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Statistics: another short introduction

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2017.

In Statistics we quantify our beliefs about things which we would
like to know in the light of other things which we have measured,
or will measure. This programme is not unique to Statistics: one
distinguishing feature of Statistics is the use of probability to quan-
tify the uncertainty in our beliefs. Within Statistics we tend to
separate Theoretical Statistics, which is the study of algorithms
and their properties, from Applied Statistics, which is the use of
carefully-selected algorithms to quantify beliefs about the real
world. This chapter is about Theoretical Statistics.

If I had to recommend one introductory book about Theoretical
Statistics, it would be Hacking (2001). The two textbooks I find
myself using most regularly are Casella and Berger (2002) and
Schervish (1995). For travelling, Cox (2006) and Cox and Donnelly
(2011) are slim and full of insights; Stigler (2016) likewise. For a
snapshot of the current state of the art, especially where Statistics
meets Machine Learning, see Efron and Hastie (2016).

1.1 Statistical models

This section covers the nature of a statistical model, and some of the
basic conventions for notation.

A statistical model is an artefact to link our beliefs about things
which we can measure to things we would like to know. Denote
the values of the things we can measure as Y, and the values of the
things we would like to know as X. These are all random quantities,
indicating that their values, ahead of taking the measurements,
are unknown to us. I will refer to X as the predictands, Y as the
observables, and yobs as the observations; the observations are actual
values.

The convention in Statistics is that random quantities are de-
noted with capital letters, and particular values of those random
quantities with small letters; e.g., x is a particular value that X
could take. This sometimes clashes with another convention that
matrices are shown with capital letters and scalars with small let-
ters. A partial resolution is to use normal letters for scalars, and
bold-face letters for vectors and matrices. However, I have stopped
adhering to this convention, as it it usually clear what X is from the
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context. Therefore both X and Y may be collections of quantities.
I term the set of possible (numerical) values for X the realm of

X, after Lad (1996), and denote it X. This illustrates another con-
vention, common throughout Mathematics, that sets are denoted
with ornate letters. The realm of (X, Y) is the cartesian product
X× Y. Where the realm is a cartesian product, then the margins are
denoted with subscripts. So if Z = X× Y, then Z1 = X and Z2 = Y.
The most common example is where X = (X1, . . . , Xm), and the
realm of each Xi is X, so that the realm of X is Xm.

In the definition of a statistical model, ‘artefact’ denotes an object
made by a human, e.g. you or me. There are no statistical models
that don’t originate inside our minds. So there is no arbiter to
determine the ‘true’ statistical model for (X, Y)—we may expect to
disagree about the statistical model for (X, Y), between ourselves,
and even within ourselves from one time-point to another.1 In 1 Some people refer to the unknown

data generating process (DGP) for (X, Y),
but I have never found this to be a
useful concept.

common with all other scientists, statisticians do not require their
models to be true. Statistical models exist to make prediction
feasible (see Section 1.3).

Maybe it would be helpful to say a little more about this. Here is
the usual procedure in ‘public’ Science, sanitised and compressed:

1. Given an interesting question, formulate it as a problem with a
solution.

2. Using experience, imagination, and technical skill, make some
simplifying assumptions to move the problem into the mathemat-
ical domain, and solve it.

3. Contemplate the simplified solution in the light of the assump-
tions, e.g. in terms of robustness. Maybe iterate a few times.

4. Publish your simplified solution (including, of course, all of
your assumptions), and your recommendation for the original
question, if you have one. Prepare for criticism.

MacKay (2009) provides a masterclass in this procedure.2 The statis- 2 Many people have discussed the
“unreasonable effectiveness of mathe-
matics”, to use the phrase of Eugene
Wigner; see https://en.wikipedia.

org/wiki/The_Unreasonable_

Effectiveness_of_Mathematics_

in_the_Natural_Sciences. Or, for a
more nuanced view, Hacking (2014).

tical model represents a statistician’s ‘simplifying assumptions’.
A statistical model takes the form of a family of probability distribu-

tions over X× Y. I will assume, for notational convenience, that X× Y

is countable.3 Dropping Y for a moment, let X = {x(1), x(2), . . . }.

3 Everything in this chapter general-
izes to the case where the realm is
uncountable.

The complete set of probability distributions for X is

P =

{
p ∈ Rk : p ≥ 0,

k

∑
i=1

pi = 1

}
, (1.1)

where pi = P(X = x(i)), and k = |X|, the number of elements of X.
A family of distributions is a subset of P, say F. In other words, a
statistician creates a statistical model by ruling out many possible
probability distributions.

The particular way in which statisticians specify a subset of all
distributions originates with Ronald Fisher in the 1920s; Stephen
Stigler calls it “One of Ronald A. Fisher’s subtlest innovations”

https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
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(Stigler, 2016, p. 180). The family is denoted by a probability mass
function (PMF) fX , a parameter θ, and a parameter space Ω, such that

F =
{

p ∈ P : ∀i pi = fX(x(i); θ) for some θ ∈ Ω
}

. (1.2)

For obvious reasons, we require that if θ′ 6= θ′′, then

fX(· ; θ′) 6= fX(· ; θ′′); (1.3)

such models are termed identifiable.4 Taken all together, it is conve- 4 Some more notation. fX is a func-
tion; formally, fX : X×Ω → [0, 1].
Two functions can be compared for
equality: as functions are sets of tuples,
the comparison is for the equality of
two sets. fX(· ; θ) is also a function,
fX(· ; θ) : X → [0, 1] but different for
each value of θ. It is a convention in
Statistics to separate the argument x
from the parameter θ using a semi-
colon.

nient to denote a statistical model for X as the triple

E =
{
X, Ω, fX

}
, (1.4)

termed a parametric model. For example, the Poisson family is

Poisson =
{
N,R+, fX

}
where fX(x; θ) = e−θ θx

x!
,

although it is common in this case to use ‘λ’ rather than ‘θ’ as the
label for the parameter.5 Where X is embedded in a larger set, it 5N denotes the set of natural numbers,

and R+ the set of non-negative real
numbers. Mathematicians are flexible
about whether 0 ∈ N: in our case it is.

is understood that fX(x; ·) = 0 for x 6∈ X. This would allow us to
define the Poisson distribution over the realm R, if that turned out
to be convenient.

Most statistical procedures start with the specification of a statis-
tical model for (X, Y),

E =
{
X× Y, Ω, fX,Y

}
. (1.5)

The method by which a statistician chooses F and then E is hard to
codify, although experience and precedent are obviously relevant.
See Davison (2003) for a book-length treatment with many useful
examples. Some procedures start with a more general specification
for fX, termed non-parametric statistical models. The most com-
mon is that fX(x1, . . . , xm) is a symmetric function of (x1, . . . , xm),
termed exchangeable.

1.2 Hierarchies of models

The concept of a statistical model was crystalized in the early
part of the 20th century. At that time, when the notion of a digital
computer was no more than a twinkle in John von Neumann’s
eye, the ‘ fY’ in the model

{
Y, Ω, fY

}
was assumed to be a known

analytic function of y for each θ.6 As such, all sorts of other useful 6 That is, a function which can be
evaluated to any specified precision
using a finite number of operations,
like the Poisson PMF or the Normal
probability density function (PDF).

operations are possible, such as differentiating with respect to θ.
Expressions for the PMFs of specified functions of set of random
quantities are also known analytic functions: sums, differences, and
more general transformations.

This was computationally convenient—in fact it was critical
given the resources of the time—but it severely restricted the mod-
els which could be used in practice, more-or-less to the models
found today at the back of every textbook in Statistics (e.g. Casella
and Berger, 2002), or simple combinations thereof. Since about the
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1950s—the start of the computer age—we have had the ability to
evaluate a much wider set of functions, and to simulate random
quantities on digital computers. As a result, the set of usable statis-
tical models has dramatically increased. In modern Statistics, we
now have the freedom to specify the model that most effectively
represents our beliefs about the set of random quantities of inter-
est. Therefore we need to update our notion of statistical model,
according to the following hierarchy.

A. Models where fY has a known analytic form.

B. Models where fY(y; θ) can be evaluated.

C. Models where Y can be simulated from fY(·; θ).

Between (B) and (C) exist models where fY(y; θ) can be evaluated
up to an unknown constant, which may or may not depend on θ.

To illustrate the difference, consider the Maximum Likelihood
Estimator (MLE) of the ‘true’ value of θ based on Y, defined as

θ̂(y) := sup
θ∈Ω

fY(y; θ). (1.6)

Eq. (1.6) is just a sequence of mathematical symbols, waiting to be
instantiated into an algorithm. If fY has a known analytic form,
i.e. level (A) of the hierarchy, then it may be possible to solve the
first-order conditions,7 7 For simplicity and numerical stability,

these would usually be applied to
log fY not fY .∂

∂θ
fY(y; θ) = 0, (1.7)

uniquely for θ as a function of y (assuming, for simplicity, that Ω
is a convex subset of R) and to show that ∂2

∂θ2 fY(y; θ) is negative at
this solution. In this case we are able to derive an analytic expres-
sion for θ̂. Even if we cannot solve the first order conditions, we
might be able to prove that fY(y; ·) is strictly concave, so that we
know there is a unique maximum. This means that any numerical
maximization of fY(y; ·) is guaranteed to converge to θ̂(y).

