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Expectation and statistical inference

The ostensible purpose of this chapter is to establish my notation,
and to derive those results in probability theory that are most
useful in statistical inference: the Law of Iterated Expectation, the
Law of Total Probability, Bayes’s Theorem, and so on. I have not
covered independence and conditional independence. These are
crucial for statistical modelling, but less so for inference, and they
will be introduced in Chapter 5.

What is unusual about this chapter is that I have developed these
results taking expectation, rather than probability, as primitive.
Bruno de Finetti is my inspiration for this, notably de Finetti (1937,
1972, 1974/75) and the more recent books by Lad (1996) and Gold-
stein and Wooff (2007). Whittle (2000) is my source for some details,
although my approach is quite different from his. For standard
textbooks, I recommend Grimmett and Stirzaker (2001) on proba-
bility theory, Schervish (1995) on the theory of statistics, and either
Bernardo and Smith (1994) or Robert (2007) on Bayesian statistics.

Why expectation as primitive? This is not the modern approach,
where the starting point is a set, a sigma algebra on the set, and a
non-negative normalised countably additive (probability) measure;
see, for example, Billingsley (1995) or Williams (1991). However, in
the modern approach an uncertain quantity is a derived concept,
and its expectation doubly so. But a statistician’s objective is to
reason sensibly in an uncertain world. For such a person (and I
am one) the natural starting point is uncertain quantities, and the
beliefs1 one has about them. Thus uncertain quantities and their 1 See footnote 4 on p. 7.

expectations are taken as primitive, and probability is defined in
terms of expectation.

As will be demonstrated in this chapter, this change of perspec-
tive radically alters the way we think about statistical inference,
most notably by clarifying our objectives in the light of our (human)
limitations; although the theorems are all the same. It gives us a
naturalistic viewpoint from which to appraise modern statistical
practice. Chapter 2 discusses modern practice in more detail.
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1.1 Random quantities and their realms

My starting-point is a random quantity. A random quantity is a set
of instructions which, if followed, will yield a real value; this is
an operational definition. Experience suggests that thinking about
random quantities is already hard enough, without having to factor
in ambiguitities of definition—hence my insistence on operational
definitions. Real-valued functions of random quantities are also
random quantities.

It is conventional in statistics to represent random quantities
using capital letters from the end of the alphabet, such as X, Y,
and Z, and, where more quantities are required, using ornaments
such as subscripts and primes (e.g. Xi, Y0). Thus XY represents
the random quantity that arises when the instructions X and Y
are both performed, and the resulting two values are multiplied
together. Representative values of random quantities are denoted
with small letters. I will write ‘X ! x’ to represent ‘instructions X
were performed and the value x was the result’.

The realm of a random quantity is the set of possible values
it might take; this is implicit in the instructions. I denote this
with a curly capital letter, such as X for the realm of X, where
X is always a subset of R.2 I write a collection of random quan- 2 I have taken the word ‘realm’ from

Lad (1996); ‘range’ is also used.tities as X := (X1, . . . , Xm), and their joint realm as X, where
x := (x1, . . . , xm) is an element of X, and

X ⇢ X1 ⇥ · · ·⇥Xm ⇢ Rm.

A random quantity in which the realm contains only a single
element is a constant, and typically denoted by a small letter from
the start of the alphabet, such as a, b, or c.

Operationally-defined random quantities always have finite
realms and, from this point of view, there is no obligation to de-
velop a statistical theory of reasoning about uncertainty for the
more general cases. This is an important issue, because theories
of reasoning with non-finite realms are a lot more complicated.
Debabrata Basu summarises a viewpoint held by many statisticians.

The author holds firmly to the view that this contingent and cogni-
tive universe of ours is in reality only finite and, therefore, discrete.
In this essay we steer clear of the logical quick sands of ‘infinity’ and
the ‘infinitesimal’. Infinite and continuous models will be used in the
sequel, but they are to be looked upon as mere approximations to the
finite realities. (Basu, 1975, footnote, p. 4)

For similar sentiments, see, e.g., Berger and Wolpert (1984, sec. 3.4),
or Cox (2006, sec. 1.6). This is not just statistical parochialism.
David Hilbert, one of the great mathematicians and a huge admirer
of Cantor’s work on non-finite sets, stated

If we pay close attention, we find that the literature of mathematics is
replete with absurdities and inanities, which can usually be blamed
on the infinite.

and later in the same essay,
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[T]he infinite is not to be found anywhere in reality, no matter what
experiences and observations or what kind of science we may adduce.
Could it be, then, that thinking about objects is so unlike the events
involving objects and that it proceeds so differently, so apart from
reality? (Hilbert, 1926, p. 370 and p. 376 in the English translation)

The complications and paradoxes of the infinite are well-summarised
in Vilenkin (1995).3 I reckon the task of the statistician is hard 3 Wallace (2003) is also worth a look.

David Foster Wallace was a tremen-
dous writer of fiction and essays, but
this book displays the limitations of
his literary style when writing about
highly technical matters—also one has
to acknowledge that he did not have
sufficient mastery of his material.

enough, without having to grapple with an abstraction which has
so consistently perplexed and bamboozled.

However, as Kadane (2011, ch. 3) discusses, it is convenient to
be able to work with non-finite and unbounded realms, to avoid the
need to make an explicit truncation. Likewise, it is convenient to
work with infinite sequences rather than long but finite sequences.
Finally, for the purposes of statistical modelling we often introduce
auxiliary random variables (e.g. statistical parameters) and these
are conveniently represented with non-finite and unbounded
realms.

So I will presume the following principle:

Definition 1.1 (Principle of Excluding Pathologies, PEP).

Extensions to non-finite realms are made for the convenience of the statisti-
cian; it is the statistician’s responsibility to ensure that such extensions do
not introduce pathologies that are not present in the finite realm.

These notes consider random quantities with finite realms. But
I have taken care to ensure that the results also apply, with minor
amendments, in the more convenient (but less realistic) case of
non-finite and even non-countable realms.

1.2 Introduction to expectation

Let X be a random quantity—under what conditions might I be
said to ‘know’ X? Philosophers have developed a working defini-
tion for knowledge: knowledge is ‘justified true belief’ (Ladyman,
2002, pp. 5–6). So I would know X if I had carried out the instruc-
tions specified by X myself, or if they had been carried out by some-
one I trusted. In other circumstances—for example instructions
that take place in the future—I have belief, but not knowledge.4 4 I will consistently use ‘belief’ in

favour of the of the more sober-
sounding ‘judgement’, to honour this
working definition of knowledge.

Expectations and the expectations calculus are a way of quantifying
and organising these beliefs, so that they hold together sensibly.

For concreteness, let X be sea-level rise by 2100, suitably opera-
tionalised. This is a random quantity about which no one currently
has knowledge, and about which beliefs vary widely from person
to person. When I consider my own beliefs about sea-level rise, I
find I do not have a single value in mind. Instead, I have values,
more or less nebulous, for quantities that I consider to be related
to sea-level rise. So I believe, for example, that sea-level rise over
the last century is of the order of 10’s of centimetres. That the
Greenland icesheet and the Western Antarctic icesheet each contain
enough ice to raise sea-level globally by between 6 and 7 metres.



8

But that simulations suggest that they will not melt substantially by
2100. But I am cautious about the value of simulations of complex
environmental systems. And a lot more things too: about people I
know who work in this field, the degree of group-think in the field
as a whole, the pressures of doing science in a field related to the ef-
fects of climate change, and so on. I do not have well-formed beliefs
about sea-level rise, but it turns out that I have lots of ill-formed
beliefs about things related to sea-level rise.

And if I wanted to I could easily acquire more beliefs: for ex-
ample I could ask a glaciologist for her opinion. But once this was
given, this would simply represent more related beliefs (my beliefs
about her beliefs) to incorporate into my beliefs. And she will be
facing exactly the same challenge as me, albeit with a richer set of
beliefs about things related to sea-level rise.

I do not think there is any formal way to model the mental
processes by which this collection of ill-formed beliefs about things
related to sea-level rise get turned into a quantitative expression
of my beliefs about sea-level rise. Ultimately, though, I can often
come up with some values, even though I cannot describe their
provenence. For sea-level rise by 2100, 80 cm from today seems
about right to me. I could go further, and provide a range: unlikely
to be less than 40 cm, or more than 350 cm, perhaps. These are
unashamedly guesses, representing my ill-defined synthesis of
my beliefs about things related to sea-level rise.5 If you were the 5 And also representing more general

aspects of my personality, such as risk
aversion and optimism.

Mayor of London, you would be well-advised to consult someone
who knows more about sea-level rise than I do. But you should
not think that he has a better method for turning his beliefs into
quantities than I do. Rather, he starts with a richer set of beliefs.

