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In order to get the most out of the APTS module on Statistical Modelling, students should have, at
the start of the module, a sound knowledge of the principles of statistical inference and the theory
of linear and generalised linear models. Students should also have some experience of practical
statistical modelling in R.

The following reading and activities are recommended for students to (re)-familiarise themselves
with these areas.

Statistical inference: It is recommended that students (re)-read the notes of the APTS module
on Statistical Inference, available from www.apts.ac.uk, and complete the assessment exercise (if
they have not already done so). No further material is provided here.

Linear and generalised linear models: A student who has covered Chapters 8 and 10.1-
10.4 of Statistical Models by A. C. Davison (Cambridge University Press, 2003) will be more
than adequately prepared for the APTS module. For students without access to this book, the
main theory is repeated below. The inference methodology described is largely based on classical
statistical theory. Although prior experience of Bayesian statistical modelling would be helpful, it
will not be assumed.

Preliminary exercises: Eight relatively straightforward exercises are included throughout these
notes.

Practical statistical modelling in R: Some short practical exercises are also provided at the
end of these notes to enable students to familiarise themselves with statistical modelling in R.

1 Linear Models

1.1 Introduction

In practical applications, we often distinguish between a response variable and a group of ex-
planatory variables. The aim is to determine the pattern of dependence of the response variable
on the explanatory variables. We denote the n observations of the response variable by y =
(y1, y2, . . . , yn)T . In a statistical model, these are assumed to be observations of random variables
Y = (Y1, Y2, . . . , Yn)T . Associated with each yi is a vector xi = (1, xi1, xi2, . . . , xip)

T of values of
p explanatory variables.

Linear models are those for which the relationship between the response and explanatory variables
is of the form

E(Yi) = β0 + β1xi1 + β2xi2 + . . .+ βpxip

=

p∑
j=0

xijβj (where we define xi0 ≡ 1)

= xTi β

= [Xβ]i, i = 1, . . . , n (1)

† Preliminary material originally provided by Professors Jon Forster, Anthony Davison & Dave
Woods
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where

X =

x
T
1
...
xTn

 =

 1 x11 · · · x1p

...
...

. . .
...

1 xn1 · · · xnp


and β = (β0, β1, . . . , βp)

T is a vector of fixed but unknown parameters describing the dependence
of Yi on xi. The four ways of describing the linear model in (1) are equivalent, but the most
ecoonomical is the matrix form

E(Y ) = Xβ. (2)

The n× p matrix X consists of known (observed) constants and is called the design matrix . The
ith row of X is xTi , the explanatory data corresponding to the ith observation of the response.
The jth column of X contains the n observations of the jth explanatory variable.

Example 1 The null model

E(Yi) = β0 i = 1, . . . , n

X =


1
1
...
1

 β = (β0 )

Example 2 Simple linear regression

E(Yi) = β0 + β1xi i = 1, . . . , n

X =


1 x1

1 x2
...

...
1 xn

 β =

(
β0

β1

)

Example 3 Polynomial regression

E(Yi) = β0 + β1xi + β2x
2
i + . . .+ βpx

p
i i = 1, . . . , n

X =


1 x1 x2

1 · · · xp1
1 x2 x2

2 · · · xp2
...

...
...

. . .
...

1 xn x2
n · · · xpn

 β =


β0

β1
...
βp



Example 4 Multiple regression

E(Yi) = β0 + β1xi1 + β2xi2 + . . .+ βpxi p i = 1, . . . , n

X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...
1 xn1 xn2 · · · xnp

 β =


β0

β1
...
βp


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Strictly, the only requirement for a model to be linear is that the relationship between the response
variables, Y , and any explanatory variables can be written in the form (2). No further specification
of the joint distribution of Y1, . . . , Yn is required. However, the linear model is more useful for
statistical analysis if we can make three further assumptions:

1. Y1, . . . , Yn are independent random variables.

2. Y1, . . . , Yn are normally distributed.

3. V ar(Y1) = V ar(Y2) = · · · = V ar(Yn) (Y1, . . . , Yn are homoscedastic). We denote this common
variance by σ2

With these assumptions the linear model completely specifies the distribution of Y , in that
Y1, . . . , Yn are independent and

Yi ∼ N
(
xTi β , σ

2
)

i = 1, . . . , n.

Another way of writing this is

Yi = xTi β + εi i = 1, . . . , n

where ε1, . . . , εn are i.i.d. N(0, σ2) random variables.

A linear model can now be expressed in matrix form as

Y = Xβ + ε (3)

where ε = (ε1, . . . , εn)T has a multivariate normal distribution with mean vector 0 and variance
covariance matrix σ2I, (because all V ar(εi) = σ2 and ε1, . . . , εn are independent implies all
Cov(εi, εj) = 0). It follows from (3) that the distribution of Y is multivariate normal with mean
vector Xβ and variance covariance matrix σ2In, i.e. Y ∼ N(Xβ, σ2In).

1.2 Least squares estimation

The regression coefficients β0, . . . , βp describe the pattern by which the response depends on the
explanatory variables. We use the observed data y1, . . . , yn to estimate this pattern of dependence.