But what if we can evaluate fY(y; θ), but do not know its form,
i.e. level (B) of the hierarchy? In this case we can still numerically
maximize fY(y; ·), but we cannot be sure that the maximizer will
converge to θ̂(y): it may converge to a local maximum. So the
algorithm for finding θ̂(y) must have some additional procedures to
ensure that all local maxima are ignored: this is very complicated in
practice, very resource intensive, and there are no guarantees.8 So 8 See, e.g., Nocedal and Wright (2006).

Do not be tempted to make up your
own numerical maximization algo-
rithm.

in practice the Maximum Likelihood algorithm does not necessarily
give the MLE. We must recognise this distinction, and not make
claims for the MLE algorithm which we implement, that are based
on theoretical properties of the MLE.

And what about level (C) of the hierarchy? It is very tricky
indeed to find the MLE in this case, and any algorithm that tries
will be very imperfect. Other estimators of θ would usually be
preferred. This example illustrates that in Statistics it is the choice
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of algorithm that matters. The MLE is a good choice only if (i) you
can prove that it has good properties for your statistical model,9 9 Which is often very unclear; see

Le Cam (1990).and (ii) you can prove that your algorithm for finding the MLE is
in fact guaranteed to find the MLE for your statistical model. If
you have used an algorithm to find the MLE without checking both
(i) and (ii), then your results bear the same relation to Statistics as
Astrology does to Astronomy. Doing Astrology is fine, but not if
your client has paid you to do Astronomy.

1.3 Prediction and inference

The applied statistician proposes a statistical model for (X, Y),

E =
{
X× Y, Ω, fX,Y

}
.

She then turns E and yobs into a prediction for X. Ideally she uses
an algorithm, in the sense that were she given the same statistical
model and same observations again, she would produce the same
prediction.

A statistical prediction is always a probability distribution for X,
although it might be summarised, for example as the expectation
of some specified function of X. From the starting point of the
statistical model E and the value of an observable Y we derive the
predictive model

E∗ =
{
X, Ω, f ∗X

}
(1.8a)

where

f ∗X(·; θ) =
fX,Y(·, y; θ)

fY(y; θ)
(1.8b)

and fY(y; θ) = ∑
x

fX,Y(x, y; θ); (1.8c)

I often write ‘∗’ to indicate a suppressed y argument. Here f ∗X is
the conditional PMF of X given that Y = y, and fY is the marginal
PMF of Y. Both of these depend on the parameter θ. The challenge
for prediction is to reduce the family of distributions E∗ down to a
single distribution; effectively, to ‘get rid of’ θ.

There are two approaches to getting rid of θ: plug in and integrate
out, found in the Frequentist and Bayesian paradigms respectively,
for reasons that will be made clear below. We accept, as our work-
ing hypothesis, that one of the elements of the family F is true. For
a specified statistical model E, this is equivalent to stating that ex-
actly one element in Ω is true: denote this element as Θ.10,11 Then 10 Note that I do not feel the need to

write ‘true’ in scare-quotes. Clearly
there is no such thing as a true value
for θ, because the model is an artefact
(i.e. not true in any defensible sense).
But once we accept, as a working
hypothesis, that one of the elements of
F is true, we do not have to belabour
the point.
11 I am following Schervish (1995)
and using Θ for the true value of θ,
although it is a bit clunky as notation.

f ∗X(·; Θ) is the true predictive PMF for X.
For the plug-in approach we replace Θ with an estimate based

on y, for example the MLE θ̂. In other words, we have an algorithm

y 7→ f ∗X
(
· ; θ̂(y)

)
(1.9)

to derive the predictive distribution for X for any y. The estimator
does not have to be the MLE: different estimators of Θ produce
different algorithms.
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For the integrate-out approach we provide a prior distribution
over Ω, denoted π.12 This produces a posterior distribution 12 For simplicity, and almost always

in practice, π is a probability density
function (PDF), given that Ω is almost
always a convex subset of Euclidean
space.

π∗(·) = fY(y; ·)π(·)
p(y)

(1.10a)

where

p(y) =
∫

Ω
fY(y; θ)π(θ)dθ (1.10b)

(Bayes’s theorem, of course). Here p(y) is termed the marginal
likelihood of y. Then we integrate out θ according to the posterior
distribution—another algorithm:

y 7→
∫

Ω
f ∗X(· ; θ)π∗(θ)dθ. (1.11)

Different prior distributions produce different algorithms.
That is prediction in a nutshell. In the plug-in approach, each

estimator for Θ produces a different algorithm. In the integrate-
out approach each prior distribution for Θ produces a different
algorithm. Neither approach works on y alone: both need the statis-
tician to provide an additional input: a point estimator, or a prior
distribution. Frequentists dislike specifying prior distributions,
and therefore favour the plug-in approach. Bayesians like speci-
fying prior distributions, and therefore favour the integrate-out
approach.13 13 We often write ‘Frequentists’ and

‘Bayesians’, and most applied statisti-
cians will tend to favour one approach
or the other. But applied statisticians
are also pragmatic. Although a ‘mostly
Bayesian’ myself, I occasionally pro-
duce confidence sets.

* * *

This outline of prediction illustrates exactly how Statistics has
become so concerned with inference. Inference is learning about
Θ, which is a key part of either approach to prediction: either we
need a point estimator for Θ (plug-in), or we need a posterior dis-
tribution for Θ (integrate-out). It often seems as though Statistics is
mainly about inference, but this is misleading. It is about inference
only insofar as inference is the first part of prediction.

Ideally, algorithms for inference should only be evaluated in
terms of their performance as components of algorithms for predic-
tion. This does not happen in practice: partly because it is much
easier to assess algorithms for inference than for prediction; partly
because of the fairly well-justified belief that algorithms that per-
form well for inference will produce algorithms that perform well
for prediction.14 I will adhere to this practice, and focus mainly on 14 Often, this is because prediction

questions can be expressed in terms of
specified functions of the parameters.

inference. But not forgetting that Statistics is mainly about prediction.

1.4 Frequentist procedures

As explained immediately above, I will focus on inference. So
consider a specified statistical model E =

{
Y, Ω, fY

}
, where the

objective is to learn about the true value Θ ∈ Ω based on the value
of the observables Y.
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We have already come across the notion of an algorithm, which
is represented as a function of the value of the observables; in this
section I will denote the algorithm as ‘g’. Thus the domain of g is
always Y. The co-domain of g depends on the type of inference (see
below for examples). The key feature of the Frequentist paradigm is
the following principle.

Definition 1.1 (Certification). For a specified model E and algorithm
g, the sampling distribution of g is

fG(v; θ) = ∑
y:g(y)=v

fY(y; θ). (1.12)

Then:

1. Every algorithm is certified by its sampling distribution, and

2. The choice of algorithm depends on this certification.

This rather abstract principle may not be what you were expect-
ing, based on your previous courses in Statistics, but if you reflect
on the following outline you will see that is the common principle
underlying what you have previously been taught.

Different algorithms are certified in different ways, depending on
their nature. Briefly, point estimators of Θ may be certified by their
Mean Squared Error function. Set estimators of Θ may be certified
by their coverage function. Hypothesis tests for Θ may be certified
by their power function. The definition of each of these certifications
is not important here, although they are easy to look up. What
is important to understand is that in each case an algorithm g is
proposed, fG is inspected, and then a certificate is issued.

Individuals and user communities develop conventions about
what certificates they like their algorithms to possess, and thus they
choose an algorithm according to its certification. They report both
g(yobs) and the certification of g. For example, “(0.73, 0.88) is a 95%
confidence interval for Θ”. In this case g is a set estimator for Θ, it
is certified as ‘level 95%’, and its value is g(yobs) = (0.73, 0.88).

* * *
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Certification is extremely challenging. Suppose I possess an
algorithm g : Y → 2Ω for set estimation.15 In order to certify it 15 Notation. 2Ω is the set of all subsets

of Ω, termed the ‘power set’ of Ω.as a confidence procedure for my model E I need to compute its
coverage for every θ ∈ Ω, defined as

coverage(θ;E) = P{θ ∈ g(Y); θ} = ∑
v
1θ∈v fG(v; θ), (1.13)

where ‘1a’ is the indicator function of the proposition a, which
is 0 when a is false, and 1 when a is true. Except in special cases,
computing the coverage for every θ ∈ Ω is impossible, given that Ω
is uncountable.16 16 The special cases are a small subset

of models from (A) in the model
hierarchy in Section 1.2, where, for a
particular choice of g, the sampling
distribution of g and the coverage
of g can be expressed as an analytic
function of θ. If you ever wondered
why the Normal linear model is so
common in applied statistics (linear
regression, z-scores, t-tests, and F-
statistics, ANOVA, etc.), then wonder
no more. Effectively, this family makes
up most of the special cases.