These considerations lead me to my first informal definition of
an expectation.

Definition 1.2 (Expectation, informal).

Let X be a random quantity. My expectation for X, denoted E(X), is a
sensible guess for X which is likely to be wrong.

We will need to define ‘sensible’ in a way that is generally accept-
able, in order for you to understand the conditions under which my
expectation is formed (Sec. 1.3). I am using ‘guess’ to describe my
ill-defined synthesis of my beliefs related to X. And I am stressing
that it is common knowledge that my guess is likely to be wrong.
I think this last point is important, because experts (e.g. glaciolo-
gists) may be reluctant to provide wrong guesses, preferring to say
nothing at all. So let’s get the wrongness out in the open. As the
Mayor of London, I would much rather have the wrong guess of a
glaciologist than the wrong guess of a statistician.

Now I am able to provide an informal definition of statistical
inference. This definition is in the same vein as L.J. Savage’s def-
inition of ‘statistics’: “quantitative thinking about uncertainty as
it affects scientific and other investigations” (Savage, 1960, p. 541),
although adapted to the use of expectation as primitive, and to the
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limitations of our beliefs.

Definition 1.3 (Statistical inference, informal).

Statistical inference is checking that my current set of expectations is
sensible, and extending this set to expectations of other random quantities.

Checking and extending are largely mechanical tasks. But there
is also a reflexive element. I may well discover that if Y is some
other random quantity, then my E(Y) based on my current set of
expectations is not constrained to a single value, but may be an
interval of possible values: I would say I was ‘undecided’ about
E(Y). If this interval is intolerably wide (in the context for which
I would like to know Y), then I must go back and reconsider my
current set of expectations: could I refine them further, or augment
them?

Statistical inference is discussed in more detail in Sec. 1.6 and
Chapter 2. First, I clarify what I mean by ‘sensible’, and some of the
properties that follow from it.

1.3 Definition and simple implications

The axioms given below (in Def. 1.4) are the standard axioms of
expectation. In this respect they are the ‘what’ rather than the ‘why’.
For the ‘why’ I refer back to the previous section, and the informal
definition of expectation in Def. 1.2. I interpret these axioms as a
minimal characterisation of ‘sensible’.

Definition 1.4 (Axioms of expectation).
Let X 2 X and Y 2 Y be random quantities with finite realms. Then the
expectations of X and Y must satisfy the following properties:

0. E(X) 2 R exists and is unique, (existence)

1. E(X) � minX, (lower boundedness)

2. E(X + Y) = E(X) + E(Y). (additivity)

You can see that this sets the bar on ‘sensible’ quite low—it is
continuing a source of amazement to me that we can do so much
with such simple beginnings. The ‘existence’ axiom does not insist
that I know my expectation for every random quantity, but only
that I acknowedge that it exists as a (real-valued) number and is
unique. I use the word undecided to describe expectations that I am
not currently able to quantify.

‘Lower-boundedness’ is an extremely weak condition, given that
X ought to be inferrable from X itself, and have nothing to do with
my particular beliefs about things related to X. For example, if X
is the weight of this orange, then minX must be 0 g, to represent
the physical impossibility of an orange with negative weight. I
might believe that the weight cannot be less than 50 g, but lower
boundedness only requires that my E(X) is non-negative.

‘Additivity’ is a bit more subtle. I think we would all agree that
if X and Y were the weights of two oranges, then anything other



10

than E(X + Y) = E(X) + E(Y) would be not-sensible. But there
are more interesting situations. Consider the following example,
following Ellenberg (2014, ch. 11).6 A man has seven children, and 6 This book is highly recommended,

and would make an excellent Christ-
mas present.

is planning to leave his £1m fortune to exactly one, the choice to
be decided by the day of the week on which he dies. Let Xi be the
amount in £m received by the ith child. The most likely outcome
for each child is Xi ! 0. And yet X1 + · · ·+ X7 ! 1 with certainty.
And so to interpret E(Xi) as ‘most likely’ will not satisfy the addi-
tivity axiom. Most people in this case would take E(Xi)  1/7 for
each i, using a symmetry argument, and this would satisfy all three
axioms. Mind you, E(X1)  1 and E(X2)  · · ·  E(X7)  0
would also satisfy all three axioms.

The asymmetric expectations in the seven children example
illustrates the aforementioned point that the bar on ‘sensible’ is
quite low. There is a strong case for introducing another word
to mean precisely that the axioms are satisfied, so that ‘sensible’
does not seem misapplied. The standard choice among Bayesian
statisticians is coherent, following de Finetti (1974/75). From now
on I will use ‘coherent’ to describe a set of expectations satisfying
Def. 1.4. In public discourse, when my expectations matter to
people other than myself, I would use defensible to mean something
more than simply coherent, although I hesitate to characterise this
further, since it depends so much on context.

* * *
The axioms in Def. 1.4 have many implications. There are several

reasons for considering these implications explicitly:

1. They give us confidence in the axioms, if they seem consistent
with our interpretation of expectation.

2. They prevent us from making egregious specifications for expec-
tations.

3. They provide a quick source of results when we assume that our
beliefs are coherent.

Here I will just pick out a few of the basic implications, which are
important enough to have names.

Theorem 1.1 (Implied by additivity alone).

1. E(0) = 0 and E(�X) = �E(X),

2. E(X1 + · · ·+ Xk) = E(X1) + · · ·+ E(Xk). (finite additivity)

3. E(aX) = a E(X). (linearity)

Proof.

1. Since 0 = 0 + 0, we have E(0) = 2 E(0) from which the result
follows. The second result follows from 0 = X + (�X).
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2. Follows iteratively from X1 + · · ·+ Xk = X1 + (X2 + · · ·+ Xk).

3. Here is the proof for rational a. If i is a non-negative integer,
then E(iX) = i E(X) by the previous result. And if j is a positive
integer, then E(X) = E(jX/j) = j E(X/j) from which E(X/j) =
E(X)/j. Hence E(aX) = a E(X) whenever a is a non-negative
rational number. Extend to a < 0 using aX = |a|(�X).

The extension of the final part to real numbers is slightly subtle; see
de Finetti (1974, footnote on p. 75).

The linearity property is usually taken to subsume finite additiv-
ity, giving

E(a1X1 + · · ·+ akXk) = a1 E(X1) + · · ·+ ak E(Xk). (linearity)

This is the property that must be strengthened in the case where
there are a non-finite number of random quantities, or, which
comes to the same thing, the realm of a random quantity is non-
finite. The stronger countable additivity axiom extends finite addi-
tivity and (finite) linearity to countably-infinite sequences. This
stronger axiom is almost universally accepted, as it ought to be
according to the PEP (Def. 1.1).7 7 The deep and mysterious book by

Dubins and Savage (1965) is a notable
exception.

Here are some further implications, using both additivity and
lower-boundedness.

Theorem 1.2.

1. E(a) = a, (normalisation)

2. If X  Y, then E(X)  E(Y), (montonicity)

3. minX  E(X)  maxX (convexity)

4. |E(X)|  E(|X|). (triangle inequality)

Proof.

1. a � a, so E(a) � a. And �a � �a, so E(�a) � �a, and then
E(�a) = �E(a) implies that E(a)  a; hence E(a) = a.

2. The minimum of the realm of Y � X is non-negative, hence
E(Y� X) � 0 which implies that E(X)  E(Y).

3. Same argument as above, as X is never greater than maxX, and
E(maxX) = maxX.

4. Same argument as above, as �|X| is never greater than X,
and X is never greater than |X|. Together these imply that
E(X)  E(|X|) and �E(X)  E(|X|), as required.

Finally in this section, we have Schwarz’s inequality, which is
proved using linearity and monotonicity.



12

Theorem 1.3 (Schwarz’s inequality).

{E(XY)}2  E(X2)E(Y2).

Proof. For any constant a, E{(aX + Y)2} � 0, by monotonicity.
Expanding out the square and using linearity,

E{(aX + Y)2} = a2 E(X2) + 2a E(XY) + E(Y2).

This quadratic in a cannot have two distinct real roots, because
that would indicate a negative value for the expectation, violating
monotonicity. Then it follows from the standard formula for the
roots of a quadratic8 that 8 If ax2 + bx + c = 0 then

x =
�b ±

p
b2 � 4ac

2a
.{2 E(XY)}2 � 4 E(X2)E(Y2)  0,

or {E(XY)}2  E(X2)E(Y2), as required.

Another similarly useful result is Jensen’s inequality, which
concerns the expectation of convex functions of random quantities.
This result can also be proved at this stage using linearity and
monotonicity, but only if we accept the Separating Hyperplane
Theorem. Instead, I will defer Jensen’s inequality until Sec. 1.5.2, at
which point I will be able to give a self-contained proof.