In least squares estimation, roughly speaking, we choose β̂, the estimates of β to make the estimated
means Ê(Y ) = Xβ̂ as close as possible to the observed values y, i.e. β̂ minimises the sum of squares

n∑
i=1

[yi − E(Yi)]
2 =

n∑
i=1

(
yi − xTi β

)2
=

n∑
i=1

yi − p∑
j=0

xijβj

2

as a function of β0, . . . , βp.

Exercise 1: By differentiating the sum of squares above w.r.t. βk, k = 0, . . . , p, show that

XTXβ̂ = XTy

The least squares estimates β̂ are the solutions to this set of p+ 1 simultaneous linear equations,
which are known as the normal equations. If XTX is invertible (as it usually is) then the least
squares estimates are given by

β̂ = (XTX)−1XTy.
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The corresponding fitted values are

ŷ = Xβ̂ = X(XTX)−1XTy

⇒ ŷi = xTi β̂ i = 1, . . . , n.

We define the hat matrix by H = X(XTX)−1XT , so ŷ = Hy. The residuals are

e = y − ŷ = y −Xβ̂ = (In −H)y

⇒ ei = yi − xTi β̂ i = 1, . . . , n.

The residuals describe the variability in the observed responses y1, . . . , yn which has not been
explained by the linear model. The residual sum of squares or deviance for a linear model is
defined to be

D =
n∑
i=1

e2
i =

n∑
i=1

(
yi − xTi β̂

)2

.

It is the actual minimum value attained in the least squares estimation.

Properties of the least squares estimator

1. (Exercise 2) Show that β̂ is multivariate normal with E(β̂) = β and V ar(β̂) = σ2(XTX)−1.

2. Assuming that ε1, . . . , εn are i.i.d. N(0, σ2) the least squares estimate β̂ is also the maximum
likelihood estimate. This is obvious when one considers the likelihood for a linear model

fY (y;β, σ2) =
(
2πσ2

)−n
2 exp

(
− 1

2σ2

n∑
i=1

(yi − xTi β)2

)
. (4)

1.3 Estimation of σ2

In addition to the linear coefficients β0, . . . , βp estimated using least squares, we also need to
estimate the error variance σ2, representing the variability of observations about their mean.

We can estimate σ2 using maximum likelihood. Maximising (4) with respect to β and σ2 gives

σ̂2 =
D

n
=

1

n

n∑
i=1

e2
i .

If the model is correct, then D is independent of β̂ and

D

σ2
∼ χ2

n−p−1

⇒ E(σ̂2) =
n− p− 1

n
σ2,

so the maximum likelihood estimator is biased for σ2 (although still asymptotically unbiased as
n−p−1
n → 1 as n→∞). We usually prefer to use the unbiased estimator of σ2

s2 =
D

n− p− 1
=

1

n− p− 1

n∑
i=1

e2
i .

The denominator n − p − 1, the number of observations minus the number of coefficients in the
model is called the degrees of freedom of the model. Therefore, we estimate the error variance by
the deviance divided by the degrees of freedom.
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1.4 Inference

It follows from the distribution of β̂ that

β̂k − βk
σ[(XTX)−1]

1/2
kk

∼ N(0, 1), k = 0, . . . , p.

The dependence on unknown σ can be eliminated by replacing σ with its estimate s, in which case
it can be shown that

β̂k − βk
s.e.(β̂k)

∼ tn−p−1,

where the standard error s.e.(β̂k) is given by

s.e.(β̂k) = s[(XTX)−1]
1/2
kk .

This enables confidence intervals for any βk to be calculated, or hypotheses of the form H0: βk = 0
to be tested.

The sampling distributions of the fitted values and residuals can be obtained, straightforwardly as

ŷ ∼ N(Xβ, σ2H)

and
e ∼ N(0, σ2[In −H]).

The latter expression allows us to calculate standardised residuals, for comparison purposes, as

ri =
ei

s(1− hii)1/2
.

1.5 Prediction

We estimate the mean, xT+β, for Y at values of the explanatory variables given by xT+ = ( 1 x+1 . . . x+p ),
which may or may not match a set of values observed in the data, using

Ŷ+ = xT+β̂.

Then
Ŷ+ ∼ N(xT+β, σ

2h++)

where h++ = xT+(XTX)−1x+. Hence confidence intervals for predictive means can be derived
using

Ŷ+ − xT+β
sh

1/2
++

∼ tn−p−1.

For predicting the actual value Y+ = xT+β+ε+, the predictor Ŷ+ is also sensible, as E(Ŷ+−Y+) = 0.
Now

Ŷ+ − Y+ ∼ N(0, σ2(1 + h++)).

as Ŷ+ and Y+ are independent. Hence predictive confidence intervals can be derived using

Ŷ+ − Y+

s(1 + h++)1/2
∼ tn−p−1.
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1.6 Comparing linear models 1

A pair of nested linear models can be compared pairwise using a generalised likelihood ratio test.
Nesting implies that the simpler model (H0) is a special case of the more complex model (H1).
In practice, this usually means that the explanatory variables present in H0 are a subset of those
present in H1. Let Θ(1) be the unrestricted parameter space under H1 and Θ(0) be the parameter
space corresponding to model H0, i.e. with the appropriate coefficients constrained to zero.