So, in general, I cannot know the coverage function of my algo-
rithm g for my model E, and thus I cannot certify it accurately, but
only approximately. Unfortunately, then I have a second challenge.
After much effort, I might (approximately) certify g for my model E
as, say, ‘level 83%’; this means that the coverage is at least 83% for
every θ ∈ Ω. Unfortunately, the convention in my user community
is that confidence procedures should be certified as ‘level 95%’. So
it turns out that my community will not accept g. I have to find a
way to work backwards, from the required certificate, to the choice
of algorithm.

So Frequentist procedures require the solution of an intractable
inverse problem: for specified model E, produce an algorithm g
with the required certificate. Actually, it is even harder than this,
because it turns out that there are an uncountable number of algo-
rithms with the right certificate, but most of them are useless. Most
applied statisticians do not have the expertise or the computing
resources to solve this problem to find a good algorithm with the re-
quired certificate, for their model E. And so Frequentist procedures,
when they are used by applied statisticians, tend to rely on a few
special cases. Where these special cases are not appropriate, applied
statisticians tend to reach for an off-the-shelf algorithm justified
using a theoretical approximation, plus hope.

The empirical evidence collected over the last decade suggests
that the hope has been in vain. Most algorithms (including those
based on the special cases) did not, in fact, have the certificate that
was claimed for them.17 Opinion is divided about whether this is 17 See Madigan et al. (2014) for one

such study or, if you want to delve,
google “crisis reproducibility science”.
There is even a wikipedia page,
https://en.wikipedia.org/wiki/

Replication_crisis, which dates from
Jan 2015.

fraud or merely ignorance. Practically speaking, though, there is
no doubt that Frequentist procedures are not being successfully
implemented by applied statisticians.

1.5 Bayesian procedures

We continue to treat the model E as given. As explained in the pre-
vious section, Frequentist procedures select algorithms according
to their certificates. By contrast, Bayesian procedures select algo-
rithms mainly according to the prior distribution π (see Section 1.3),
without regard for the algorithm’s certificate.

A Bayesian inference is synonymous with the posterior distribu-
tion π∗, see (1.10). This posterior distribution may be summarized

https://en.wikipedia.org/wiki/Replication_crisis
https://en.wikipedia.org/wiki/Replication_crisis
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according to some method, for example to give a point estimate, a
set estimate, do a hypothesis test, and so on. These summary meth-
ods are fairly standard, and do not represent an additional source
of choice for the statistician. For example, a Bayesian algorithm for
choosing a set estimator for Θ would be (i) choose a prior distribu-
tion π, (ii) compute the posterior distribution π∗, and (iii) extract
the 95% High Density Region (HDR).

In principle, we could compute the coverage function of this al-
gorithm, and certify it as a confidence procedure. It is very unlikely
that it would be certified as a ‘level 95%’ confidence procedure,
because of the influence of the prior distribution.18 A Bayesian 18 Nevertheless, there are theorems

that give conditions on the model and
the prior distribution such that the
posterior 95% HDR is approximately
a level 95% confidence procedure; see,
e.g., Schervish (1995, ch. 7).

statistician would not care, though, because she does not concern
herself with the certificate of her algorithm. When the model is
given, the only thing the Bayesian has to worry about is her prior
distribution.

Bayesians see the prior distribution as an opportunity to con-
struct a richer model for (X, Y) than is possible for Frequentists.
This is most easily illustrated with a hierarchical model, for a
population of quantities that are similar, and a sample from that
population. Hierarchical models have a standard notation:19 19 See, e.g., Lunn et al. (2013) or

Gelman et al. (2014). Each of the f
functions is a PMF or PDF, and the
first argument is suppressed. The i
index in the first three rows indicates
that the components are mutually
independent, and then the f function
shows the marginal distribution for
each i, which may depend on i. In the
third row f does not depend on i, so
that the θi’s are mutually independent
and identically distributed, or ‘IID’.

Yi | Xi, σ2 ∼ fεi (Xi, σ2) i = 1, . . . , n (1.14a)

Xi | θi ∼ fXi (θi) i = 1, . . . , m (1.14b)

θi | ψ ∼ fθ(ψ) i = 1, . . . , m (1.14c)

(σ2, ψ) ∼ f0 . (1.14d)

At the top (first) level is the measurement model for the sample
(Y1, . . . , Yn), where fεi describes the measurement error and σ2

would usually be a scale parameter. At the second level is the
model for the population (X1, . . . , Xm), where n ≤ m, showing
how each element Xi is ‘summarised’ by its own parameter θi. At
the third level is the parameter model, in which the parameters
are allowed to be different from each other. At the bottom (fourth)
level is the ‘hyper-parameter’ model, which describes how much
the parameters can differ, and also provides a PDF for the scale
parameter σ2.

Frequentists would specify their statistical model using just the
top two levels, in terms of the parameter (σ2, θ1, . . . , θm), or, if this
is too many parameters for the n observables, as it usually is, they
will insist that θ1 = · · · = θm = θ, and have just (σ2, θ). The bottom
two levels are the Bayesian’s prior distribution. By adding these
two levels, Bayesians can allow the θi’s to vary, but in a limited way
that can be controlled by their choices for fθ and f0. Usually, f0 is a
‘vague’ PDF selected according to some simple rules.

In a Frequentist model we can count the number of param-
eters, namely 1 + m · dim Ω, or just 1 + dim Ω if the θi’s are
all the same. We can do that in a Bayesian model too, to give
1 + m · dim Ω + dim Ψ, if Ψ is the realm of ψ. Bayesian models
tend to have many more parameters, which makes them more flex-
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ible. But there is a second concept in a Bayesian model, which is
the effective number of parameters. This can be a lot lower than the
actual number of parameters, if it turns out that the observations
indicate that the θi’s are all very similar. So in a Bayesian model the
effective number of parameters can depend on the observations. In
this sense, a Bayesian model is more adaptive than a Frequentist
model.20 20 The issue of how to quantify the

effective number of parameters is
quite complicated. Spiegelhalter
et al. (2002) was a controversial
suggestion, and there have been
several developments since then,
summarised in Spiegelhalter et al.
(2014).

1.6 So who’s right?

We return to the problem of inference, based on the model E =
{
Y, Ω, fY

}
.

Here is the pressing question, from the previous two sections:
should we concern ourselves with the certificate of the algorithm, or
with the choice of the prior distribution?

A Frequentist would say “Don’t you want to know that you will
be right ‘on average’ according to some specified rate?” (like 95%).
And a Bayesian will reply “Why should my rate ‘on average’ matter
to me right now, when I am thinking only of Θ?”21 The Bayesian 21 And if she really wants to twist

the knife she will also mention the
overwhelming evidence that Frequen-
tist statisticians have apparently not
been able to achieve their target rates,
mentioned at the end of Section 1.4.

will point out the advantage of being able to construct hierarchical
models with richer structure. Then the Frequentist will criticise
the ‘subjectivity’ of the Bayesian’s prior distribution. The Bayesian
will reply that the model is also subjective, and so ‘subjectivity’ of
itself cannot be used to criticise only Bayesian procedures. And she
will go on to point out that there is just as much subjectivity in the
Frequentist’s choice of algorithm as there is in the Bayesian’s choice
of prior.

There is no clear winner when two paradigms butt heads. How-
ever, momentum is now on the side of the Bayesians. Back in the
1920s and 1930s, at the dawn of modern Statistics, the Frequentist
paradigm seemed to provide the ‘objectivity’ that was then prized
in science. And computation was so rudimentary that no one
thought beyond the simplest possible models, and their natural al-
gorithms. But then the Frequentist paradigm took a couple of hard
knocks: from Wald’s Complete Class Theorem in 1950 (covered
in Chapter 3), and from Birnbaum’s Theorem and the Likelihood
Principle in the 1960s (covered in Chapter 2). Significance testing
was challenged by Lindley’s paradox; estimator theory by Stein’s
paradox and the Neyman-Scott paradox. Bayesian methods were
much less troubled by these results, and were developed in the
1950s and 1960s by two very influential champions, L.J. Savage and
Dennis Lindey, building on the work of Harold Jeffreys.22 22 With a strong assist from the mav-

erick statistician I.J. Good. The intel-
lectual forebears of the 20th century
Bayesian revival included J.M. Keynes,
F.P. Ramsey, Bruno de Finetti, and
R.T. Cox.