1.3.1* Quantities related to expectation

Here is a brief summary of other quantities that are defined in
terms of expections, and their properties. These properties follow
immediately from the axioms and are not proved.

If X is a random quantity with expectation µ, then the variance of
X is defined as

Var(X) := E{(X� µ)2},

and often denoted s2; clearly s2 � 0 by monotonicity. Expanding
out shows that

Var(X) = E(X2)� µ2.

The square root of Var(X) is termed the standard deviation; I denote
it as Sd(X). It has the same units as X, and is often denoted as s.
Var(a + bX) = b2 Var(X), and Sd(a + bX) = b Sd(X).

If X and Y are two random quantities with expectations µ and n

then the covariance of X and Y is defined as

Cov(X, Y) := E{(X� µ)(Y� n)}.

Hence Cov(X, Y) = Cov(Y, X) and Var(X) = Cov(X, X). Expand-
ing out shows that

Cov(X, Y) = E(XY)� µn.

Cov(a + bX, c + dY) = bd Cov(X, Y), Cov(X + Y, Z) = Cov(X, Z) +
Cov(Y, Z), Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y), and, by
iteration,

Var(X1 + · · ·+ Xn) = Â
i

Var(Xi) + Â
i 6=j

Cov(Xi, Xj).
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If Cov(X, Y) = 0 then X and Y are uncorrelated. If Cov(Xi, Xj) = 0
for all i 6= j then (X1, . . . , Xn) are mutually uncorrelated. In this case

Var(X1 + · · ·+ Xn) = Â
i

Var(Xi).

Hence, unlike expectation, variance is only additive for mutually
uncorrelated random quantities. Schwartz’s inequality implies that

Cov(X, Y)2  Var(X)Var(Y).

When both Sd(X) and Sd(Y) are positive, the correlation between
X and Y is defined as

Corr(X, Y) :=
Cov(X, Y)

Sd(X) Sd(Y)
.

It is unitless, and invariant to linear transformations of X and Y, i.e.

Corr(X, Y) = Corr(a + bX, c + dY),

and is often denoted r. Schwartz’s inequality implies that

�1  Corr(X, Y)  1,

with equality if and only if Y = a + bX.9 9 Technically, this ‘=’ should be inter-
preted as ‘mean square equivalent’, see
Sec. 1.7.1.

1.4 Probability

If expectation is primitive, then probability is just a special type of
expectation. In a nutshell, a probability is the expectation of the
indicator function of a random proposition.

You may want to consult the material on first order logic in
Sec. 1.A: in particular, the definition of a first order sentence on
p. 36. This is the basis for the following definition.

Definition 1.5 (Random proposition).

A random proposition is a first order sentence in which one or more
constants have been replaced by random quantities.

In the simplest case, if x and y are constants then x =̇ y is a first
order sentence.10 If X and Y are random quantities, then X =̇ x and 10 The need to distinguish the symbol

‘=̇’ from ‘=’ is explained in Sec. 1.A.X =̇ Y are random propositions. The truth value of a first order
sentence is known, but the truth value of a random proposition
is uncertain, because it contains random quantities instead of
constants.

The indicator function of a first order sentence y is the function 1y

for which

1y :=

8

<

:

0 y is false

1 y is true.

In other words, the indicator function turns false into zero and
true into one.11 Note that the indicator function of a conjunction of 11 I will also write 1(·) for more

complicated random propositions.sentences is the product of the indicator functions:

1y^f = 1y · 1f.

The indicator function is used to define a probability.



14

Definition 1.6 (Probability).

Let Q be a random propostion. Then Pr(Q) := E(1Q).

So, continuing the example for the simplest case given above,
Pr(X =̇ x) := E(1X=̇x) and Pr(X =̇ Y) := E(1X=̇Y). These probabili-
ties are expectations of specified functions of the random quantities
X and Y.

This definition of probability might seem strange to people used
to treating probability as primitive. And so it is worth taking a
moment to check that the usual axioms of probability are satisfied.
Thus, if P and Q are random propositions:

1. Pr(P) � 0, by lower-boundedness.

2. If P is a tautology, then 1P = 1 and Pr(P) = 1 by normalisation.

3. If P and Q are incompatible, i.e. 1P^Q = 0, then 1P_Q = 1P + 1Q,
and Pr(P _Q) = Pr(P) + Pr(Q), by linearity.

Thus all of the usual probability results apply; I will not give them
here.

One very useful convention helps us to express probabilities of
conjunctions efficiently. If {A1, . . . , Ak} is a collection of random
propositions, then define

Pr(A1, . . . , Ak) := Pr(A1 ^ · · · ^ Ak).

In other words, commas between random propositions represent
conjunctions. I will return to this convention in Sec. 1.8.3.

1.4.1* Simple inequalities

There are some simple inequalities linking expectations and proba-
bilities, and these can be useful for providing bounds on probabili-
ties, or for specifying beliefs about a random quantity that includes
both probabilities of logical propositions about X and expectations
of functions of X. The starting-point for many of these is Markov’s
inequality.

Theorem 1.4 (Markov’s inequality).

If X is non-negative and a > 0 then

Pr(X �̇ a)  E(X)
a

.

a

a a1X≥a

X

Figure 1.1: Markov’s inequality.

Proof. Follows from monotonicity and linearity, because

a1X�̇a  X,

see Figure 1.1. Taking expectations of both sides and rearranging
gives the result.

One immediate generalisation of Markov’s inequality is

Pr(X �̇ a)  E{g(X)}
g(a)
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whenever g is a non-negative increasing function: this follows
because g(X) is non-negative and because X �̇ a () g(X) �̇ g(a).
A useful application of this generalisation is

Pr(|X| �̇ a)  min
r>0

E{|X|r}
|a|r

which follows because |x|r is a non-negative increasing function of
|x| for every positive r. A special case is Chebyshev’s inequality. This
is usually expressed in terms of µ := E(X) and s2 := E{(X � µ)2}
(see Sec. 1.3.1). Setting r  2 then gives

Pr(|X� µ| �̇ a)  s2

a2 (1.1)

for a > 0.

1.5 The Fundamental Theorem of Prevision

The Fundamental Theorem of Prevision (FTP) is due to Bruno
de Finetti (see de Finetti, 1974, sec. 3.10).12 Its epithet ‘fundamental’ 12 I am following Lad (1996, ch. 2) in

using this particular name.is well-deserved, because it provides a complete characterisation
of the set of expectations that are consistent with the axioms of
expectation given in Def. 1.4.

The following theorem uses the (s� 1)-dimensional unit simplex,
defined as

Ss�1 :=
n

p 2 Rs : pj � 0 and Â j pj = 1
o

. (1.2)

Theorem 1.5 (Fundamental Theorem of Prevision, FTP).

Let X := (X1, . . . , Xm) be any finite collection of random quantities (with
finite realms) and let

X :=
n

x

(1), x

(2), . . . , x

(s)
o

x

(j) 2 Rm,

be their joint realm. Then E is a valid expectation if and only if there is a
p 2 Ss�1 for which

E{g(X)} =
s

Â
j=1

g(x

(j)) · pj (†)

for all g : Rm ! R. In this case, pj = Pr(X =̇ x

(j)).

Proof.
((). This is just a matter of checking that (†) satisfies the ax-

ioms in Def. 1.4. The zeroth axiom is obviously satisfied. Lower-
boundedness follows from

E{g(X)} = Â j g(x

(j)) · pj

� min
p2Ss�1 Â j g(x

(j)) · pj = minj g(x

(j)),

as required. Additivity follows immediately from the linearity of
(†). Let g(x) 1

x=̇x

(i) . Then

Pr(X =̇ x

(i)) = Â j 1x

(j)=̇x

(i) · pj = pi,
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as required.
()). Note that

1 =
s

Â
j=1

1
X=̇x

(j) , (‡)

where X =̇ x

(j) denotes the conjunction X1 =̇ x(j)
1 ^ · · · ^ Xm =̇ x(j)

m .
Hence

E{g(X)} = E
�

g(X) Â j 1X=̇x

(j)
 

= E
�

Â j g(X) · 1
X=̇x

(j)
 

= E
�

Â j g(x

(j)) · 1
X=̇x

(j)
 

= Â j g(x

(j)) · E{1
X=̇x

(j)} by linearity.

The result then follows on setting pj := E{1
X=̇x

(j)}, as pj � 0 by
lower-boundedness, and Â j pj = 1 by linearity and normalisation,
from (‡). Hence p 2 Ss�1.

Eq. (†) is familiar as the definition of an expectation in the case
where probability is taken as primitive. In contrast, the FTP states
that it is an inevitable consequence of the axioms of expectation
that probabilities p 2 Ss�1 must exist, satisfying (†).

1.5.1 Marginalisation

One immediate application of the FTP is in marginalisation, which
is ‘collapsing’ a probability assessment onto a subset of random
quantities.