Without loss of generality, we can think of H1 as the model

E(Yi) =

p∑
j=0

xijβj i = 1, . . . , n

with H0 being the same model with
βq+1 = βq+2 = · · · = βp = 0.

Now, a generalised likelihood ratio test of H0 against H1 has a test statistic of the form

T =
max(β,σ2)∈Θ(1) fY (y;β, σ2)

max(β,σ2)∈Θ(0) fY (y;β, σ2)

and rejects H0 in favour of H1 when T > k, where where k is determined by α, the size of the test.

For a linear model,

fY (y;β, σ2) =
(
2πσ2

)−n
2 exp

(
− 1

2σ2

n∑
i=1

(yi − xTi β)2

)
.

This is maximised with respect to (β, σ2) at β = β̂ and σ2 = σ̂2 = D/n. Therefore

max
β,σ2

fY (y;β, σ2) = (2πD/n)−
n
2 exp

(
− n

2D

n∑
i=1

(yi − xTi β̂)2

)
= (2πD/n)−

n
2 exp

(
−n

2

)
Exercise 3: Let the deviances under models H0 and H1 be denoted D0 and D1 respectively. Show
that the likelihood ratio test statistic T above can be written as

T =

(
1 +

p− q
n− p− 1

F

)n
2

,

where

F =
(D0 −D1)/(p− q)
D1/(n− p− 1)

.

Hence, the simpler model H0 is rejected in favour of the more complex model H1 if F is ‘too large’.

As we have required H0 to be nested in H1 then, under H0, F has an F distribution with p − q
degrees of freedom in the numerator and n− p− 1 degrees of freedom in the denominator. To see
this, note the analysis of variance decomposition

D0

σ2
=
D0 −D1

σ2
+
D1

σ2
.

1 It should be noted that this section describes just one method for comparing models. General
principles and other methods will be discussed in detail in the APTS module itself.
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We know (§1.3) that, under H0, D1/σ
2 has a χ2

n−p−1 distribution and D0/σ
2 has a χ2

n−q distribu-
tion. It is also true (although we do not show it here) that under H0, (D0−D1)/σ2 and D0/σ

2 are
independent. Therefore, from the properties of the chi-squared distribution, it follows that under
H0, (D0 −D1)/σ2 has a χ2

p−q distribution, and F has a Fp−q, n−p−1 distribution.

Therefore, H0 is rejected in favour of H1 when F > k where k is the 100(1 − α)% point of the
Fp−q, n−p−1 distribution.

1.7 Model checking

Confidence intervals and hypothesis tests for linear models may be unreliable if all the model
assumptions are not justified. In particular, we have made four assumptions about the distribution
of Y1, . . . , Yn.

1. The model correctly describes the relationship between E(Yi) and the explanatory variables

2. Y1, . . . , Yn are normally distributed.

3. V ar(Y1) = V ar(Y2) = · · · = V ar(Yn).

4. Y1, . . . , Yn are independent random variables.

These assumptions can be checked using plots of raw or standardised residuals.

1. If a plot of the residuals against the values of a potential explanatory variable reveals a pattern,
then this suggests that the explanatory variable, or perhaps some function of it, should be
included in the model.

2. A simple check for non-normality is obtained using a normal probability plot of the ordered
residuals. The plot should look like a straight line, with obvious curves suggesting departures
from normality.

3. A simple check for non-constant variance is obtained by plotting the residuals r1, . . . , rn against
the corresponding fitted values xTi β̂, i = 1, . . . , n. The plot should look like a random scatter.
In particular, check for any behaviour which suggests that the error variance increases as a
function of the mean (‘funnelling’ in the residual plot).

4. In general, independence is difficult to validate, but where observations have been collected in
serial order, serial correlation may be detected by a lagged scatterplot or correlogram.

Another place where residual diagnostics are useful is in assessing influence. An observation is
influential if deleting it would lead to estimates of model parameters being substantially changed.
Cook’s distance Cj is a measure of the change in β̂ when observation j is omitted from the dataset.

Cj =

∑n
i=1

(
ŷ

(j)
i − ŷi

)2

ps2

where ŷ
(j)
i is the fitted value for observation i, calculated using the least squares estimates obtained

from the modified data set with the jth observation deleted. A rule of thumb is that values of Cj
greater than 8/(n− 2p) indicate influential points. It can be shown that

Cj =
r2
jhjj

p(1− hjj)

so influential points have either a large standardised residual (unusual Y value) or large hjj . The
quantity hjj is called the leverage and is a measure of how unusual (relative to the other values in
the data set) the explanatory data for the jth observation are.
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1.8 Bayesian inference for linear models

Bayesian inference for the parameters (β, σ2) of a linear model requires computation of the posterior
density. Bayes theorem gives us

f(β, σ2 |y) ∝ f(y |β, σ2) f(β, σ2)

where the likelihood f(y |β, σ2) is given by (4) as

f(y |β, σ2) =
(
2πσ2

)−n
2 exp

(
− 1

2σ2

n∑
i=1

(yi − xTi β)2

)
.