And then in the 1980s, the exponential growth in computer
power and new Monte Carlo methods combined to make the
Bayesian approach much more practical. Additionally, datasets
have got larger and more complicated, favouring the Bayesian
approach with its richer model structure, when incorporating the
prior distribution. Finally, there is now much more interest in
uncertainty in predictions, something that the Bayesian integrate-
out approach handles much better than the Frequentist plug-in



apts lecture notes on statistical inference 13

approach (Section 1.3).
However, I would not rule out a partial reversal in due course,

under pressure from Machine Learning (ML). ML is all about
algorithms, which are often developed quite independently of any
statistical model. With modern Big Data (BD), the primary concern
of an algorithm is that it executes in a reasonable amount of time
(see, e.g., Cormen et al., 1990). But it would be natural, when an
ML algorithm might be applied by the same agent thousands of
times in quite similar situations, to be concerned about its sampling
distribution.23 With BD the certificate can be assessed from a held- 23 For example, if an algorithm is a

binary classifier, to want to know its
‘false positive’ and ‘false negative’
rates.

out subset of the data, without any need for a statistical model—no
need for statisticians at all then! Luckily for us statisticians, there
will always be plenty of applications where ML techniques are less
effective, because the datasets are smaller, or more complicated.
In these applications, I expect Bayesian procedures will come to
dominate.24 24 See Harford (2014) for an interesting

essay about why big is not always
better, and why in many situations we
can expect statisticians to outperform
’data analysts’.





2
Principles for Statistical Inference

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2017.

This chapter will be a lot clearer if you have recently read Chap-
ter 1. An extremely compressed version follows. As a working
hypothesis, we accept the truth of a statistical model

E :=
{
X, Ω, f

}
(2.1)

where X is the realm of a set of random quantities X, θ is a param-
eter with domain Ω (the ‘parameter space’), and f is a probability
mass function for which f (x; θ) is the probability of X = x under
parameter value θ.1 The true value of the parameter is denoted 1 As is my usual convention, I assume,

without loss of generality, that X is
countable, and that Ω is uncountable.

Θ. Statistical inference is learning about Θ from the value of X,
described in terms of an algorithm involving E and x. Although
Statistics is really about prediction, inference is a crucial step in
prediction, and therefore often taken as a goal in its own right.

Statistical principles guide the way in which we learn about Θ.
They are meant to be either self-evident, or logical implications
of principles which are self-evident. What is really interesting
about Statistics, for both statisticians and philosophers (and real-
world decision makers) is that the logical implications of some self-
evident principles are not at all self-evident, and have turned out
to be inconsistent with prevailing practices. This was a discovery
made in the 1960s. Just as interesting, for sociologists (and real-
world decision makers) is that the then-prevailing practices have
survived the discovery, and continue to be used today.

This chapter is about statistical principles, and their implications
for statistical inference. It demonstrates the power of abstract
reasoning to shape everyday practice.

2.1 Reasoning about inferences

Statistical inferences can be very varied, as a brief look at the ‘Re-
sults’ sections of the papers in an Applied Statistics journal will
reveal. In each paper, the authors have decided on a different inter-
pretation of how to represent the ‘evidence’ from their dataset. On
the surface, it does not seem possible to construct and reason about
statistical principles when the notion of ‘evidence’ is so plastic. It
was the inspiration of Allan Birnbaum (Birnbaum, 1962) to see—
albeit indistinctly at first—that this issue could be side-stepped.
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Over the next two decades, his original notion was refined; key
papers in this process were Birnbaum (1972), Basu (1975), Dawid
(1977), and the book by Berger and Wolpert (1988).

The model E is accepted as a working hypothesis, and so the
existence of the true value Θ is also accepted under the same terms.
How the statistician chooses her statements about the true value Θ
is entirely down to her and her client: as a point or a set in Ω, as a
choice among alternative sets or actions, or maybe as some more
complicated, not ruling out visualizations. Dawid (1977) puts this
well—his formalism is not excessive, for really understanding this
crucial concept. The statistician defines, a priori, a set of possible
‘inferences about Θ’, and her task is to choose an element of this
set based on E and x. Thus the statistician should see herself as
a function ‘Ev’: a mapping from (E, x) into a predefined set of
‘inferences about Θ’, or

(E, x) �
statistician, Ev

// Inference about Θ.

Birnbaum called E the ‘experiment’, x the ‘outcome’, and Ev the
‘evidence’.

Birnbaum’s formalism, of an experiment, an outcome, and an
evidence function, helps us to anticipate how we can construct
statistical principles. First, there can be different experiments with
the same Θ. Second, under some outcomes, we would agree that
it is self-evident that these different experiments provide the same
evidence about Θ. Finally, as will be shown, these self-evident
principles imply other principles. These principles all have the
same form: under such and such conditions, the evidence about Θ
should be the same. Thus they serve only to rule out inferences that
satisfy the conditions but have different evidences. They do not tell
us how to do an inference, only what to avoid.

But if you find the idea of ‘Ev’ too abstract, then replace it in
your mind and your notes with a specific instance of ‘Ev’, such as
the ML estimate or a 95% confidence interval. E.g., everywhere you
see ‘Ev’, read it as ‘ML estimate of Θ’.

2.2 The principle of indifference

Here is our first example of a statistical principle, using the name
conferred by Basu (1975). Recollect that once f has been defined,
f (x; •) is a function of θ, potentially a different function for each
x, and f (• ; θ) is a function of x, potentially a different function for
each θ.2 2 I am using ‘•’ instead of ‘·’ in this

chapter and subsequent ones, be-
cause I like to use ‘·’ to denote scalar
multiplication.

Definition 2.1 (Weak Indifference Principle, WIP). Let E = {X, Ω, f }.
If x, x′ ∈ X satisfy f (x; •) = f (x′; •), then Ev(E, x) = Ev(E, x′).

In my opinion, this is not self-evident, although, at the same
time, is it not obviously wrong.3 But we discover that it is the 3 Birnbaum (1972) thought it was

self-evident.
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logical implication of two other principles which I accept as self-
evident. These other principles are as follows, using the names
conferred by Dawid (1977).

Definition 2.2 (Distribution Principle, DP). If E = E′, then
Ev(E, x) = Ev(E′, x).

As Dawid (1977) puts it, any information which is not repre-
sented in E is irrelevant. This seems entirely self-evident to me,
once we enter the mathematical realm in which we accept the truth
of our statistical model.

Definition 2.3 (Transformation Principle, TP). Let E = {X, Ω, f }.
Let g : X → Y be bijective, and let Eg be the same experiment
as E but expressed in terms of Y = g(X), rather than X. Then
Ev(E, x) = Ev(Eg, g(x)).

This principle states that inferences should not depend on the
way in which the sample space is labelled, which also seems self-
evident to me; at least, to violate this principle would be bizarre.
But now we have the following result (Basu, 1975; Dawid, 1977).

Theorem 2.4. (DP∧ TP )→ WIP.

Proof. Fix E, and suppose that x, x′ ∈ X satisfy f (x; •) = f (x′; •),
as in the condition of the WIP. Now consider the transformation
g : X → X which switches x for x′, but leaves all of the other
elements of X unchanged. In this case E = Eg. Then

Ev(E, x′) = Ev(Eg, x′) by the DP

= Ev(Eg, g(x))

= Ev(E, x) by the TP,

which is the WIP. WIP

DP ∧

OO

TPSo I find, as a matter of logic, I must accept the WIP, or else I
must decide which of the two principles DP and TP are, contrary to
my initial impression, not self-evident at all. This is the pattern of
the next two sections, where either I must accept a principle, or, as
a matter of logic, I must reject one of the principles that implies it.
From now on, I will treat the WIP as self-evident.

2.3 The Likelihood Principle

The new concept in this section is a ‘mixture’ of two experiments.
Suppose I have two experiments,

E1 = {X1, Ω, f1} and E2 = {X2, Ω, f2},

which have the same parameter Θ. Rather than do one experiment
or the other, I imagine that I can choose between them randomly,
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based on known probabilities (p1, p2), where p2 = 1 − p1. The
resulting mixture is denoted E∗ =

{
X∗, Ω, f ∗

}
, where

X∗ =
(
{1} ×X1

)
∪
(
{2} ×X2

)
, (2.2a)

f ∗
(
(i, xi); θ

)
= pi · fi(xi; θ). (2.2b)

E∗ is a mixture experiment.
The famous example of a mixture experiment is the ‘two in-

struments’ (see Cox and Hinkley, 1974, sec. 2.3). There are two
instruments in a laboratory, and one is accurate, the other less so.
The accurate one is more in demand, and typically it is busy 80%
of the time. The inaccurate one is usually free. So, a priori, there is
a probability of p1 = 0.2 of getting the accurate instrument, and
p2 = 0.8 of getting the inaccurate one. Once a measurement is
made, of course, there is no doubt about which of the two instru-
ments was used. The following principle asserts what must be
self-evident to everybody, that inferences should be made according
to which instrument was used, and not according to the a priori
uncertainty. Or, to paraphrase, don’t take account of experiments that
were not performed.

Definition 2.5 (Weak Conditionality Principle, WCP). If E∗ is a
mixture experiment, as defined above, then

Ev
(
E∗, (i, xi)

)
= Ev(Ei, xi).