Theorem 1.6 (Marginalisation). Let X and Y be two collections of
random quantities. Then

Pr(X =̇ x) = Â
y2Y

Pr(X =̇ x, Y =̇ y)

where Y is the realm of Y .

Removing Y in this way is termed marginalising out Y .

Proof. Take X 2 X and Y 2 Y to be scalars, without loss of general-
ity, and write

X⇥ Y =
n

(x(1), y(1)), (x(2), y(1)) . . . , (x(s), y(t))
o

,

where s := dimX and t := dimY. This product space may be
a superset of the realm of (X, Y), but we can set Pr(X =̇ x, Y =̇

y) 0 if (x, y) is not in the realm of (X, Y). From the FTP,

E{g(X, Y)} =
s

Â
i=1

t

Â
j=1

g(x(i), y(j)) · Pr(X =̇ x(i), Y =̇ y(j)),
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for all g. Now set g(x, y) 1x=̇x0 , and then

Pr(X =̇ x0) = Â i Â j 1x(i)=̇x0 · Pr(X =̇ x(i), Y =̇ y(j))

= Â j

⇣

Â i 1x(i)=̇x0 · Pr(X =̇ x(i), Y =̇ y(j))
⌘

= Â j Pr(X =̇ x0, Y =̇ y(j))

= Â
y2Y

Pr(X =̇ x0, Y =̇ y),

as required.

1.5.2 Jensen’s inequality

Jensen’s inequality concerns the expectation of convex functions of
X. Recollect that a function g : Rk ! R is a convex function exactly
when

g
�

ax + (1� a)x

0�  ag(x) + (1� a)g(x

0)

for all 0  a  1. Informally, the chord between any two points on
g(x) never goes below g(x).

Theorem 1.7 (Jensen’s inequality).

Let X := (X1, . . . , Xm). If g is a convex function of x, then E{g(X)} �
g(E{X}).

Proof. There is a conventional proof using the Separating Hyper-
plane Theorem, but I like the following proof based on the FTP and
induction on s, the size of the realm of X.

Denote the realm of X as X :=
�

x

(1), . . . x

(s) . According to the
FTP, for each s

E{g(X)} =
s

Â
j=1

p(s)j g(x

(j))

for some p

(s) := (p(s)1 , . . . , p(s)s ) 2 Ss�1. I’ll drop the superscript on
p to avoid clutter.

Now if g is convex and s = 2, then

g(E{X}) = g(p1 x1 + p2 x2) by the FTP

 p1 g(x1) + p2 g(x2) by convexity of g

= E{g(X)} FTP again.

This proves Jensen’s inequality for the case s = 2.
Now suppose that Jensen’s inequality is true for s, and consider

the case s + 1. At least one of the pj in (p1, . . . , ps+1) must be posi-
tive, take it to be p1. If p1 = 1 then g(E{X}) = g(x(1)) = E{g(X)}
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satisfying the theorem, so take p1 < 1. Then

g(E{X}) = g
⇣ s+1

Â
j=1

pj xj

⌘

by the FTP

= g
⇣

p1 x1 + (1� p1)
s+1

Â
j=2

qj xj

⌘

where qj := pj/(1� p1)

 p1 g(x1) + (1� p1) g
⇣ s+1

Â
j=2

qj xj

⌘

by convexity of g

 p1 g(x1) + (1� p1)
s+1

Â
j=2

qj g(xj) Jensen’s inequality holds for s

=
s+1

Â
j=1

pj g(xj) = E{g(X)} FTP again,

where the Jensen’s inequality line uses (q2, . . . , qs+1) 2 Ss�1.

Jensen’s inequality is the basis for the very powerful Gibbs’s
inequality. This will appear in Sec. 4.7.

Theorem 1.8 (Gibbs’s inequality).

Let p, q 2 Sk�1. Then

k

Â
j=1

pj log(pj/qj) � 0,

and is zero if and only if p = q.

Proof.

Â j pj log(pj/qj) = Â j pj
�

� log(qj/pj)
�

� � log
�

Â j pj · qj/pj
�

Jensen’s inequality

= � log
�

Â j qj
�

= 0,

where Jensen’s inequality applies because the sum over j is an
expectation according to the FTP, and � log(x) is convex. For ‘only
if’, fix q, and then note that Âk

j=1 pj log(pj/qj) is strictly convex in p,
and hence the minimum is unique.

1.6 Coherence and extension

Now I review the definition of statistical inference, stated infor-
mally in Def. 1.3 as covering coherence and extension. For any par-
ticular application, I identify a relevant set of random quantities,
X := (X1, . . . , Xm). I have beliefs about these quantities, encoded
as expectations of a set of functions of X. I would like to check
that this set of expectations is coherent. Then I would like to use
these expectations to constrain my expectations of another set of
functions of X. In other words, I want to extend the expectations I
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have to expectations about which I am currently undecided. So if I
am currently undecided about my E{h(X)}, I would like to know
the subset of R that represents values of E{h(X)} that are coherent
with my current expectations. I can also ask more general questions
about collections of expectations.

1.6.1 The FTP again

The results in this section are immediate applications of the FTP
(Sec. 1.5). The first result concerns the coherence of my current set
of expectations. Recollect that Ss�1 is the (s� 1)-dimensional unit
simplex, defined in (1.2).

Theorem 1.9 (Coherence of expectations).

Let X := (X1, . . . , Xm) and let

X :=
�

x

(1), . . . , x

(s) 
x

(j) 2 Rm

be their joint realm. Let {g1, . . . , gk} be a set of real-valued functions,
and let G be the (k ⇥ s) matrix with Gij := gi(x

(j)). Then the set of
expectations

E{g1(X)} v1, . . . , E{gk(X)} vk

is coherent if and only if the linear equations

Gp = v

have a solution p 2 Ss�1, where v := (v1, . . . , vk).

Proof. This is just the matrix expression for the FTP as stated in
Thm 1.5, with each row representing the equality

E{gi(X)} = Â j gi(x

(j)) · pj = vi.

The FTP must hold for all g : Rm ! R, and is if-and-only-if.

The second result concerns the set of values for my expectations
of other functions of X that is coherent with my current set of
expectations.

Theorem 1.10 (Extension of expectations).

Let {h1, . . . , hn} be another set of real-valued functions of x, and denote
Hij := hi(x

(j)). Then the set of coherent values for my expectations of
h1(X), . . . , hn(X) is

H :=
n

h 2 Rn : h = Hp for some p 2 Ss�1 satisfying Gp = v

o

.

Proof. Because, again by the FTP, [v, h] is a valid set of expectations
if and only if

"

G
H

#

p =

"

v

h

#

for some p 2 Ss�1.
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The coherence and extension steps can be combined, because H

will be non-empty if and only if [G, v] is coherent.
Here is one very important property of the set of coherent exten-

sions. Informally, it states that the coherent set for any undecided
expectation is an interval; i.e. completely defined by lower and
upper bounds. Recollect that a set S is convex exactly when s, s0 2 S
implies that as + (1� a)s0 2 S for all 0  a  1.

Theorem 1.11. The set H is convex.

Proof. Empty sets are convex, so let H be non-empty, and let
h, h

0 2 H. Now consider the new point

h

00 := ah + (1� a)h0

for some a 2 (0, 1). Then
"

v

h

00

#

= a

"

v

h

#

+ (1� a)

"

v

h

0

#

= a

"

G
H

#

p + (1� a)

"

G
H

#

p for some p 2 S(s�1), because h, h

0 2 H

=

"

G
H

#

�

ap + (1� a)p

�

=

"

G
H

#

p,

showing that h

00 2 H.

1.6.2 Representing beliefs

Suppose I am satisfied that my beliefs [G, v] are coherent, and I
am now considering their extension to some new random quantity
h(X). The best possible outcome is to find that my set of coherent
values for E{h(X)} is constrained to a single point; in other words,
my expectation of h(X) is completely constrained by my expecta-
tions for g1(X), . . . , gk(X). This can arise in the obvious way: for
example, where g1(x) := x1, g2(x) := x2, and h(x) := x1 + x2. But
it can also arise in much less obvious ways, involving the interplay
of the more subtle constraints that are represented by the theorems
of the expectations calculus. Because these theorems follow directly
from the axioms, they are automatically enacted in the FTP. Thus H

must respect Schwartz’s inequality, Jensen’s inequality, Markov’s
inequality, and so on. Expectations for a rich set of gi’s will have
many more implications for the nature of H than I can easily envis-
age, and computation is the only method I have to infer them all.
Computation is briefly discussed in Sec. 1.6.3.