Posterior computation is straightforward if the prior density f(β, σ2) is conjugate to the likelihood,
which, for a linear model, is achieved by the prior decomposition

σ−2 ∼ Gamma(a0, b0), β |σ2 ∼ N(m0, σ
2V0)

where (a0, b0,m0,V0) are hyperparameters, whose values are chosen to reflect prior uncertainty
about the linear model parameters (β, σ2).

With this prior structure, the corresponding posterior distributions are given by

σ−2 ∼ Gamma(a0 + n/2, b), β |σ2 ∼ N(m, σ2V )

where V = (XTX + V −1
0 )−1, m = V (XTy + V −1

0 m0) and

b = b0 +
1

2

(
yTy +m0V

−1
0 m0 −mV −1m

)
= b0 +

1

2

{
[n− p− 1]s2 +

[
m0 − β̂

]T [
V0 + (XTX)−1

]−1
[
m0 − β̂

]}
if XTX is non-singular, where β̂ and s2 are the classical unbiased estimators given above.

In applications where prior information about the model parameters (β, σ2) is weak, it is conven-
tional to use the vague prior specification given by the improper prior density

f(β, σ2) ∝ σ−2.

This corresponds to the conjugate prior above with a0 = −(p+ 1), b0 = 0 and V −1
0 = 0.

Exercise 4: Show that, for this choice of hyperparameters, the posterior mean of β is given by the
least squares estimator β̂. Show also that, a posteriori, 1/σ2 has the distribution of X2/[s2(n −
p − 1)] where X2 has a χ2

n−p−1 distribution. Hence show that posterior probability intervals for
σ2 are equivalent to confidence intervals based on the sampling distribution of s2.

For a longer exercise, show that (β −m)/σ has a multivariate normal posterior marginal distri-
bution, independent of σ2, and hence that posterior probability intervals for a coefficient βk are
equivalent to the confidence intervals based on the sampling distribution of (β̂k − βk)/s.e.(β̂k)
derived in Section 1.4 above.
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2 Generalised linear models

2.1 Introduction

The generalised linear model extends the linear model defined in §1.1 to allow a more flexible
family of probability distributions.

In a generalised linear model (g.l.m.) the n observations of the response y = (y1, y2, . . . , yn)T are
assumed to be observations of independent random variables Y = (Y1, Y2, . . . , Yn)T , which take
the same distribution from the exponential family. Hence,

fY (y;θ,φ) = exp

(
n∑
i=1

yiθi − b(θi)
φi

+
n∑
i=1

c(yi, φi)

)
(5)

where θ = (θ1, . . . , θn)T is the collection of canonical parameters and φ = (φ1, . . . , φn)T is the
collection of dispersion parameters (where they exist). Commonly, the dispersion parameters are
known up to, at most, a single common unknown σ2, and we write φi = σ2/mi where the mi

represent known weights.

The distribution of the response variable Yi depends on the explanatory data xi = (1, xi1, xi2, . . . , xip)
T

through the linear predictor ηi where

ηi = β0 + β1xi1 + β2xi2 + . . .+ βpxip

=

p∑
j=0

xijβj

= xTi β

= [Xβ]i, i = 1, . . . , n

in an exactly analagous fashion to the linear model in §1.1.

The link between the distribution of Y and the linear predictor η is provided by the link function
g,

ηi = g(µi) i = 1, . . . , n

where µi ≡ E(Yi), i = 1, . . . , n. Hence, the dependence of the distribution of the response on the
explanatory variables is established as

g(E[Yi]) = g(µi) = ηi = xTi β i = 1, . . . , n

In principle, the link function g can be any one-to-one differentiable function. However, we note
that ηi can in principle take any value in R (as we make no restriction on possible values taken by
explanatory variables or model parameters). However, for some exponential family distributions
µi is restricted. For example, for the Poisson distribution µi ∈ R+; for the Bernoulli distribution
µi ∈ (0, 1). If g is not chosen carefully, then there may exist a possible xi and β such that
ηi 6= g(µi) for any possible value of µi. Therefore, most common choices of link function map the
set of allowed values for µi onto R.

Recall that for a random variable Y with a distribution from the exponential family, E(Y ) = b′(θ).
Hence, for a generalised linear model

µi = E(Yi) = b′(θi) i = 1, . . . , n.
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Therefore
θi = b′−1(µi) i = 1, . . . , n

and as g(µi) = ηi = xTi β, then

θi = b′−1(g−1[xTi β]) i = 1, . . . , n. (6)

Hence, we can express the joint density (5) in terms of the coefficients β, and for observed data y,
this is the likelihood fY (y;β,φ) for β.

Note that considerable simplification is obtained in (5) and (6) if the functions g and b′−1 are
identical. Then

θi = xTi β i = 1, . . . , n.

The link function
g(µ) ≡ b′−1(µ)

is called the canonical link function. Under the canonical link, the canonical parameter is equal to
the linear predictor.

Distribution Normal Poisson Bernoulli
Binomial

b(θ) 1
2θ

2 log(1 + exp θ)

b′(θ) ≡ µ θ
exp θ

1 + exp θ

b′−1(µ) ≡ θ µ log
µ

1− µ

Link g(µ) = µ g(µ) = log µ g(µ) = log
µ

1− µ

Identity link Log link Logit link

Table 1: Canonical link functions

Exercise 5: Complete the table above.