* * *

Another principle does not seem, at first glance, to have anything
to do with the WCP. This is the Likelihood Principle.4 4 The LP is self-attributed to

G. Barnard, see his comment to
Birnbaum (1962), p. 308. But it is al-
luded to in the statistical writings of
R.A. Fisher, almost appearing in its
modern form in Fisher (1956).

Definition 2.6 (Likelihood Principle, LP). Let E1 and E2 be two
experiments which have the same parameter Θ. If x1 ∈ X1 and
x2 ∈ X2 satisfy

f1(x1; •) = c(x1, x2) · f2(x2; •) (2.3)

for some function c > 0, then Ev(E1, x1) = Ev(E2, x2).

For a given (E, x), the function f (x; •) is termed the ‘likelihood
function’ for θ ∈ Ω. Thus the LP states that if two likelihood
functions for the same parameter have the same shape, then the
evidence is the same—hence the name. As will be discussed in
Section 2.6, Frequentist inferences violate the LP. Therefore the
following result was something of the bombshell, when it first
emerged in the 1960s. The following form is due to Birnbaum
(1972) and Basu (1975).5 5 Birnbaum’s original result (Birnbaum,

1962), used a stronger condition than
WIP and a slightly weaker condition
than WCP. Theorem 2.7 is clearer.

Theorem 2.7 (Birnbaum’s Theorem). (WIP∧WCP )↔ LP.

Proof. Both LP → WIP and LP → WCP are straightforward. The
trick is to prove (WIP ∧WCP ) → LP. So let E1 and E2 be two
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experiments which have the same parameter, and suppose that
x1 ∈ X1 and x2 ∈ X2 satisfy f2(x2; •) = c · f1(x1; •), where c > 0 is
some constant which may depend on (x1, x2), as in the condition of
the LP. The value c is known, so consider the mixture experiment
with p1 = c/(1 + c) and p2 = 1/(1 + c). Then

f ∗
(
(1, x1); •

)
=

c
1 + c

· f1(x1; •)

=
1

1 + c
· f2(x2; •)

= f ∗
(
(2, x2); •

)
.

Then the WIP implies that

Ev
(
E∗, (1, x1)

)
= Ev

(
E∗, (2, x2)

)
.

Finally, apply the WCP to each side to infer that

Ev(E1, x1) = Ev(E2, x2),

which is the LP.

LP

�� ��
WIP ∧

OO

WCP

DP ∧

OO

TP

Again, to be clear about the logic: either I accept the LP, or I
explain which of the two principles, WIP and WCP, I refute. To me,
the WIP is the implication of two principles that are self-evident,
and the WCP is itself self-evident, so I must accept the LP, or else
invoke and justify an ad hoc abandonment of logic.

2.4 A stronger form of the WCP

The new concept in this section is ‘ancillarity’. This has several
different definitions in the statistics literature; mine is close to that
of Cox and Hinkley (1974, sec. 2.2).

Definition 2.8 (Ancillary). X is ancillary in experiment

E =
{
X× Y, Ω1 ×Ω2, fX,Y

}
exactly when fX,Y factorizes as

fX,Y(x, y; θ) = fX(x) · fY|X(y | x; θ).

In other words, the marginal distribution of X is completely
specified. Not all families of distributions will factorize in this way,
but when they do, there are new possibilities for inference, based
around stronger forms of the WCP such as the CP immediately
below.6 6 Here I am going to include situations

where fX depends on parameters
which are not interesting and which
do not appear in fY|X . Technically,
an additional self-evident ‘sure thing
principle’ would also be required in
this situation.

When X is ancillary, we can consider the conditional experiment

EY|x =
{
Y, Ω, fY|x

}
, (2.4)

where fY|x(y; θ) := fY|X(y | x; θ). This is an experiment where we
condition on X = x, i.e. treat X as known, and treat Y as the only
random quantity. This is an attractive idea if we can specify fY|X,
because we can then disregard the choice of fX. Our aspiration is
the following principle.
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Definition 2.9 (Conditionality Principle, CP). If X is ancillary in E,
then Ev

(
E, (x, y)

)
= Ev(EY|x, y).

Here is a example which will be familiar to all statisticians. We
have been given a sample x = (x1, . . . , xn) to evaluate. In fact, n
itself is likely to be the outcome of a random variable N, because
the process of sampling itself is rather uncertain. But we seldom
concern ourselves with the distribution of N when we evaluate x;
instead we treat N as known. Equivalently, we treat N as ancillary
and condition on N = n, which would be justified by the CP.

Here is another familiar example. A regression of Y on X ap-
pears to make a distinction between the ‘dependent variable’ Y
and the ‘covariates’ X, with only the former being treated as ran-
dom. This distinction is insupportable, given that the roles of Y
and X are often interchangeable, and determined by the hypothèse
du jour. What we are actually doing is treating X as ancillary and
conditioning on X, which would be justified by the CP.

* * *
Clearly the CP implies the WCP, with the experiment indicator

I ∈
{

1, 2
}

being ancillary. But what justification might we have for
accepting the CP? Happily the CP comes for free with the LP.

Theorem 2.10. LP→ CP.

Proof. Suppose that X is ancillary in E =
{
X× Y, Ω, fX,Y

}
. Thus

fX,Y(x, y; •) = fX(x) · fY|X(y | x; •) = c(x) · fY|x(y; •),

where c > 0. Then the LP implies that

Ev
(
E, (x, y)

)
= Ev(EY|x, y),

which is the CP.

LP

�� ��

// CP

��
WIP ∧

OO

WCP

DP ∧

OO

TP
2.5 Stopping rules

Consider a sequence of random quantities X1, X2, . . . with marginal
PMFs

fn(x1, . . . , xn; θ) n = 1, 2, . . . ,

where consistency requires that

fn(x1, . . . , xn; θ) = ∑
y1

· · ·∑
ym

fn+m(x1, . . . , xn, y1, . . . ym; θ)

for each n, m ∈ 1, 2, . . . .7 In a sequential experiment, the number of 7 This is Kolmogorov’s consistency
condition.X’s that are observed is not fixed in advanced but depends on the

values seen so far. That is, at time j, the decision to observe Xj+1

can be modelled by a probability pj(x1, . . . , xj). We can assume,
resources being finite, that the experiment must stop at specified
time m, if it has not stopped already, hence pm(x1, . . . , xm) = 0.
Denote the stopping rule as τ := (p1, . . . , pm). Let’s aspire to
something really striking.
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Definition 2.11 (Stopping Rule Principle, SRP). In a sequential ex-
periment Eτ , Ev

(
Eτ , (x1, . . . , xn)

)
does not depend on the stopping

rule τ.

The SRP is nothing short of revolutionary, if it is accepted. It
implies that that the intentions of the experimenter, represented by
τ, are irrelevant for making inferences about Θ, once the observa-
tions (x1, . . . , xn) are available. Thus the statistician could proceed
as though the simplest possible stopping rule were in effect, which
is p1 = · · · = pn−1 = 1 and pn = 0, an experiment with n fixed in
advance. Obviously it would be liberating for the statistician to put
aside the experimenter’s intentions (since they may not be known
and could be highly subjective). And in fact when we are given a
sample (x1, . . . , xn) we seldom enquire about the experimenter’s
intentions and try to discover her stopping rule—so no doubt that
something like the SRP is ubiquitous in practice. But can it possibly
be justified? Indeed it can.8 8 I think this is one of the most beauti-

ful theoretical results in the whole of
Statistics.Theorem 2.12. LP→ SRP.

Proof. Let τ be an arbitrary stopping rule, and consider the out-
come (x1, . . . , xn), which I will write as x1:n for convenience. The
probability of this outcome under τ is

fτ(x1:n; θ)

= f1(x1; θ) ·
n−1

∏
j=1

pj(x1:j) f j+1(xj+1 | x1:j; θ) ·
(
1− pn(x1:n)

)
=

n−1

∏
j=1

pj(x1:j) ·
(
1− pn(x1:n)

)
× f1(x1; θ)

n

∏
j=2

f j(xj | x1:(j−1); θ)

=
n−1

∏
j=1

pj(x1:j) ·
(
1− pn(x1:n)

)
× fn(x1:n; θ).

Now observe that this equation has the form

fτ(x1:n; •) = c(x1:n) · fn(x1:n; •) c > 0. (†)

Thus the LP implies that Ev(Eτ , x1:n) = Ev(En, x1:n) where
En :=

{
Xn, Ω, fn

}
. Since the choice of stopping rule was arbi-

trary, (†) holds for all stopping rules, showing that the choice of
stopping rule is irrelevant.

SRP

LP

�� ��

//

OO

CP

��
WIP ∧

OO

WCP

DP ∧

OO

TP

To illustrate the SRP, consider the following example from
Basu (1975, p. 42). Four different coin-tossing experiments (with
some finite limit on the number of tosses) have the same outcome
x = (T,H,T,T,H,H,T,H,H,H):

E1 Toss the coin exactly 10 times;

E2 Continue tossing until 6 heads appear;

E3 Continue tossing until 3 consecutive heads appear;

E4 Continue tossing until the accumulated number of heads exceeds
that of tails by exactly 2.