In general, however, we must accept that many of my expecta-
tions will not be constrained to a point, i.e. I will remain undecided
about my E{h(X)}. Thm 1.11 states that my set of coherent expec-
tations for E{h(X)} can be represented by an interval, and defined
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in terms of lower and upper bounds. It is important to present this
clearly. For example, to state “My expectation for X1 + 2 log X2 is
undecided but lies in the interval [3.2, 5.5].” This is because there are
advocates of a more general calculus of expection, who propose
that my beliefs about the gi(X)’s may themselves be expressed in
terms of intervals (see, e.g., Walley, 1991; Troffaes and de Cooman,
2014). So I would like the word ‘undecided’ to indicate a technical
meaning associated with a purely mechanical derivation from a
coherent set of specified expectations.

A wide range of beliefs can be encoded as expectations, and
we should look beyond obvious beliefs such as E(X1)  v1. As
discussed in Sec. 1.4, probabilities are also expectations, so each
probability I specify constitutes a row of [G, v]. For example, sup-
pose that q(x) is a first-order sentence, so that Q := q(X) is a
random proposition. If I think that Q has probability pq then this is
represented by a row of [G, v] with

Gij  1q(x

(j)) and vi  pq.

Certainty is a special case: a random proposition to which I assign
probability 1. If I am certain that Q is true, i.e. pq  1, then this has
the effect of zeroing those pj for which q(x

(j)) is false. So the same
effect could be achieved by removing from X all of the elements for
which q(x

(j)) is false.
Beyond certainty, there are a number of ways I could represent

my belief that X1 is close to w. Perhaps the simplest of these is to
add the row

E{(X1 � w)2} v,

where both w and v must specified. Then v  0 is another way
to implement the special case of certainty about X1, and a positive
value of v indicates uncertainty. If I also add E(X1)  w then the
value v is my variance for X1, and Chebyshev’s inequality (eq. 1.1)
can be used to think about my uncertainty about X1 in terms of
probabilities, if this is helpful.

A variant on this approach can be used to implement measure-
ment error. For example, suppose that X2 is a measurement on X1
which is known to be accurate to within ±v. This can be imple-
mented by adding the row

Pr(|X1 � X2|  v) 1. (†)

If I then learn the value of the observation, i.e. X2 ! w, this be-
comes another additional row for E{(X2 � w)2}  0; or else the
realm of X is thinned, as described above. If I am uncertain about
the accuracy of the measurement, then this too can be represented
by a random quantity, say X3, which would replace v in (†). X3

might appear in many rows of [G, v], if the same type of instrument
was being used to take many measurements. In this way, the values
of the measurements will also constrain my expectation for func-
tions of X3, such as the standard deviation of X3 (see Sec. 1.3.1).
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In summary, expectations provide a rich framework for repre-
senting such beliefs about X as I feel able to specify. But there are
computational difficulties, as discussed in the next subsection.

1.6.3 Computation

Consider the case of finding the lower bound on E{h(X)} for some
specified function h, based on beliefs [G, v]. We must solve

min
p2Rs

h

T
p subject to

8

>

>

<

>

>

:

Gp = v

Â j pj = 1

pj � 0 j = 1, . . . , s

where h := (h(1), . . . , h(s)) and h(j) := h(x

(j)). This is a linear
programming (LP) problem. LP represents one of the pinnacles of
computer-based optimisation, discussed in Nocedal and Wright
(2006, chh. 13 and 14).

Unfortunately, however, even modern linear programming
methods will grind to a halt if s, the size of the joint realm of X,
is too large. And because s is exponential in the number of ran-
dom quantities, it only takes a few random quantities before this
happens. This is a tragedy for statistical inference as I have pre-
sented it here, because our inability to do the computations forces
us down another route which provides a very different framework
for specifying beliefs, one in which almost all of our limitations as
uncertainty assessors is suppressed. This alternative framework is
discussed in detail in Chapter 2.

But I believe it is valuable to explore how we ought to do sta-
tistical inference, and then to encounter the practical difficulties,
in order to understand better why in practice we do statistical in-
ference the way we do. I hazard that most people who work with
uncertainty are not aware that there is a rich calculus of expectation
that allows me to specify just as many beliefs as I feel able, and
represents the results in terms of ‘undecided’ intervals for those
expectations that I am unable to specify. It is true that in many ap-
plications these unaware people are not disadvantaged, because the
implementation of such a calculus is computationally impractical.
But even then it is important to know that there is a substantial gulf
between what one ought to do, and what one ends up doing.

1.7 Conditional expectation

Conditional expectations allow me to access another type of belief,
different from expectations but which can nonetheless be expressed
in terms of expectations. In the terms of Sec. 1.6, they allow me
to add new rows to [G, v]. This section and Sec. 1.8 present the
definition and properties of conditional expectation and conditional
probability.

The practically important new concept in this section (and
the next) is a hypothetical expectation, written E(X | Q). This is my
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expectation of a random quantity X ‘supposing Q to be true’,
where Q is a random proposition which might be either true or
false. Hypothetical expectations give us a much wider palette for
specifying our beliefs, allowing us to exercise our imagination
and to play out different scenarios.13 In scientific modelling, they 13 Although we should be aware

of what Kahneman (2011) calls the
‘narrative fallacy’. This is another
highly recommended book.

allow us to incorporate notions of cause and effect. In a simulation
of future sea level, for example, Q1, Q2, . . . might be different
boundary conditions, representing different scenarios for future
greenhouse gas emissions.

This section is about the ‘plumbing’ that gets us to E(X | Q), and
to other useful quantities besides. But the big picture is this. We
develop an intuitive understanding of E(X | Q) which allows me to
assign it a value on the basis of my beliefs about things relevant to
X and Q, say E(X | Q) w. But we also prove that

E(X1Q) = E(X | Q)Pr(Q). (1.3)

Together, my w and this formula provide a new row for my [G, v]

as follows. Use the FTP to write out the expectation on the left of
(1.3) and the probability on the right, to give

Â j x(j) 1q(x(j)) · pj = w Â j 1q(x(j)) · pj

where I am simplifying by assuming just one random quantity
(without loss of generality), and where q(x) is a first order sentence,
and Q := q(X). Then rearrange to give

Â j
�

x(j) � w
�

1q(x(j)) · pj = 0

which is a row of [G, v] with

Gij  (x(j) � w)1q(x(j)) and vi  0.

This is the key thing to appreciate: conditional expectations
allows me to make another type of belief assessment, which can be
used to constrain my expectations of other random quantities.

1.7.1* Types of equivalence

This subsection is a detour to motivate a particular choice of loss
function in Sec. 1.7.2.

Two random quantities X and Y can be equivalent: we inspect
their operational definitions and conclude that the value which
results is always the same. But there are also weaker forms of
equivalence, where the operational definitions may be different, but
not practically different. One way to capture this notion is in the
following definition.

Definition 1.7 (Effectively equivalent).

Random quantities X and Y are effectively equivalent exactly when

E{g(X, Z)} = E{g(Y, Z)}

for all g and all Z.
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In this case, any conceivable inference involving X would give
the same result if X was replaced by Y, and vice versa.14

14 This definition and the following
results generalise immediately to the
case where Z is any finite collection of
random quantities.

Here is another way to capture the notion that X and Y are
not practically different: this way is mathematically much more
tractable.

Definition 1.8 (Mean-square equivalent).

Random quantities X and Y are mean-square equivalent, written
X ms

= Y, exactly when
E{(X�Y)2} = 0.

What is perhaps surprising is that these two definitions are
equivalent.

Theorem 1.12. X and Y are effectively equivalent if and only if they are
mean-square equivalent.

Proof. This proof passes through the FTP. First, if X and Y are
effectively equivalent then they are mean-square equivalent, as can
be seen by setting g(x, z) xz and setting z (x� y).

Now suppose that X and Y are mean-square equivalent. The FTP
implies that

E{(X�Y)2} = Â
i,j,k

(x(i) � y(j))2 · pijk

where pijk = Pr(X =̇ x(i), Y =̇ y(j), Z =̇ z(k)). Since this expectation
must equal zero, it follows that

pijk = 0 whenever x(i) 6= y(j).

Hence, for arbitrary g,

E{g(X, Z)} = Â
i,j,k

g(x(i), z(k)) · pijk

= Â
i,j,k

g(y(j), z(k)) · pijk

= E{g(Y, Z)},

i.e. X and Y are effectively equivalent.

The characterisation of conditional expectation in the next sub-
section is based on mean-square equivalence, but it is important
to appreciate that this mathematically tractable property is equiva-
lent to the more intuitive property that X and Y are not practically
different.