Clearly the linear model considered in §1 is also a generalised linear model where Y1, . . . , Yn are
independent normally distributed, the explanatory variables enter a linear model through the linear
predictor

ηi = xTi β i = 1, . . . , n.

and the link between E(Y ) = µ and the linear predictor η is through the (canonical) identity link
function

µi = ηi i = 1, . . . , n.

2.2 Maximum likelihood estimation

As usual, we maximise the log likelihood function which, from (2), can be written

log fY (y;β,φ) =
n∑
i=1

yiθi − b(θi)
φi

+
n∑
i=1

c(yi, φi) (7)
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and depends on β through

µi = b′(θi) i = 1, . . . , n

g(µi) = ηi i = 1, . . . , n

ηi = xTi β =

p∑
j=0

xijβj i = 1, . . . , n.

To find β̂, we solve the equations u(β̂) = 0 where u is the score vector whose components are
given by

uk(β) ≡ ∂

∂βk
log fY (y;β)

=

n∑
i=1

∂

∂βk

[
yiθi − b(θi)

φi

]

=

n∑
i=1

∂

∂θi

[
yiθi − b(θi)

φi

]
∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βk

k = 0, . . . , p.

=
n∑
i=1

yi − b′(θi)
φi

xik
b′′(θi)g′(µi)

=
n∑
i=1

yi − µi
V ar(Yi)

xik
g′(µi)

k = 0, . . . , p (8)

which depends on β through µi ≡ E(Yi) and V ar(Yi), i = 1, . . . , n.

In practice, these equations are usually non-linear and have no analytic solution. Therefore, we
rely on numerical methods to solve them.

First, we note that the Hessian and Fisher information matrices can be derived directly from (8),
as

[H(β)]jk =
∂2

∂βj∂βk
log fY (y;β)

=
∂

∂βj

n∑
i=1

yi − µi
V ar(Yi)

xik
g′(µi)

=
n∑
i=1

− ∂µi

∂βj

V ar(Yi)

xik
g′(µi)

+
n∑
i=1

(yi − µi)
∂

∂βj

[
xik

V ar(Yi)g′(µi)

]
and

[I(β)]jk = E[−H(β)]jk =
n∑
i=1

∂µi

∂βj

V ar(Yi)

xik
g′(µi)

=
n∑
i=1

xijxik
V ar(Yi)g′(µi)2

.

Exercise 6: Show that we we can write

I(β) = XTWX (9)

where X is the design matrix and

W = diag(w) =


w1 0 · · · 0

0 w2

...
...

. . . 0
0 · · · 0 wn


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where

wi =
1

V ar(Yi)g′(µi)2
i = 1, . . . , n.

The Fisher information matrix I(θ) depends on β through µ and V ar(Yi), i = 1, . . . , n.

The scores in (8) may now be written as

uk(β) =

n∑
i=1

(yi − µi)xikwig′(µi)

=
n∑
i=1

xikwizi k = 0, . . . , p

where
zi = (yi − µi)g′(µi) i = 1, . . . , n.

Therefore
u(β) = XTWz. (10)

One possible method to solve the p simultaneous equations u(β̂) = 0 that give β̂ is the (mul-

tivariate) Newton-Raphson method. If βt is the current estimate of β̂ then the next estimate
is

βt+1 = βt −H(βt)−1u(βt). (11)

In practice, an alternative to Newton-Raphson replaces H(θ) in (11) with E[H(θ)] ≡ −I(θ).

Therefore, if βt is the current estimate of β̂ then the next estimate is

βt+1 = βt + I(βt)−1u(βt). (12)

The resulting iterative algorithm is called Fisher scoring. Notice that if we substitute (9) and (10)
into (12) we get

βt+1 = βt + [XTW tX]−1XTW tzt

= [XTW tX]−1[XTW tXβt +XTW tzt]

= [XTW tX]−1XTW t[Xβt + zt]

= [XTW tX]−1XTW i[ηt + zt]

where ηt, W t and zt are all functions of βt.

This is a weighted least squares equation, as βt+1 minimises the weighted sum of squares

(η + z −Xβ)TW (η + z −Xβ) =

n∑
i=1

wi
(
ηi + zi − xTi β

)2
as a function of β where w1, . . . , wn are the weights and η + z is called the adjusted dependent
variable.

Therefore, the Fisher scoring algorithm proceeds as follows.

1. Choose an initial estimate βt for β̂ at t=0.

2. Evaluate ηt, W t and zt at βt.

3. Calculate βt+1 = [XTW tX]−1XTW t[ηt + zt].

4. If ||βt+1 − βt|| > some prespecified (small) tolerance then set t→ t+ 1 and go to 2.

5. Use βt+1 as the solution for β̂.
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As this algorithm involves iteratively minimising a weighted sum of squares, it is sometimes known
as iteratively (re)weighted least squares.

Notes
1. Recall that the canonical link function is g(µ) = b′−1(µ) and with this link ηi = g(µi) = θi.

Then
1

g′(µi)
=
∂µi
∂θi

= b′′(θi) i = 1, . . . , n.