One could easily adduce more sequential experiments which
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gave the same outcome. According to the SRP, the evidence for
the probability of heads is the same in every case. Once the se-
quence of heads and tails is known, the intentions of the original
experimenter (i.e. the experiment she thought she was doing) are
immaterial to inference about the probability of heads, and the
simplest experiment E1 can be used for inference.

* * *

The Stopping Rule Principle has become enshrined in our profes-
sion’s collective memory due to this iconic comment from L.J. Sav-
age, one of the great statisticians of the 20th century:

May I digress to say publicly that I learned the stopping rule prin-
ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, I then thought it a scandal that anyone in the profes-
sion could advance an idea so patently wrong, even as today I can
scarcely believe that some people resist an idea so patently right.
(Savage et al., 1962, p. 76)

This comment captures the revolutionary and transformative nature
of the SRP.

2.6 The Likelihood Principle in practice

Now we should pause for breath, and ask the obvious questions: is
the LP vacuous? Or trivial? In other words, Is there any inferential
approach which respects it? Or do all inferential approaches respect
it? With apologies to the few proponents of likelihood-based in-
ference,9 I will focus on Frequentist and Bayesian approaches, as 9 Mainly philosophers and physicists.

outlined in Chapter 1. In brief, the Bayesian approach satisfies the
LP, and so the LP is not vacuous. And the Frequentist approach
does not satisfy the LP, and so the LP is not trivial. The proof that
the Bayesian approach satisfies the LP will be given in Theorem 3.3.
Here I concentrate on the Frequentist approach.

Theorem 2.13. Suppose that Ev(E, x) depends on the value of f (x′; •) for
some x′ 6= x. Then Ev does not respect the LP.

Proof. Let E = {X, Ω, f } and let x′′ 6= x, x′. Define E1 = {X, Ω, f1},
where

f1(x′; •) = f (x′′; •)

f1(x′′; •) = f (x′; •)

and f1 = f elsewhere. Then

f (x; •) = f1(x; •)

but f (x′; •) 6= f1(x′; •) and so

Ev(E, x) 6= Ev(E1, x)

violating the LP.

In the Frequentist approach, algorithms are certified in terms
of their sampling distributions, and selected on the basis of their
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certification, as defined in Definition 1.1. Theorem 2.13 shows that
Frequentist inference does not respect the LP, because the sampling
distribution of the algorithm depends on values for f other than
f (x; •).

The two main difficulties with violating the LP are:

1. To reject the LP is to reject at least one of the WIP and the WCP.
Yet both of these principles seem self-evident. Therefore violat-
ing the LP is either illogical or obtuse.

2. In their everyday practice, statisticians use the CP (treating some
variables as ancillary) and the SRP (ignoring the intentions of
the experimenter). Neither of these is self-evident, but both are
implied by the LP. If the LP is violated, then they both need an
alternative justification.

Alternative formal justifications for the CP and the SRP have not
been forthcoming.

2.7 Reflections

The statistician takes delivery of an outcome x. Her standard
practice, as mandated by our profession, is to assumes the truth of a
statistical model E, and then turn (E, x) into an inference about the
true value of the parameter Θ. As remarked several times already
(see Chapter 1), this is not the end of her involvement, but it is a
key step, which may be repeated several times, under different
notions of the outcome and different statistical models. This chapter
concerns this key step: how she turns (E, x) into an inference
about Θ.

Whatever inference is required, we assume that the statistician
applies an algorithm to (E, x). In other words, her inference about
Θ is not arbitrary, but transparent and reproducible—this is hardly
controversial, because anything else would be non-scientific. Fol-
lowing Birnbaum, the algorithm is denoted ‘Ev’. The question now
becomes: how does she choose her ‘Ev’?

This chapter does not explain how to choose ‘Ev’; instead it
describes some properties that ‘Ev’ might have. Some of these prop-
erties are self-evident, and to violate them would be hard to justify
to an auditor. These properties are the DP (Definition 2.2), TP (Defi-
nition 2.3), and WCP (Definition 2.5). Other properties are not at all
self-evident; the most important of these are the LP (Definition 2.6),
the CP (Definition 2.9), and the SRP (Definition 2.11). These not-self-
evident properties would be extremely attractive, were it possible
to justify them. And as we have seen, they can all be justified as
logical deductions from the properties that are self-evident. This is
the essence of Birnbaum’s Theorem (Theorem 2.7).

For over a century, statisticians have been proposing methods
for selecting algorithms for ‘Ev’, independently of this strand of
research concerning the properties that such algorithms ought
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to have (remember that Birbaum’s Theorem was published in
1962). Bayesian inference, which turns out to respect the LP, is
compatible with all of the properties given above, but Frequentist
inference, which turns out to violate the LP, is not. The two main
consequences of this violation are described in Section 2.6.

Now it is important to be clear about one thing. Ultimately, an
inference is a single element in the space of ‘possible inferences
about Θ’. An inference cannot be evaluated according to whether
or not it satsfies the LP. What is being evaluated in this chapter
is the algorithm, the mechanism by which E and x are turned
into an inference. It is quite possible that statisticians of quite
different persuasions will produce effectively identical inferences
from different algorithms. For example, if asked for a set estimate
of Θ, a Bayesian statistician might produce a 95% High Density
Region, and a Frequentist statistician a 95% confidence set, but
they might be effectively the same set. But it is not the inference
that is the primary concern of the auditor: it is the justification for
the inference, among the uncountable other inferences that might
have been made but weren’t. The auditor checks the ‘why’, before
passing the ‘what’ on to the client.

So the auditor will ask: why do you choose algorithm ‘Ev’? The
Frequentist statistician will reply, “Because it is a 95% confidence
procedure for Θ, and, among the uncountable number of such
procedures, this is a good choice [for some reasons that are then
given].” The Bayesian statistician will reply “Because it is a 95%
High Posterior Density region for Θ for prior distribution π, and
among the uncountable number of prior distributions, π is a good
choice [for some reasons that are then given].” Let’s assume that
the reasons are compelling, in both cases. The auditor has a follow-
up question for the Frequentist but not for the Bayesian: “Why
are you not concerned about violating the Likelihood Principle?”
A well-informed auditor will know the theory of the previous
sections, and the consequences of violating the LP that are given
in Section 2.6. For example, violating the LP is either illogical or
obtuse—neither of these properties are desirable in an applied
statistician.

To be frank I do not have a good answer to this question, which
is why I would choose not to violate the LP, in the way that I choose
‘Ev’. However, in the spirit of fair play I will suggest two possibili-
ties.10 10 Another possibility to add to these

two might be “I’m not interested
in principles, I let the data speak
for itself.” This person would suit a
client who wanted an illogical and
unprincipled data analyst; or “reckless
and treacherous”, according to Alfred
Marshall, writing in 1885 (Stigler, 2016,
p. 202). If you are this person, you can
probably charge a lot of money.

First, the Frequentist might reply, “Because this is how we do
things in (say) Social Psychology”, i.e. an appeal to current practice.
This answer is contrary to the scientific norm of scepticism, and
may upset the client, who thought he was paying for a scientist.
The counter-argument is that ‘science is what scientists do’, which
is a naturalistic as opposed to normative view of science (see,
e.g., Ziman, 2000). Under the naturalistic view, violating the LP is
scientific as long as it is the standard practice among the soi-disant
scientists in Social Psychology. Personally, I don’t think this excuses
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these scientists from having a compelling reason for violating the
LP (e.g., explaining why they are neither illogical nor obtuse). But
apparently most Social Psychologists disagree with me, or else they
are ignorant of the LP and its implications.

Second, the Frequentist might reply “Because it is important to
me that I control my error rate over the course of my career”, which
is incompatible with the LP. In other words, the statistician ensures
that, by always using a 95% confidence procedure, the true value
of Θ will be inside at least 95% of her confidence sets, over her
career. This is a very interesting answer, revealing the statistician’s
egocentricity in putting her career error rate before the needs of
her current client. I can just about imagine a client demanding “I
want a statistician who is right at least 95% of the time”. Personally,
though, I would advise a client against this, and favour instead
a statistician who is concerned not with her career error rate, but
rather with the client’s particular problem.





3
Statistical Decision Theory

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2017.

3.1 Introduction

The basic premise of Statistical Decision Theory is that we want to
make inferences about the parameter of a family of distributions
(see section 1.3). So the starting point of this chapter is a model for
the observables Y ∈ Y of the general form

E =
{
Y, Ω, f

}
,

just as in chapter 1 and chapter 2. The value f (y; θ) denotes the
probability that Y = y under family member θ ∈ Ω, where θ is
the parameter, and Ω is the parameter space. I will stick with my
convention that Y is countable and Ω is uncountably infinite. I will
assume throughout this chapter that f (y; θ) is easy to evaluate (see
section 1.2).