1.7.2 Characterisation and definition

This is an advanced treatment of conditional expectation, along
the lines laid down by the great Soviet mathematician Andrey
Kolmogorov in the 1930s.15 A simpler treatment would be possible 15 In his 1933 book Foundations of the

Theory of Probability. According to
Grimmett and Stirzaker (2001, p. 571),
Kolmogorov wrote this book to help
pay for the repairs to the roof of his
dacha.

in this chapter, in which I treat all realms as finite (see Sec. 1.1);
but this does not generalise easily to the cases we often use in
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practice, in which realms may be non-finite and even uncountably
infinite. It is important to appreciate that conditioning on random
quantities which have uncountable realms is well-defined, despite
the (elementary) textbook prohibition on conditioning on random
propositions which have probability zero.

In this section and the next I will assume that all random quan-
tities are mean-square integrable, i.e. E(X2) is finite for any random
quantity X. This will always be the case when realms are finite,
and so I am entitled to make this assumption according to the PEP
(Def. 1.1). In fact, with more advanced tools we can relax this con-
dition to absolutely integrable, i.e. E(|X|) is finite. But there is much
more intuition in the former case.

A conditional expectation addresses the question “How might I
represent some random quantity X in terms of some other random
quantities Y := (Y1, . . . , Yn)?” The idea is for me to make a new
random quantity based on Y that I believe is as close as possible to
X. My representation will be some function g : Y ! R, and the
very best that I can hope for is that X and g(Y) are not materially
different, or that

E
⇥

{X� g(Y)}2⇤ = 0,

according to Thm 1.12. It would be unusual if I could find a g that
achieves this lower bound, but I can aim for it; which suggests that
when representing X in terms of Y I should envisage a function y

which minimises the expected squared difference.
This optimality property characterises the function y, but the

following equivalence result provides a much more tractable repre-
sentation.

Theorem 1.13 (Projection theorem).

The following two statements are equivalent:

A. E
⇥

{X� y(Y)}2⇤  E
⇥

{X� g(Y)}2⇤ for all g,

B. E
⇥

{X� y(Y)} g(Y)
⇤

= 0 for all g.

Furthermore, if y and y0 are two solutions to (A) or (B), then y(Y)
ms
= y0(Y).

Proof.
(A)) (B). Suppose that y satisfies (A) and let g be a perturbation
away from y, i.e. g(y) y(y) + # h(y) for arbitrary # and h. Then

E
⇥

{X� g(Y)}2⇤ = E
⇥

{X�y(Y)}2⇤+ 2# E
⇥

{X�y(Y)} h(Y)
⇤

+ #2 E
⇥

h(Y)2⇤.

But as y is a minimum no matter what sign # has, we must have

E
⇥

{X� y(Y)} h(Y)
⇤

= 0 for all h, (1.4)

which is (B).

(B)) (A). We have

E
⇥

{X� g(Y)}2⇤ = E
⇥

{X� y(Y) + y(Y)� g(Y)}2⇤

= E
⇥

{X� y(Y)}2⇤+ E
⇥

{y(Y)� g(Y)}2⇤ (†)

� E
⇥

{X� y(Y)}2⇤
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where the cross-product terms in (†) are zero if (B) is true.
For the final statement, set g y0 in (†), to see that if

E
⇥

{X� y(Y)}2⇤ = E
⇥

{X� y0(Y)}2⇤,

then E
⇥

{y(Y)� y0(Y)}2⇤ = 0, i.e. y(Y)
ms
= y0(Y).

The definition and notation of conditional expectation all origi-
nates from Thm 1.13.

Definition 1.9 (Conditional expectation).

Let E(X | Y) denote the set of functions y : Y! R for which

E
⇥

{X� y(Y)} g(Y)
⇤

= 0 for all g. (1.5)

Then E(X | Y) is defined to be any member of the set of random quantities
�

y(Y) : y 2 E(X | Y)
 

.

Each E(X |Y) is termed a version of the conditional expectation of X given
Y .

So, to summarise, a conditional expectation E(X | Y) is a ran-
dom quantity, and it is not uniquely defined, although all such
conditional expectations are mean-square equivalent. I am using a
double-barred ‘E’ to indicate a conditional expectation.

Multiple versions of E(X | Y) arise whenever there are elements of
Y for which Pr(Y =̇ y) = 0. The following result makes this clear.

Theorem 1.14. Let y and y0 be two elements of E(X | Y). If Pr(Y =̇

y) > 0, then y(y) = y0(y).

Proof. From the FTP, we have

E
⇥

{y(Y)� y0(Y)}2⇤ = Â
y

{y(y)� y0(y)}2 · Pr(Y =̇ y).

But y(Y)
ms
= y0(Y) according to Thm 1.13, and hence this expecta-

tion must be zero, which implies that y(y)� y0(y) = 0 whenever
Pr(Y =̇ y) > 0.

This result gives us an inkling of why probability theory gets so
complicated when realms become infinite and non-countable. In
this case there may be no y 2 Y for which Pr(Y =̇ y) > 0. That is
not to say that conditional expectations are not well-defined—they
are perfectly well-defined, but there are lots of them, and no con-
ditional expectation (or conditional probability) is unambiguously
defined. If you are a student, this may have been concealed from
you up until now. We will stick with finite realms, but we must
still deal with the possibility that E(X | Y) contains more than one
element, and hence that there is more than one version of E(X | Y),
even if they are all mean-square equivalent.

This notion that the conditional expectation is a random quantity
is not consistent with the conventional interpretation of hypothet-
ical expectations, where E(X | Q) is a value when Q is a random
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proposition such as Y =̇ 3. But this is attributable to the difference
between conditioning on a set of random quantities and condition-
ing on a random proposition. It is important to be clear that Q is a
random proposition, but 1Q is a random quantity.

Definition 1.10 (Hypothetical expectation).

If X is a random quantity and Q is a random proposition, then

E(X | Q) := f(1)

for any f 2 E(X | 1Q).

This makes E(X | Q) a value with the meaning ‘the expectation of
X conditional on Q being true’, which is why I term it a hypothetical
expectation. The definition might seem ambiguous, given that
E(X | 1Q) may contain many elements, but for the following result.

Theorem 1.15. If Pr(Q) > 0 then E(X | Q) is uniquely defined.

Proof. Follows directly from Def. 1.10 and Thm 1.14, because
Pr(Q) = Pr(1Q =̇ 1).

Therefore the purpose of adding the rider ‘provided that
Pr(Q) > 0’ to hypothetical expectations such as E(X | Q) is not
because such things do not exist otherwise—they do exist, but
unless Pr(Q) > 0 they are not unique.

Here is a little table to keep track of the different E’s:

E(X | Y) : A set of functions of y, defined in Def. 1.9,
E(X | Y) : Any member of a set of random quantities, defined in Def. 1.9,
E(X | Q) : A value, unique if Pr(Q) > 0, defined in Def. 1.10.

1.7.3 Explicit formulas

As we are taking all realms to be finite, we can find a precise ex-
pression for the nature of the functions in E(X | Y). The expression
also works in the more general case of non-finite and possibly un-
bounded realms, although only with a stronger additivity axiom
(see p. 11).

Theorem 1.16. Let y 2 E(X | Y) where Y has a finite realm. Then

E(X 1
Y=̇y

) = y(y)Pr(Y =̇ y)

for each y 2 Y.

Proof. I will write Y for Y , likewise y for y, to avoid too much
ink on the page. Let the realm of Y be Y := {y(1), . . . , y(r)}. Any
function of y can be written as

g(y) = Â i ai 1y=̇y(i) for some (a1, . . . , ar) 2 Rr. (†)

We want to find the b’s for which

y(y) = Â j b j 1y=̇y(j) ,
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and then y(y(i)) = bi. From the Projection Theorem (Thm 1.13), y

must satisfy

E
�⇥

X� y(Y)
⇤

g(Y)
 

= 0 for all g.

From (†), this is true if and only if y satisfies

E
�⇥

X� y(Y)
⇤

1Y=̇y(i)
 

= 0 i = 1, . . . , r.

Substituting for y and then multiplying out gives

E(X1Y=̇y(i) )� Â j b j E(1Y=̇y(j) 1Y=̇y(i) ) = 0 i = 1, . . . , r.

But

1Y=̇y(j) 1Y=̇y(i) =

8

<

:

1Y=̇y(i) i = j

0 otherwise

and so we get

E(X1Y=̇y(i) )� bi E(1Y=̇y(i) ) = 0 i = 1, . . . , r. (‡)

Substituting y(y(i)) for bi and Pr(Y =̇ y(i)) for E(1Y=̇y(i) ) gives the
displayed equation in Thm 1.16, which holds for all i = 1, . . . , r, i.e.
all y 2 Y.

Clearly if Pr(Y =̇ y

(i)) > 0 then the equality in Thm 1.16 can
be rearranged to provide a unique value for y(yi). Otherwise, if
Pr(Y =̇ y

(i)) = 0, then by Schwarz’s inequality (Thm 1.3)

{E(X1
Y=̇y

(i) )}2  E(X2) E(12
Y=̇y

(i) ) = E(X2) Pr(Y =̇ y(i)) = 0.