Therefore V ar(Yi)g
′(µi) = φi which does not depend on β, and hence ∂

∂βj

[
xik

V ar(Yi)g′(µi)

]
= 0

for all j = 0, . . . , p. It follows that H(θ) = −I(θ) and, for the canonical link, Newton-Raphson
and Fisher scoring are equivalent.

2. (Exercise 7) The linear model is a generalised linear model with identity link, ηi = g(µi) = µi
and V ar(Yi) = σ2 for all i = 1, . . . , n. For this model, show that wi = σ−2 and zi = yi −
ηi, i = 1, . . . , n. Hence, show that the Fisher scoring algorithm converges in a single iteration,
from any starting point, to the usual least squares estimate.

3. Estimation of an unknown dispersion parameter σ2 is discussed later. A common σ2 has no
effect on β̂.

2.3 Inference

Subject to standard regularity conditions, β̂ is asymptotically normally distributed with mean
β and variance covariance matrix I(θ)

−1
. For ‘large enough n’ we treat this distribution as an

approximation.

Therefore, standard errors are given by

s.e.(β̂k) = [I(β̂)−1]
1
2

kk = [(XTŴX)−1]
1
2

kk k = 0, . . . , p,

where the diagonal matrix Ŵ = diag(ŵ) is evaluated at β̂, that is ŵi = (V̂ ar(Yi)g
′(µ̂i)

2)−1

where µ̂i and V̂ ar(Yi) are evaluated at β̂ for i = 1, . . . , n. Furthermore, if V ar(Yi) depends on an
unknown dispersion parameter, then this too must be estimated in the standard error.

The asymptotic distribution of the maximum likelihood estimator can be used to provide approx-
imate large sample confidence intervals, using

β̂k − βk
s.e.(β̂k)

asymp∼ N(0, 1).

2.4 Comparing generalised linear models 1

As with linear models, we can proceed by comparing nested models H0 and H1 pairwise using
a generalised likelihood ratio test where ‘nested’ means that H0 and H1 are based on the same
exponential family distribution, have the same link function, but Θ(0), the set of values of the
canonical parameter θ allowed by H0, is a subset of Θ(1), the set of values allowed by H1.

1 It should be noted that this section describes just one method for comparing models. General
principles and other methods will be discussed in detail in the APTS module itself.
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Without loss of generality, we can think of H1 as the model

ηi =

p∑
j=0

xijβj i = 1, . . . , n

and H0 is the same model with βq+1 = βq+2 = · · · = βp = 0.

Now, the log likelihood ratio statistic for a test of H0 against H1 is

L01 ≡ 2 log

(
maxθ∈Θ(1) fY (y;θ)

maxθ∈Θ(0) fY (y;θ)

)
= 2 log fY (y; θ̂(1))− 2 log fY (y; θ̂(0)) (13)

where θ̂(1) and θ̂(0) follow from b′(θ̂i) = µ̂i, g(µ̂i) = η̂i, i = 1, . . . , n where η̂ for each model is
the linear predictor evaluated at the corresponding maximum likelihood estimate for β. Here, we
assume that φi, i = 1, . . . , n are known; unknown φ is discussed in §2.5.

We reject H0 in favour of H1 when L01 > k where k is determined by α, the size of the test. Under
H0, L01 has an asymptotic chi-squared distribution with p− q degrees of freedom.

The saturated model is defined to be the model where the canonical parameters θ (or equivalently
µ or η) are unconstrained, and the parameter space is n-dimensional. For the saturated model,

we can calculate the m.l.es θ̂ directly from their likelihood (5) by differentiating with respect to
θ1, . . . , θn to give

∂

∂θk
log fY (y;θ) =

yk − b′(θk)

φk
k = 1, . . . , n.

Therefore b′(θ̂k) = yk, k = 1, . . . , n, and it follows immediately that µ̂k = yk, k = 1, . . . , n. Hence
the saturated model fits the data perfectly, as the fitted values µ̂k and observed values yk are the
same for every observation k = 1, . . . , n.

The saturated model is rarely of any scientific interest in its own right. It is highly parameterised,
having as many parameters as there are observations. However, every other model is necessarily
nested in the saturated model, and a test comparing a model H0 against the saturated model
can be interpreted as a goodness of fit test. If the saturated model, which fits the observed data
perfectly, does not provide a significantly better fit than model H0, we can conclude that H0 is an
acceptable fit to the data.

The log likelihood ratio statistic for a test of H0 against the saturated alternative is, from (13)

L0 = 2 log fY (y; θ̂(s))− 2 log fY (y; θ̂(0))

where θ̂(s) follows from b′(θ̂) = µ̂ = y. However, calibrating L0 is not straightforward. In some
circumstances (typically those where the response distribution might be adequately approximated
by a normal) L0 has an asymptotic chi-squared distribution with n − q − 1 degrees of freedom,
under H0. Therefore, if L0 is ‘too large’ then we reject H0 as a plausible model for the data, as
it does not fit the data adequately. However, in other situations, for example, for Bernoulli data,
this approximation breaks down.

The degrees of freedom of model H0 is defined to be the degrees of freedom for this test, n− q− 1,
the number of observations minus the number of linear parameters of H0. We call L0 the scaled
deviance of model H0.