We accept as our working hypothesis that E is true (see sec-
tion 1.1), so that inference is learning about Θ, the true value of
the parameter. More precisely, we would like to understand how
to construct the ‘Ev’ function from chapter 2, in such a way that it
reflects our needs, which will vary from application to application.
Statistical Decision Theory allows us to select an ‘Ev’ which is suit-
able for the type of inference we want to make, and which reflects
the consequence of making a poor inference.

The set of possible inferences is termed the action set, A, with
typical element a. The consequence of making a poor inference is
specified as the loss function L : A×Ω → R, with larger values
indicating worse consequences. Thus L(a, θ) is the loss incurred by
the statistician (or her client) if action a is taken and Θ turns out
to be θ. I will assume, as is natural, that L is bounded, but many
results below also hold in the more general case.

Before making her choice of action, the statistician will observe
y, a value for Y. Her choice should be some function of the value
y, and this is represented as a decision rule, δ : Y → A. As we are
taking the model E as given, δ(y) in this chapter is the analogue of
Ev(E, y) from chapter 2.

The three main types of inference about Θ are (i) point estima-
tion, (ii) set estimation, and (iii) hypothesis testing. It is a great
conceptual and practical simplification that Statistical Decision
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Theory distinguishes between these three types simply according to
their action sets, which are:

Type of inference Action set A

Point estimation The parameter space, Ω. See section 3.5.

Set estimation The set of all subsets of Ω, denoted 2Ω. See
section 3.6.

Hypothesis testing A specified partition of Ω, denoted H below.
See section 3.7.

All three of these types of inference are easily adapted to spec-
ified functions of Θ, say g(Θ). Thus point estimation would have
A = gΩ; set estimation would have A = 2gΩ, and hypothesis testing
would have A = some partition of gΩ. For example, if θ = (θ1, θ2)

but θ2 is nuisance parameter, then g(θ) = θ1. In point estimation,
A = Ω1, and L(a, θ) = L1(a, θ1), where θ1 is the value of Θ1, and
a ∈ Ω1 is the point estimate of Θ1.

The next three sections develop some general results for Statisti-
cal Decision Theory, applicable to all types of inference, and then
the later sections consider each of the three types in more detail.

3.2 Bayes rules

In a Bayesian approach, Θ is treated as a random variable, and the
model E is augmented by a prior probability density function (PDF)
π, for which P(Θ ∈ S) =

∫
θ∈S π(θ)dθ for any well-behaved S ⊂ Ω;

see section 1.5. I will write the joint distribution of (Y, Θ) as

p(y, θ) = f (y; θ)π(θ).

From this joint distribution, we can also calculate, as needed, the
marginal distribution p(y) and the posterior distribution p(θ | y); the
latter using Bayes’s theorem.

Definition 3.1 (Bayes rule). Let D be the set of all possible decision
rules. The decision rule δ∗ is a Bayes rule exactly when

E{L(δ∗(Y), Θ)} ≤ E{L(δ(Y), Θ)}

for all δ ∈ D.

The value E{L(δ(Y), Θ)} is termed the Bayes risk of decision rule
δ, and is always well-defined under the condition that L is bounded.
Therefore a Bayes rule is any decision rule which minimizes the
Bayes risk, for some action set, loss function, model, and prior
distribution. There is a justly famous result which gives the explicit
form for a Bayes rule.

Theorem 3.2 (Bayes Rule Theorem, BRT). If A is finite, then a Bayes
rule exists1 and satisfies δ∗ = δ̃, where 1 Finiteness of A ensures existence.

Similar but more general results are
possible, but they require tedious and
distracting topological conditions to
ensure that a minimum obtains within
D.

δ̃(y) := argmin
a∈A

E{L(a, Θ) |Y = y}. (3.1)
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Proof. I will show that E{L(δ(Y), Θ)} ≥ E{L(δ̃(Y), Θ)} for all
δ ∈ D; i.e. that δ̃ minimises the Bayes risk. Let δ be arbitrary. Then

E{L(δ(Y), Θ)} =
∫

∑ y L(δ(y), θ) p(y, θ)dθ

= ∑ y

∫
L(δ(y), θ)p(θ | y)dθ · p(y)

≥ ∑ y min
a

{∫
L(a, θ)p(θ | y)dθ

}
· p(y) as p(y) ≥ 0

= ∑ y

∫
L(δ̃(y), θ)p(θ | y)dθ · p(y) from (3.1)

=
∫

∑ y L(δ̃(y), θ) p(y, θ)dθ

= E{L(δ̃(Y), Θ)}.

This astounding result indicates that the minimization of ex-
pected loss over the space of all functions from Y to A can be
achieved by the pointwise minimization over A of the expected
loss conditional on Y = y. It converts an apparently intractable
problem into a simple one.

The next result will not be a surprise for those who have read
chapter 2.

Theorem 3.3. Bayes rules respect the Likelihood Principle (LP, see
Theorem 2.6).

Proof. Let E1 = {Y1, Ω, f1} and E2 = {Y2, Ω, f2} be different models
with the same parameter Θ. Because they have the same parameter,
they have the same prior distribution π. By Bayes’s theorem,

p1(θ | y1) ∝ f1(y1; θ)π(θ)

p2(θ | y2) ∝ f2(y2; θ)π(θ)

where the missing multiplicative constants are p1(y1)
−1 and

p2(y2)
−1, respectively. Now suppose that y1, y2 satisfy

f1(y1; •) = c(y1, y2) · f2(y2; •),

as in the condition for the LP. I will show that this implies δ∗1 (y1) = δ∗2 (y2),
as required by the LP. By the Bayes Rule Theorem (Theorem 3.2),

δ∗1 (y1) = argmin
a

E1{L(a, Θ) |Y1 = y1}

= argmin
a

∫
L(a, θ) · f1(y1; θ)π(θ)dθ

= argmin
a

∫
L(a, θ) · c(y1, y2) f2(y2; θ)π(θ)dθ

= argmin
a

∫
L(a, θ) · f2(y2; θ)π(θ)dθ

= argmin
a

E2{L(a, Θ) |Y2 = y2}

= δ∗2 (y2).

To hark back to the analysis in chapter 2, if your inference (i.e.
your decision rule) does not respect the LP then you are either illog-
ical or obtuse—please excuse me for being blunt. So Theorem 3.3 is
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a good reason for selecting a Bayes rule as your decision rule. You
can also be sure that your decision rule respects the Conditionality
Principle (CP, Theorem 2.9) and the Stopping Rule Principle (SRP,
Theorem 2.11). To assert the contrapositive, if your decision rule
does not respect the LP, CP, and SRP, then it cannot be a Bayes rule.

3.3 Admissible rules

As discussed in section 1.4, Frequentist statisticians are averse
to prior distributions. But it is not possible to construct Bayes
rules without them, and so Frequentist statisticians need another
approach to selecting their decision rule for some action set, loss
function, and model.

The accepted approach is to narrow the set of possible decision
rules by ruling out those that are obviously bad. Define the risk
function for rule δ as

R(δ, θ) := E{L(δ(Y), θ); θ} = ∑ y L(δ(y), θ) f (y; θ). (3.2)

That is, R(δ, θ) is the expected loss from rule δ in family member θ.
A decision rule δ dominates another rule δ′ exactly when

R(δ, θ) ≤ R(δ′, θ) for all θ ∈ Ω,

with a strict inequality for at least one θ ∈ Ω. If you had both δ

and δ′, you would never want to use δ′.2 A decison rule is admissible 2 Here I am assuming that all other
considerations are the same in the
two cases: e.g. δ(y) and δ′(y) take
about the same amount of resource to
compute.

exactly when it is not dominated by any other rule; otherwise it is
inadmissible. So the accepted approach is to reduce the set of pos-
sible decision rules under consideration by only using admissible
rules.

It is hard to disagree with this approach, although one wonders
how big the set of admissible rules will be, and how easy it is to
enumerate the set of admissible rules in order to choose between
them. It turns out that this issue has a clear-cut answer.

Theorem 3.4 (Wald’s Complete Class Theorem, CCT). Let E = {Y, Ω, f },
A, and L be given. In the case where Ω is finite, a decision rule δ is admis-
sible if and only if it is a Bayes rule for some positive prior distribution
π.

The proof is given in section 3.4. There are generalisations of
this theorem to non-finite and uncountable Ω; however, the results
are highly technical. See Ferguson (1967, ch. 2), Schervish (1995,
ch. 3), Berger (1985, chs 4, 8), and Ghosh and Meeden (1997, ch. 2)
for more details and references to the original literature. In the rest
of this section, I will assume the more general result, which is that
a decision rule is admissible if and only if it is a Bayes rule, which
holds for practical purposes.