Hence E(X1
Y=̇y

(i) ) = 0 and (‡) has the form 0� b(i) · 0 = 0, and so

the value of bi, i.e. y(y(i)), is arbitrary.
The next two results follow directly from Thm 1.16. The first

result gives an explicit expression for the hypothetical expectation
E(X | Q), and is the basis for all of the conditional probability results
of Sec. 1.8.2.

Theorem 1.17. If Q is a random proposition, then

E(X1Q) = E(X | Q)Pr(Q) where f 2 E(X | 1Q).

Proof. Follows from Thm 1.16 after setting Y  1Q, taking y  1,
and using Def. 1.10.

Hence if Pr(Q) > 0 then E(X | Q) = E(X1Q)
�

Pr(Q).
The next result closes the gap between y 2 E(X | Y) and

E(X | Y =̇ y): anything other than this result would be extremely
alarming! It is used extensively in Sec. 5.2.

Theorem 1.18. If y 2 E(X | Y) and Pr(Y =̇ y) > 0 then

y(y) = E(X | Y =̇ y).
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Proof. We have both

E(X1
Y=̇y

) = y(y) Pr(Y =̇ y) y 2 E(X | Y)

and E(X1
Y=̇y

) = f(1) Pr(Y =̇ y) f 2 E(X | 1
Y=̇y

)

the first from Thm 1.16, and the second after setting Q Y =̇ y

in Thm 1.17. If Pr(Y =̇ y) > 0 then these two relations can be
rearranged to show

y(y) =
E(X1

Y=̇y

)

Pr(Y =̇ y)
= f(1) = E(X | Y =̇ y)

as required.

1.8 More on conditional expectation

The previous section explained the motivation for introducing
conditional and hypothetical expectations: they provide us with
a much richer palette with which to specify our beliefs and, one
hopes, this results in less ‘undecided’ for expectations we do not
feel we can specify directly. This section explores more properties
of conditional expectation, and conditional probability as a special
case. These properties are useful in exactly the same sense as
given on p. 10, and they will be used extensively in the following
chapters.

1.8.1 Some useful results

The following results follow directly from the definition of E in
Def. 1.9.

Theorem 1.19.

1. If a is a constant then x 2 E(X | a) and a 2 E(a | X).

2. x 2 E(X | X).

3. If y 2 E(X | Y) then y(y) g(y) 2 E{X g(Y) | Y}.

4. If y 2 E(X | Y , Z) and y(y, z) = f(y) then f 2 E(X | Y).

Proof. These can all be verified by substitution into (1.5).

This next result is very powerful, because it extends all of the
results about expectations to hypothetical expectations.

Theorem 1.20. If Q is a random proposition and Pr(Q) > 0 then E(· | Q)

is an expectation.

Proof. This is just a matter of checking the three properties given in
Def. 1.4.

0. (Existence) For any X, if Pr(Q) > 0 then E(X | Q) exists and is
unique, according to Thm 1.17.
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1. (Lower boundedness) First, note that if Pr(Q) > 0 then we have
the normalisation property E(a | Q) = a, from Thm 1.15 and
Thm 1.19.

Now, we need to show that E(X | Q) � minX, where X is the
realm of X. Define Y := X �minX, so that Y is non-negative.
Then

E(Y | Q) = E(Y1Q)
�

Pr(Q) by Thm 1.17

� 0 by lower-boundedness,

as Y1Q is non-negative. Then

E(X | Q) = E(Y + minX | Q)

= E(Y | Q) + minX by additivity and normalisation

� minX

where additivity is proved immediately below.

2. (Additivity)

E(X + Y | Q) =
E{(X + Y)1Q}

Pr(Q)
by Thm 1.17

=
E(X1Q + Y1Q)

Pr(Q)

=
E(X1Q)

Pr(Q)
+

E(Y1Q)

Pr(Q)
by additivity of E(·)

= E(X | Q) + E(Y | Q) Thm 1.17 again.

This result entitles me to insert a ‘|Q’ into any expectation, or
any result involving expectations, provided that I do not believe Q
to be impossible. For example, it implies that there is a conditional
FTP, with

E{g(X) | Q} = Â i g(x

(i)) · qi (1.6)

in place of the unconditional statement in Thm 1.5, where qi = Pr(X =̇ x

(i) | Q).
Likewise, there is a conditional marginalisation theorem,

Pr(X =̇ x | Q) = Â
y2Y

Pr(X =̇ x, Y =̇ y | Q),

and so on. Both of these results involve hypothetical probabilities
of the form Pr(P | Q) where both P and Q are random propositions;
these will be defined in Sec. 1.8.2 (but there are no surprises).

Next we have a celebrated result, which is a cornerstone of the
very elegant and powerful theory of martingales.

Theorem 1.21 (Law of the Iterated Expectation, LIE).

E{E(X | Y)} = E(X).
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Proof.

E{E(X | Y)} = E{y(Y)} where y 2 E(X | Y)

= Â
y

y(y) · Pr(Y =̇ y) by the FTP, Thm 1.5

= Â
y

E(X1
Y=̇y

) by Thm 1.16

= E
�

X Â
y

1
Y=̇y

�

by linearity

= E(X)

because Â
y

1
Y=̇y

= 1.

Working backwards through this proof, and remembering that
y(y) = E(X | Y =̇ y) when Pr(Y =̇ y) > 0 (Thm 1.18), the LIE can
also be expressed as

E(X) = Â
y

E(X | Y =̇ y) · Pr(Y =̇ y)

which may be familiar. Sometimes E(X | Y =̇ y) will be quite easy
(or uncontroversial) to assess for each y, but Y itself is a collection
of random quantities about which I have limited beliefs. In this case
the convexity property of expectation asserts that I can bound my
expectation for X by the smallest and largest values of the set

�

E(X | Y =̇ y) : Pr(Y =̇ y) > 0
 

.

Finally, the following simple result can be useful.

Theorem 1.22. Let X :=(Y , Z) and suppose the truth of Q implies that
Y = y. If Pr(Q) > 0 then

E{h(Y , Z) | Q} = E{h(y, Z) | Q}.

Proof. Follows because Y 6= y implies that 1Q = 0, and hence

E{h(X) | Q} = E{h(Y , Z) | Q}

=
E{h(Y , Z)1Q}

Pr(Q)
by Thm 1.17

=
E{h(y, Z)1Q}

Pr(Q)
see above

= E{h(y, Z) | Q} Thm 1.17 again.

A similar argument was used in Thm 1.12.

1.8.2 Conditional probabilities

There is nothing new to say here! Conditional probabilities are
just conditional expectations. But this section presents some of
the standard results starting from Thm 1.16 and the following
definition.

Definition 1.11 (Conditional probability). Let P and Q be random
propositions. Then

Pr(P | Q) := E(1P | Q).
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Then by Thm 1.16 we have (after the substitution X  1P)

Pr(P, Q) = Pr(P | Q)Pr(Q). (1.7)

Eq. (1.7) is often rearranged to provide the ‘definition’ for condi-
tional probability, which requires Pr(Q) > 0. It is important to
understand this rearrangement is not the definition of conditional
probability—it is a result that arises from the definitions for E(X | Y)

and for E(X | Q) in Sec. 1.7.2, plus Def. 1.11. What is distinctive
about (1.7) is that it is always true. The case where Pr(Q) = 0
causes no particular difficulties, except for the possibly uncomfort-
able implication that Pr(P | Q) is an arbitrary value in the interval
[0, 1].

There are lots of very useful results which follow directly from
(1.7); in fact, they are all the same result, more-or-less. The fol-
lowing two may be generalised in the obvious way to any finite
number of random propositions.

Theorem 1.23 (Factorisation theorem).

Let P, Q, and R be random propositions. Then

Pr(P, Q, R) = Pr(P | Q, R)Pr(Q | R)Pr(R).

Proof. Follows immediately from two applications of (1.7):

Pr(P, Q, R) = Pr(P | Q, R)Pr(Q, R)

= Pr(P | Q, R)Pr(Q | R)Pr(R), (†)

because 1P,Q,R = 1P 1Q,R and 1Q,R = 1Q 1R.

This result leads immediately to the following.

Theorem 1.24 (Sequential conditioning).

Let P, Q, and R be random propositions. If Pr(R) > 0 then

Pr(P, Q | R) = Pr(P | Q, R)Pr(Q | R).

Proof. Because 1P,Q,R = 1P,Q 1R, (1.7) also implies that

Pr(P, Q, R) = Pr(P, Q | R)Pr(R). (‡)

Equating (‡) and (†) gives

Pr(P, Q | R)Pr(R) = Pr(P | Q, R)Pr(Q | R)Pr(R),

and if Pr(R) > 0 the final term can be cancelled from both sides to
give the result.