From (7) and (13) we can write the scaled deviance of model H0 as

L0 = 2

n∑
i=1

yi[θ̂
(s)
i − θ̂

(0)
i ]− [b(θ̂

(s)
i )− b(θ̂(0)

i )]

φi
. (14)
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which can be calculated using the observed data, provided that φi, i = 1, . . . , n is known.

Notes

1. The log likelihood ratio statistic (13) for testing H0 against a nonsaturated alternative H1 can
be written as

L01 = 2 log fY (y; θ̂(1))− 2 log fY (y; θ̂(0))

= [2 log fY (y; θ̂(s))− 2 log fY (y; θ̂(0))]− [2 log fY (y; θ̂(s))− 2 log fY (y; θ̂(1))]

= L0 − L1. (15)

Therefore the log likelihood ratio statistic for comparing two nested models is the difference
between their scaled deviances. Furthermore, as p− q = (n− q − 1)− (n− p− 1), the degrees
of freedom for the test is the difference in degrees of freedom of the two models.

2. An alternative goodness of fit statistic for a model H0 is Pearson’s X2 given by

X2 =
n∑
i=1

(yi − µ̂(0)
i )2

V̂ ar(Yi)
. (16)

X2 is small when the squared differences between observed and fitted values (scaled by variance)
is small. Hence, large values of X2 correspond to poor fitting models. In fact, X2 and L0 are
asymptotically equivalent. However, the asymptotic χ2

n−q−1 approximation associated with X2

is often more reliable.

2.5 Models with an unknown dispersion parameter

Thus far, we have assumed that the φi are known. This is the case for both the Poisson and
Bernoulli distributions (φ = 1). Neither the scaled deviance (14) nor Pearson X2 statistic (16) can
be evaluated unless a(φ) is known. Therefore, when φi are not known, we cannot use the scaled
deviance as a measure of goodness of fit, or to compare models using (15).

Progress is possible if we assume that φi = σ2/mi, i = 1, . . . , n where σ2 is a common unknown
dispersion parameter and m1, . . . ,mn are known weights. (A normal linear model takes this form,
if we assume that V ar(Yi) = σ2, i = 1, . . . , n, in which case mi = 1, i = 1, . . . , n). Under this
assumption

L0 =
2

σ2

n∑
i=1

miyi[θ̂
(s)
i − θ̂

(0)
i ]−mi[b(θ̂

(s)
i )− b(θ̂(0)

i )]

≡ 1

σ2
D0 (17)

where D0 can be calculated using the observed data. We call D0 the deviance of the model.

In order to compare nested models H0 and H1, one might calculate the test statistic

F =
L01/(p− q)

L1/(n− p− 1)
=

(L0 − L1)/(p− q)
L1/(n− p− 1)

=
(D0 −D1)/(p− q)
D1/(n− p− 1)

. (18)

This statistic does not depend on the unknown dispersion parameter σ2, so can be calculated using
the observed data. Asymptotically, under H0, L01 has a χ2

p−q distribution and L01 and L1 are
independent (not proved here). Assuming that L1 has an approximate χ2

n−p−1 distribution, then
F has an approximate F distribution with p− q degrees of freedom in the numerator and n− p− 1
degrees of freedom in the denominator. Hence, we compare nested generalised linear models by
calculating F and rejecting H0 in favour of H1 if F is too large.
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The dependence of the maximum likelihood equations u(β̂) = 0 on σ2 (where u is given by (8)) can
be eliminated by multiplying through by σ2. However, inference based on the maximum likelihood
estimates, as described in §2.3 does require knowledge of σ2. This is because asymptotically
V ar(β̂) is the inverse of the Fisher information matrix I(β) = XTWX, and this depends on
wi = 1

V ar(Yi)g′(µi)2
where V ar(Yi) = φib

′′(θi) = σ2b′′(θi)/mi here.

Therefore, to calculate standard errors and confidence intervals, we need to supply an estimate σ̂2

of σ2. Generally, rather than use the maximum likelihood estimate, it is more common to base an
estimator of σ2 on the Pearson X2 statistic. As V ar(Yi) = φiV (µi) = σ2V (µi)/mi here (where
the variance function V (µ) is defined as b′′(θ), written in terms of µ), then from (16)

X2 =
1

σ2

n∑
i=1

mi(yi − µ̂(0)
i )2

V (µ̂i)
. (19)

Exercise 8: Making the assumption that, if H0 is an adequate fit, X2 has an chi-squared
distribution with n− q − 1 degrees of freedom, show that

σ̂2 ≡ 1

n− q − 1

n∑
i=1

mi(yi − µ̂(0)
i )2

V (µ̂i)

is an approximately unbiased estimator of σ2. Suggest an alternative estimator based on the
deviance D0.

2.6 Residuals and Model Checking

Recall that for linear models, we define the residuals to be the differences between the observed

and fitted values yi− µ̂(0)
i , i = 1, . . . , n. In fact, both the scaled deviance and Pearson X2 statistic

for a normal g.l.m. are the sum of the squared residuals divided by σ2. We can generalise this to
define residuals for other generalised linear models in a natural way.

