional inference in exponential families

An important inference problem to which ideas of this chapter apply concerns
inference about the natural parameter of an exponential family model.

Suppose that X1, . . . , Xn are independent, identically distributed from the
exponential family density

f(x;ψ, λ) = exp{ψτ1(x) + λτ2(x)− d(ψ, λ)−Q(x)},
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where we will suppose for simplicity that the parameter of interest ψ and the
nuisance parameter λ are both scalar.

The natural statistics are T = n−1
∑
τ1(xi) and S = n−1

∑
τ2(xi). We

know from the general properties of exponential families (Chapter 1) that
the conditional distribution of X = (X1, . . . , Xn) given S = s depends only
on ψ, so that inference about ψ may be derived from a conditional likelihood,
given s. Note: given a conditional distribution, the conditional likelihood is
simply the likelihood based on this conditional distribution.

The log-likelihood based on the full data x1, . . . , xn is

nψt+ nλs− nd(ψ, λ),

ignoring terms not involving ψ and λ, and the conditional log-likelihood
function is the full log-likelihood minus the log-likelihood function based on
the marginal distribution of S. We consider an approximation to the marginal
distribution of S, based on a saddlepoint approximation to the density of S,
evaluated at its observed value s.

The cumulant generating function of τ2(Xi) is given by

K(z) = d(ψ, λ+ z)− d(ψ, λ).

Write dλ(ψ, λ) = ∂
∂λ
d(ψ, λ) and dλλ(ψ, λ) = ∂2

∂λ2
d(ψ, λ). The saddlepoint

equation is then given by

dλ(ψ, λ+ ẑ) = s.

With s the observed value of S, the likelihood equation for the model with
ψ held fixed is

ns− ndλ(ψ, λ̂ψ) = 0,

so that λ + ẑ = λ̂ψ, where λ̂ψ denotes the maximum likelihood estimator of
λ for fixed ψ. Applying the saddlepoint approximation, ignoring constants,
we therefore approximate the marginal likelihood function based on S as

|dλλ(ψ, λ̂ψ)|−1/2 exp{n[d(ψ, λ̂ψ)− d(ψ, λ)− (λ̂ψ − λ)s]};

the resulting approximation to the conditional log-likelihood function is given
by

nψt+ nλ̂Tψs− nd(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|

≡ l(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|.

The form of this conditional log-likelihood indicates that instead of just using
the profile log-likelihood of ψ, an adjustment term should be added.
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3.6 Bartlett correction

The first-order χ2 approximation to the distribution of the likelihood ratio
statistic w(ψ) can be expressed as

Prθ{w(ψ) ≤ ω◦} = Pr{χ2
q ≤ ω◦}{1 +O(n−1)},

where q is the dimension of ψ and the full parameter vector is θ = (ψ, λ),
with λ nuisance. The χ2 approximation has relative error of order O(n−1).

In the case of IID sampling, and in other settings, it can be shown that

Eθw(ψ) = q{1 + b(θ)/n+O(n−2)},

and so Eθw′(ψ) = q{1 +O(n−2)}, where w′ = w/{1 + b(θ)/n}.
This adjustment procedure, of replacing w by w′, is known as Bartlett cor-
rection. In spite of its simplicity, this device yields remarkably good results
under continuous models, the reason being that division by {1 + b(θ)/n} ad-
justs, in fact, not only the mean but simultaneously all the cumulants—and
hence the whole distribution—of w towards those of χ2

q. It can be shown
that

Prθ{w′(ψ) ≤ ω◦} = Pr{χ2
q ≤ ω◦}{1 +O(n−2)}.

In practice, because of the (possible) presence of an unknown nuisance pa-
rameter λ, b(θ) may be unknown. If b(θ) is replaced by b(ψ, λ̂ψ), the above
result still holds, even to O(n−2). An explicit expression for b(θ) is given by
Barndorff-Nielsen and Cox (1994, Chapter 6).

Note that the effect of the Bartlett correction is due to the special character
of the likelihood ratio statistic, and the same device applied to, for instance,
the score test does not have a similar effect. Also, under discrete models this
type of adjustment does not generally lead to an improved χ2 approximation.

3.7 Bayesian asymptotics

In this section we review briefly the asymptotic theory of Bayesian infer-
ence. The results provide demonstration of the application of asymptotic
approximations discussed earlier, in particular Laplace approximations. Key
references in such use of Laplace approximation in Bayesian asymptotics in-
clude Tierney and Kadane (1986) and Tierney et al. (1989).