Then there is the very useful Law of Total Probability (LTP), also
known as the Partition Theorem. A partition is a collection of ran-
dom propositions, exactly one of which must be true.

Theorem 1.25 (Law of Total Probability).

Let P be a random proposition and Q :=
�

Q1, . . . , Qk
 

be any finite
partition. Then

Pr(P) =
k

Â
i=1

Pr(P | Qi)Pr(Qi).
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Proof. As Âi 1Qi = 1, we have

1P = 1P

⇣ m

Â
i=1

1Qi

⌘

= Â
i
1P · 1Qi = Â

i
1P,Qi .

The result follows from taking expectations of both sides and
writing Pr(P, Qi) = Pr(P | Qi)Pr(Qi) from (1.7).

The LTP plays the same role as the LIE (Thm 1.21). In particular,
in situations where it is hard to assess Pr(P) directly, it is possible
to bound Pr(P) using the lower and upper bounds of the set

�

Pr(P | Qi) : Pr(Qi) > 0
 

.

Finally, there is the celebrated Bayes’s theorem.

Theorem 1.26 (Bayes’s theorem). If Pr(Q) > 0 then

Pr(P | Q) =
Pr(Q | P)Pr(P)

Pr(Q)
.

Proof. Follows immediately from (1.7),

Pr(P, Q) = Pr(P | Q)Pr(Q) = Pr(Q | P)Pr(P),

and then rearranging the second equality.

There are several other versions of Bayes’s theorem. For example,
there is a sequential Bayes’s theorem:

Pr(P | Q2, Q1) =
Pr(Q2 | P, Q1)

Pr(Q2 | Q1)
Pr(P | Q1)

if Pr(Q2, Q1) > 0. And there is Bayes’s theorem for a finite partition,
P :=

�

P1, . . . , Pm
 

:

Pr(Pi | Q) =
Pr(Q | Pi)Pr(Pi)

Âj Pr(Q | Pj)Pr(Pj)
i = 1, . . . , m

if Pr(Q) > 0, which uses the LTP in the denominator. And there is a
Bayes’s theorem in odds form,

Pr(Pi | Q)
Pr(Pj | Q)

=
Pr(Q | Pi)
Pr(Q | Pj)

Pr(Pi)
Pr(Pj)

i, j = 1, . . . , m

if Pr(Pj, Q) > 0.

1.8.3 Probability Mass Functions

There is a very useful notation which allows us to compress certain
expressions involving random propositions, and also to express sets
of equalities concisely. For the time being we can think of it simply
as a notation, but from Sec. 2.3 onward it becomes the primitive
object of our belief specifications.

Definition 1.12 (Probability Mass Function, PMF).

f
X

is a Probability Mass Function exactly when

f
X

(x) := Pr(X =̇ x)

where X =̇ x denotes
V

i(Xi =̇ xi).
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According to the comma notation introduced in Sec. 1.4, we can
also write more complicated PMFs, such as

f
X,Y (x, y) := Pr(X =̇ x, Y =̇ y)

and so on, with the random propositions being taken in conjunction
in the natural way. It is conventional to specify f

X

for all real values
of x, but set to zero if x 62 X, but I will restrict the domain of the
PMF to the product of the realms of its arguments. According to
the FTP, to specify a PMF f

X

is to specify the expectation of every
possible function of X.

Conditional PMFs can be defined in exactly the same way, except
with the proviso that f

X|Y (· | y) is undefined if f
Y

(y) = 0. However,
I will tend to ignore this when the ambiguity of f

X|Y (· | y) has no
practical effect. Consider, for example, the restatement of (1.7) in
terms of PMFs,

f
X,Y (x, y) = f

X|Y (x | y) f
Y

(y). (†)

The ambiguity of the first term on the righthand side is of no
consequence if f

Y

(y) = 0, because this implies that f
X,Y (x, y) = 0,

and the equality holds for all (x, y).
Eq. (†) is an example of a functional equality. My convention is

that this type of functional equality represents a set of equalities,
one for every point in the product domain

(x, y) 2 X⇥ Y.

However, the domain of some functional equalities need to be
qualified, precisely because they cannot tolerate ambiguity in the
value of f

X|Y (· | y). Bayes’s theorem (Thm 1.26), for example, can be
written as

f
X|Y (x | y) =

f
Y |X(y | x) f

X

(x)

f
Y

(y)
,

but this only holds for those y for which f
Y

(y) > 0.
To clarify this constraint, we introduce the notion of the support

of a random quantity or a collection of random quantities,

supp(X) :=
�

x 2 X : f
X

(x) > 0
 

.

In other words, those elements of the joint realm where the proba-
bility is positive. We must have

supp(X) ⇢’
i
Xi

because fXi (xi) = 0 implies that f
X

(· · · xi · · · ) = 0. Using this
notation, the correct domain for Bayes’s theorem is

(x, y) 2 X⇥ supp(Y).

These issues become critical in Sec. 5.2.
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1.A* Concepts from first order logic

Here is a fairly precise statement about commonly-used mathe-
matical terms in first order logic; this account is a précis of several
sources, including Keisler (2007, ch. 15). First order logic for real
numbers is used to define a random proposition and a probability
(Sec. 1.4), and an unfamiliar notation is used (e.g. ‘=̇’) to disam-
biguate a commonly-used notation in statistics.

The language of first order logic comprises functions and vari-
ables, predicates, connectives, quantifiers, and punctuation (paren-
theses and commas). Functions are n-ary, indicating that they take
n arguments, where n � 0. Functions that are 0-ary are called con-
stants. Variables range over the set of all constants. The meanings of
functions (including constants) and predicates depends on the in-
terpretation of the language, but variables, connectives, quantifiers
and punctuation have a fixed (conventional) meanings. In these
notes, functions, constants, and variables will be real-valued, and
predicates will be binary relations.

A term is a finite sequence of symbols defined inductively accord-
ing to:

1. Every constant and every variable is a term;

2. If t1, . . . , tn are terms and f is an n-ary function with n � 1, then
f (t1, . . . , tn) is a term.

Binary relations have the form s R t, where s and t are terms. The
binary relations comprise

=̇, ˙6=, <̇, ̇, �̇, and >̇.

The dot over each symbol indicates that these are predicates, and so
mean something different from their usual ‘undotted’ usage. This is
explained further after the description of a first order sentence on
p. 36. Connectives comprise

¬ (not), ^ (and), _ (or), =) (implies), and () (if and only if),

each of which is defined in terms of the usual truth tables. Quanti-
fiers comprise

8 (for all), and 9 (there exists).

There is some redundancy here, since all of these connectives and
quantifiers can be constructed from the smaller set {¬,_, 9}, but it
is much clearer to keep them all.

A formula is a finite sequence of symbols defined inductively
according to:

1. If R is a relation and s and t are terms then s R t is a formula.

2. If y and f are formulae, then

¬y, y ^ f, y _ f, y =) f, and y () f

are formulae.
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3. If y(v) is a formula and v is a variable, then

8vy(v) and 9vy(v)

are formulae.

In a formula, a variable can be either a free variable or a bound
variable. It is free if it is not quantified, otherwise it is bound. For
example, in the formula 8v(v R w) the variable v is bound and the
variable w is free. A formula with no free variables is a first order
sentence: these are the formulae with well-defined truth values.
Thus if a and b are constants then a ̇ b is a sentence. If f and g are
1-ary functions, then

8v( f (v) =̇ g(v))

is a sentence, which is true if f and g are the same function, and
false if they are not. If y(v) is a formula with a free variable v and
c is a constant, then y(c) is a sentence. For example, (v ̇ 3) is a
formula with a free variable v, and (2 ̇ 3) is a sentence.

The truth of a sentence is defined inductively according to:

1. If R is a binary relation then the sentence a R b is true exactly
when the constants a and b are defined and (a, b) 2 R.

2. If y and f are sentences and C is a connective then the truth of
y C f is determined according to the usual truth tables.

3. The sentence 8vy(v) is true exactly when y(c) is true for all
constants c.

4. The sentence 9vy(v) is true exactly when y(c) is true for some
constant c.

It should be clear now why it is important to distinguish the
predicate ‘=̇’ from the more usual ‘=’. The first-order sentence
‘y =̇ f’ evaluates to false or true, depending on the values of y and
f, but the equation ‘y = f’ is an assertion that the objects y and f

are equal to each other.16

16 In first-order logic, predicates
are written P(x, y, z). But when the
predicates are binary predicates
it is much clearer to write P(x, y)
as x P y, known as ‘infix’ notation.
Unfortunately for us, this clashes with
the more usual uses of symbols such
as ‘=’ and ‘’, which is why the infix
predicates are ornamented with dots.