For any g.l.m. we define the Pearson residuals to be

ePi =
yi − µ̂(0)

i

V̂ ar(Yi)
1
2

i = 1, . . . , n.

Then, from (16), X2 is the sum of the squared Pearson residuals.

For any g.l.m. we define the deviance residuals to be

eDi = sign(yi − µ̂(0)
i )

[
yi[θ̂

(s)
i − θ̂

(0)
i ]− [b(θ̂

(s)
i )− b(θ̂(0)

i )]

φi

] 1
2

, i = 1, . . . , n,

where sign(x) = 1 if x > 0 and −1 if x < 0. Then, from (14), the scaled deviance, L0, is the sum
of the squared deviance residuals.

When φi = σ2/mi and σ2 is unknown, as in §2.5, the expressions above need to be multiplied
through by σ2 to eliminate dependence on the unknown dispersion parameter. Therefore, for
a normal g.l.m. the Pearson and deviance residuals are both equal to the usual residuals, yi −
µ̂

(0)
i , i = 1, . . . , n.

Both the Pearson and deviance residuals can be standardised by dividing through by (1− hii)1/2,
as in §1.4. The derived residuals

r∗i = rDi +
1

rDi
log(rPi /r

D
i )
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are close to normal for a wide range of models, where rDi and rPi are the standardised deviance
and Pearson residuals, respectively.

Generalised linear model checking, using residuals, is based on the same kind of diagnostic plots,
as were suggested for linear models in §1.7. Similarly, the Cook’s distance Cj for linear models can
be adapted for g.l.m.s by using Pearson residuals.

3 Practical statistical modelling in R

The following exercises are adapted from Practicals to Accompany Statistical Models by A. C. Davi-
son, available at http://statwww.epfl.ch/davison/SM/. You will need to install the libraries
ellipse and SMPracticals containing the data sets, and other useful functions and load them
using

library(ellipse)

library(SMPracticals)

3.1 trees contains data on the volume, height and girth (diameter) of 31 felled black cherry trees;
girth is measured four feet six inches above ground. The problem is to find a simple linear
model for predicting volume from height and girth.

pairs(trees,panel = panel.smooth)

pairs(log(trees), panel = panel.smooth)

coplot generates conditioning plots, in which the relationship between two variables is dis-
played conditional on subsets of values of other variables. This is useful to see if the relationship
is stable over the range of other variables. To assess this for the relationship of log volume
and log girth, conditional on height:

attach(trees)

coplot(log(Volume) ∼ log(Girth) | Height, panel = panel.smooth)

Try this on the orginal scale also. For an initial fit, we take a linear model and assess model
fit using diagnostic plots:

fit <- glm(Volume ∼ Girth + Height)

summary(fit)

plot.glm.diag(fit)

What do you make of the fit?

To assess the possibility of transformation:

library(MASS)

boxcox(fit)

Both λ = 1 and λ = 0 lie outside the confidence interval, though the latter is better supported.
One possibility is to take λ = 1/3, corresponding to response Volume1/3. What transformations
for Girth and Height are then needed for dimensional compatibility? Fit this model, give
interpretations of the parameter estimates, and discuss its suitability.

An alternative is to suppose that a tree is conical in shape, in which case Volume ∝ Height

× Girth2. Equivalently, we fit

fit <- glm(log(Volume) ∼ log(Girth) + log(Height)))

summary(fit)
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plot.glm.diag(fit)

Are the parameter estimates consistent with this model? Does it fit adequately? What
advantage has it over the others for prediction of future volumes?

(Chapter 8; Atkinson, 1985, p. 63)

3.2 salinity contains n = 28 observations on the salinity of water in Pamlico Sound, North
Carolina. The response sal is the bi-weekly average of salinity. The next three columns
contain values of the covariates, respectively a lagged value of salinity lag, a trend indicator
trend, and the river discharge dis. Using the techniques of the previous problem as a guide,
find a model suitable for prediction of salinity from the covariates. The data contain at least
one outlier.

(Chapter 8; Ruppert and Carroll, 1980; Atkinson, 1985, p. 48)

3.3 shuttle contains the data in Table 1.3 of Davison (2003) on O-ring failures for the space
shuttle. To fit a binomial logistic regression model with covariate temperature:

fit <- glm(cbind(r, m-r) ∼ temperature, data = shuttle, binomial)

anova(fit)

summary(fit)

Try fitting with and without both covariates. To assess model fit, try plot.glm.diag(fit).
Do you find these diagnostics useful?

(Sections 10.1-10.4; Dalal et al., 1989)

3.4 bliss contains data on mortality of flour-beetles as a function of dose of a poison. To plot
the death rates:

plot(log(dose), r/m, ylim = c(0, 1), ylab = "Proportion dead")

fit <- glm(cbind(r, m-r) ∼ log(dose), binomial)

summary(fit)

points(log(dose), fitted(fit), pch = "L")

Does the fit seem good to you? Try again with the probit and cloglog link functions, for
example:

fit <- glm(cbind(r, m-r) ∼ log(dose), binomial(cloglog))

points(log(dose), fitted(fit), pch = "C")

Which fits best? Give a careful interpretation of the resulting model.

(Sections 10.1-10.4; Bliss, 1935)
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