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Computer Practical 3 Outline Solutions
Markov Chains and Monte Carlo

1. A warm-up. In a simplified model of the game of Monopoly, we consider the motion of the piece
around a loop of 40 spaces. We can model this as a Markov chain on the integers 0, . . . , 39 in which
the transition kernel adds the result of two six-sided dice to the current state modulo 40 to obtain
the new state.

(a) Implement a piece of R code which simulates this Markov chain.

# Increment probabilities

ivals <- c(2,3,4,5,6,7,8,9,10,11,12)

iprobs <- c(1,2,3,4,5,6,5,4,3,2,1) / 36

rmonopoly <- function(n=1,x0=0) {

#Sample n increments

is <- sample(ivals , size=n, replace=TRUE , prob=iprobs)

x <- (x0 + cumsum(is)) %% 40

}

(b) Run the code for a large number of iterations, say 100, 000, and plot a histogram of the states
visited.

Taking a little care over the location of the bins, noting that X lives in discrete space:
X <- rmonopoly(1000000)

hist(X,breaks=seq(-0.5,39.5,1), prob=T)

(c) Based on the output of the chain, would you conjecture that there is an invariant distribution
for this Markov chain? If so, what?

This histogram is quite strongly suggestive that the invariant distribution might be uni-
form and. (Indeed this seems logical: the sum of many independent variables if finite
variance will ultimately look very like a normal random variable and will have variance
linearly increasing with the number of terms. Taking this value, modulo 40, it will wrap
around many times and the resulting density will become increasingly flat.)

(d) Write the transition kernel down mathematically.

There are lots of ways of doing this, letting Kij := P (Xt+1 = j|Xt = i), we have:

Kij =



1 j − i mod 40 = 2 or j − i mod 40 = 12
2 j − i mod 40 = 3 or j − i mod 40 = 11
3 j − i mod 40 = 4 or j − i mod 40 = 10
4 j − i mod 40 = 5 or j − i mod 40 = 9
5 j − i mod 40 = 6 or j − i mod 40 = 8
6 j − i mod 40 = 7

(e) Show that the Markov kernel you have written down is invariant with respect to any distribution
conjectured in part (c).



Let fi = 1/40I{0 ...,39}(i) be the putative invariant distribution:∑
i

fiKij =
1
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(1 + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1) /36 = 1/40 = fj .

where the second equality follows by noticing that j − i mod 40 = k for exactly one i for
every pair j, k ∈ {0, . . . , 39}.

2. Gibbs Sampling: recall the Poisson changepoint model discussed in lectures, and on p26 of the
supporting notes, and think about the following closely related model.

Observations y1, . . . , yn comprise a sequence of M iid N (µ1, 1) random variables followed by a second
sequence of n−M iid N (µ2, 1) random variables. M , µ1 and µ2 are unknown.

The prior distribution over M is a discrete uniform distribution on {1, . . . , n − 1} (there is at least
one observation of each component). The prior distribution over µi (i = 1, 2) is N

(
0, 102

)
. The three

parameters are treated as being a priori independent.

(a) Write down the joint density of y1, . . . , yn, µ1, µ2 and M and obtain the posterior distribution of
µ1, µ2 and M , up to proportionality, in as simple a form as you can.
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(b) Find the “full conditional” distributions of µ1, µ2 and M . (i.e. the conditional distributions of
each of these variables given all other variables).



M |y1,...,n, µ1, µ2 has the discrete distribution of 1, . . . , n− 1 with
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which can be easily (if not cheaply) sampled from.
While the two mean parameters can be readily seen to be normally distributed (com-
plete the square in µ1 or µ2, respectively, in the exponential terms which involve each
parameter), and:
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and similarly for y2, but with the remaining n−M observations:

p(µ2|µ1,M, y1, . . . , yn) =N
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)

(c) Implement a Gibbs sampler which makes use of these full conditional distributions in order to
target the posterior distribution identified in part (b).

sample.mu <- function(obs ,n.obs) {

mean <- 100 * sum(obs) / (1+100*n.obs)

var <- 100 / (1+100 * n.obs)

rnorm(1,mean ,sqrt(var))

}

sample.M <- function(obs ,n.obs ,mu1 ,mu2) {

log.p <- c()

for(i in 1:(n.obs -1)) {

log.p[i] <- -(sum((obs[1:i]-mu1)^2) + sum((obs[(i+1):n.obs]-mu2)^2)) / 2

}

log.p <- log.p - max(log.p)

p <- exp(log.p)

p <- p / sum(p)

sample.int(n=n.obs -1,size=1,replace=TRUE ,prob=p)

}

gibbs.ncpm <- function(n.it=10000 , y, M = length(y)/2, mu1 = -1, mu2 = +1) {

n <- length(y)

Ms <- c()

mu1s <- c()

mu2s <- c()

Ms[1] <- sample.M(y,n,mu1 ,mu2)

mu1s [1] <- sample.mu(y[1:Ms[1]],Ms[1])

mu2s [1] <- sample.mu(y[(Ms [1]+1):n],n-Ms[1])

for (i in 2:n.it) {

Ms[i] <- sample.M(y,n,mu1s[i-1],mu2s[i-1])

mu1s[i] <- sample.mu(y[1:Ms[i]],Ms[i])

mu2s[i] <- sample.mu(y[(Ms[i]+1):n],n-Ms[i])

}

list(M = Ms, mu1 = mu1s , mu2=mu2s)

}



The only potentially surprising feature in the above code is perhaps the simulation of M .
The use of logarithms and the subtraction of the maximum is solely for numerical reasons
and is generally a good idea – combinations of very large / very small values can otherwise
lead to strange behaviour in some circumstances.

(d) Simulate some data from the model for various parameter values and test your Gibbs sampler.

This works reasonably well for most reasonable parameter values. Here’s an example:
y <- c(rnorm(23, 1,1),rnorm(17,2,1))

g <- gibbs.ncpm(1E4,y,10,2,-4)

Which produces the following histograms for M , µ1 and µ2, respectively:
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(e) How might you extend this algorithm if instead of a changepoint model you had a mixture model
in which every observation is drawn from a mixture, i.e.:

Y1, . . . , Yn
iid∼ pN (·;µ1, 1) + (1− p)N (·;µ2, 1)

(so the likelihood is
∏n

i=1[pN (yi;µ1, 1) + (1− p)N (yi;µ2, 1)] in which p, µ1 and µ2 are unknown
(and M is no longer a parameter of the model)?

Consider the following things:

i. The prior distribution over p.

For Gibbs sampling to work we require conjugacy, a U[0, 1] prior would suffice, but is a
special case of the Beta distribution, any member of which would lead to an implementable
algorithm.

ii. Any other variables you may need to introduce.

As in the examples considered in lectures, we’d need a latent allocation variable for every
observation indicating which of the two components it’s treated as coming from in the
completed model.

iii. The resulting algorithm.

A standard Gibbs Sampler should work adequately once these prior distributions and
latent variables have been specified.

If you have time, implement the resulting algorithm and apply it to some simulated data.