The key result is that the posterior distribution given data x is asymptotically
normal. Write

πn(θ | x) = f(x; θ)π(θ)/

∫
f(x; θ)π(θ)dθ
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for the posterior density. Denote by θ̂ the MLE.

For θ in a neighbourhood of θ̂ we have, by Taylor expansion,

log

{
f(x; θ)

f(x; θ̂)

}
≈ −1

2
(θ − θ̂)T j(θ̂)(θ − θ̂).

Provided the likelihood dominates the prior, we can approximate π(θ) in a
neighbourhood of θ̂ by π(θ̂). Then we have

f(x; θ)π(θ) ≈ f(x; θ̂)π(θ̂) exp{−1
2
(θ − θ̂)T j(θ̂)(θ − θ̂)},

so that, to first order,

πn(θ | x) ∼ N
(
θ̂, j(θ̂)−1

)
.

A more natural approximation to the posterior distribution when the likeli-
hood does not dominate the prior is obtained if we expand about the posterior
mode θ̂π, which maximises f(x; θ)π(θ). An analysis similar to the above then
gives

πn(θ | x) ∼ N
(
θ̂π, jπ(θ̂π)−1

)
,

where jπ is minus the matrix of second derivatives of f(x; θ)π(θ).

A more accurate approximation to the posterior is provided by the following.
We have

πn(θ | x) = f(x; θ)π(θ)

/{∫
f(x; θ)π(θ)dθ

}
≈ c exp{l(θ;x)}π(θ)

exp{l(θ̂;x)}|j(θ̂)|−1/2π(θ̂)
,

by Laplace approximation of the denominator.

We can consider also use of the Laplace approximation to approximate to
the posterior expectation of a function g(θ) of interest,

E{g(θ) | x} =

∫
g(θ)enl̄n(θ)π(θ)dθ∫
enl̄n(θ)π(θ)dθ

,

where l̄n = n−1
∑n

i=1 log f(xi; θ) is the average log-likelihood function. Recall
that such expectations arise as the solutions to Bayes decision problems. It
turns out to be more effective to rewrite the integrals as

E{g(θ) | x} =

∫
en{l̄n(θ)+q(θ)/n}dθ∫
en{l̄n(θ)+p(θ)/n}dθ
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and to use the version (3.13) of the Laplace approximation. Applying this
to the numerator and denominator gives

E{g(θ) | x} ≈ enl̄n(θ∗)+q(θ∗)

enl̄n(θ̃)+p(θ̃)

× {−nl̄
′′
n(θ̃)− p′′(θ̃)}1/2

{−nl̄′′n(θ∗)− q′′(θ∗)}1/2

{1 +O(n−1)}
{1 +O(n−1)}

where θ∗ maximises nl̄n(θ) + log g(θ) + log π(θ) and θ̃ maximises nl̄n(θ) +
log π(θ). Further detailed analysis shows that the relative error is, in fact,
O(n−2). If the integrals are approximated in their unmodified form the result
is not as accurate.

Finally, consider the situation where the model depends on a multi-dimensional
parameter θ = (ψ, λ), with ψ a scalar interest parameter and λ a nuisance
parameter. For values ψ0 such that ψ̂ − ψ0 is of order O(n−1/2), we have

Pr(ψ ≥ ψ0 | x) = Φ{rp(ψ0)}+ ϕ{rp(ψ0)}{r−1
p (ψ0)− u−1

B (ψ0)}+O(n−3/2),

where Φ and ϕ are the standard normal distribution and density functions
respectively, rp is the signed root (profile) likelihood ratio statistic (cf. (2.4))
given by

rp(ψ) = sgn(ψ̂ − ψ)[2{lp(ψ̂)− lp(ψ)}]1/2,

and uB is given by

uB(ψ) = ˜̀
ψ

∣∣− ˜̀
λλ

∣∣ 12∣∣− ˆ̀
θθ

∣∣ 12 π̂π̃ ,
where π = π(θ) is the prior. Here, letting θ̂ =

(
ψ̂, λ̂) be the global maximum

likelihood estimator of θ and θ̃ = θ̃(ψ) = (ψ, λ̂ψ) be the constrained maximum
likelihood estimator of θ for a given value of ψ, evaluation of functions of θ
at θ̂ and θ̃ are denoted by ˆ and ˜, respectively. The value ψ0 satisfying
Φ{rp(ψ0)} + ϕ{rp(ψ0)}{r−1

p (ψ0) − u−1
B (ψ0)} = α agrees with the posterior

1− α quantile of ψ to error of order O(n−2).
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