So what does the CCT say? First of all, admissible decision rules
respect the LP. This follows from the fact that admissible rules
are Bayes rules, and Bayes rules respect the LP, by Theorem 3.3.
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Insofar as we think respecting the LP is a good thing, this provides
support for using admissible decision rules, because we cannot be
certain that inadmissible rules respect the LP. Second, if you select a
Bayes rule according to some positive prior distribution π then you
cannot ever choose an inadmissible decision rule. So the CCT states
that there is a very simple way to protect yourself from choosing an
inadmissible decision rule.

But here is where you must pay close attention to logic. Suppose
that δ′ is inadmissible and δ is admissible. It does not follow that δ

dominates δ′. So just knowing of an admissible rule does not mean
that you should abandon your inadmissible rule δ′. You can argue
that although you know that δ′ is inadmissible, you do not know
of a rule which dominates it. All you know, from the CCT, is the
family of rules within which the dominating rule must live: it will
be a Bayes rule for some positive π. Statisticians sometimes use
inadmissible rules. They can argue that yes, their rule δ is or may
be inadmissible, which is unfortunate, but since the identity of the
dominating rule is not known, it is not wrong to go on using δ. Do
not attempt to explore this rather arcane line of reasoning with your
client!

3.4 The Complete Class Theorem

This section can be skipped once the previous section has been read.
It proves a very powerful result, Theorem 3.4 above, originally due
to an iconic figure in Statistics, Abraham Wald.3 The parameter 3 For his tragic story, see https://en.

wikipedia.org/wiki/Abraham_Wald.space is assumed to be finite, so write it as

Ω =
{

θ1, . . . , θk
}

.

Denote the available decision rules as δi, for i = 1, 2, . . . ; I am
assuming that the set of rules is countable, but this is without loss
of generality (we will shortly create an uncountable number of
decision rules). For each decision rule, define the risk function as

Rij := E{L(δi(Y), θj); θj}

i = 1, 2, . . .

j = 1, . . . , k.

Thus Rij is the expected loss for rule δi under parameter value θj.
I will give a blackboard proof for k = 2 which generalises to any

finite k. Call δ1, δ2, . . . the ‘pure’ rules, and R1, R2, . . . the pure risks,
where Ri = (Ri1, . . . , Rik). Panel (a) in Figure 3.4 shows a set of
pure risks when k = 2.

We must widen the set of available decision rules, to include
rules selected randomly from the pure rules according to proba-
bilities w = (w1, w2, . . . ). This is because a rule δi might not be
dominated by a pure rule but it might be dominated by a ran-
domised rule; see Figure 3.1. Let P(I = i) = wi. Then the risk of
randomised rule w is

Rwj = E
{

L(δI(Y), θj); θj
}
= ∑ i Rij · wi,

https://en.wikipedia.org/wiki/Abraham_Wald
https://en.wikipedia.org/wiki/Abraham_Wald
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by the Law of Iterated Expectation (LIE). The set of all rules, pure
and randomised, is termed the risk set, and it is the convex hull of
{R1, R2, . . . }. Every point in the risk set is an attainable risk, for a
suitable choice of w. See Panel (b) of Figure 3.4. From now on, we
can refer to ‘risks’ rather than ‘rules’.

Figure 3.1: Rule B is not dominated
by either A or δ, but it is dominated
by some randomised rules based on
A and δ, notably those with risks that
lie in the facet between A and δ within
the dashed lines.

Now consider the subset of the risk set which is admissible. A
risk is dominated if there is another risk in its ‘southwest’ quadrant.
So the only admissible risks in the risk set are on the southwest
boundary, shown in Panel (c) of Figure 3.4. We have identified the
set of admissible risks: the pure risks on the southwest boundary,
and the randomised risks which lie on the facets between the pure
risks.

Now I show that this set of admissible risks is identical to the
set of risks for Bayes rules for some positive prior probability. Fix
π = (π1, 1− π1) with 0 < π1 < 1, and consider the set of risks with
a specified Bayes risk a, i.e. the values (r1, r2) for which

a = E{L(δ(Y), Θ)} defn of Bayes risk

= E
[
E{L(δ(Y), Θ) |Θ}

]
by the LIE

= E{R(δ, Θ)} defn of risk function

=
k

∑
j=1

R(δ, θj) · πj Ω finite

= r1 · π1 + r2 · (1− π1) for k = 2.

On the panels in Figure 3.4, this is a straight line with equation

r2 =
a

1− π1
+
−π1

1− π1
r1.

This line may pass below the risk set, in which case there is no
attainable risk which has Bayes risk of a. So increase a until the
line just touches the risk set, at risk B(π) with Bayes risk b; see
Panel (d) in Figure 3.4. B(π) is the attainable risk which achieves
the minimum Bayes risk for π, i.e. it is the risk of the Bayes rule for
π. Varying π in the open interval (0, 1) and repeating the exercise
shows that the set of admissible risks and the set of risks for Bayes
rules with positive prior probability are identical.

This proof generalises to any finite k according to the Supporting
Hyperplane Theorem; see, e.g., Ferguson (1967, ch. 2) or Schervish
(1995, ch. 3).



apts lecture notes on statistical inference 33

Figure 3.4. Blackboard proof of Theorem 3.4, with Ω = {θ1, θ2}. Panel (a). The risks for a set of pure
decision rules. Panel (b). The risk set: the convex hull of the pure risks, showing all risks that are
attainable using randomised rules. Panel (c). The set of admissible risks is shown with a thick line.
Panel (d). The dashed line ‘BRa’ shows the set of risks which have Bayes risk a, for fixed probabilities
π = (π1, 1− π1), where 0 < π1 < 1. None of the risks on BRa are attainable. By increasing the Bayes
risk to b, admissible pure risk B(π) becomes attainable. B(π) is the Bayes rule for π. Changing π

changes the gradient of the dashed line, but it always just touches the set of attainable risks on the set of
admissible risks.
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3.5 Point estimation

For point estimation the action space is A = Ω, and the loss func-
tion L(a, θ) represents the (negative) consequence of choosing a as
a point estimate of Θ, when in fact Θ = θ. A point estimate of Θ is
often termed a point prediction, or just ‘prediction’.

There will be situations where a function L : Ω×Ω→ R is
fairly easy to specify. Fox example, consider the Netflix challenge.4 4 See https://en.wikipedia.org/

wiki/Netflix_Prize.Netflix wants to make a prediction a ∈ Ω = {1, 2, 3, 4, 5} for a
film that a client has not seen yet, but who will rate the film as Θ.
Netflix suffers a reputational loss (which may lead to revenue loss)
when a recommended film is rated below 5 by the client. But in fact
Netflix will only recommend films that it predicts will be 5’s, and
so its loss function is something like

L(a, θ) =

ε · (5− a) a = 1, 2, 3, 4

a− θ a = 5

where ε, which is a small positive value, is there to reflect that
Netflix wants to make recommendations. In the Netflix challenge,
the actual loss function was L(a, θ) = (a− θ)2, which either goes to
show that the people at Netflix are not very bright or, perhaps more
likely, that the entire challenge was in fact a marketing exercise.

In many cases, however, specifying the loss function presents
a challenge. Hence the need for a generic loss function which is
acceptable over a wide range of situations. A natural choice in the
very common case where Ω is a convex subset of Rd is a convex loss
function,

L(a, θ) = h(a− θ) (3.3)

where h : Rd → R is a smooth non-negative convex function
with h(0) = 0. This type of loss function asserts that small errors
are much more tolerable than large ones. One possible further
restriction would be that h is an even function.5 This would assert 5 I.e. h(x) = h(−x).

that under-prediction incurs the same loss as over-prediction. There
are many situations where an even function is not appropriate, but
in these cases a generic loss function should be replaced by a more
specific one.6 6 See, e.g., Milner and Rougier (2014),

on predicting the weights of donkeys.Proceeding further along the same lines, an even, differentiable
and strictly convex loss function can be approximated by a quadratic
loss function,

h(x) ∝ xTQ x (3.4)

where Q is a symmetric positive-definite d× d matrix. This follows
directly from a Taylor series expansion of h around 0:

h(x) = 0 + 0 + 1
2 xT∇2h(0) x + 0 + O(‖x‖4)

where the first 0 is because h(0) = 0, the second 0 is because
∇h(0) = 0 since h is minimized at x = 0, and the third 0 is because

https://en.wikipedia.org/wiki/Netflix_Prize
https://en.wikipedia.org/wiki/Netflix_Prize
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h is an even function. ∇2h is the hessian matrix of second deriva-
tives, and it is symmetric by construction, and positive definite at
x = 0, if h is strictly convex and minimized at 0.

In the absence of anything more specific the quadratic loss
function is the generic loss function for point estimation. Hence the
following result is widely applicable.

Theorem 3.5. Under a quadratic loss function, the Bayes rule for point
estimation is the conditional expectation

δ∗(y) = E(Θ |Y = y).

A Bayes rule for a point estimation is known as a Bayes estima-
tor. Note that although the matrix Q is involved in defining the
quadratic loss function in (3.4), it does not influence the Bayes es-
timator. Thus the Bayes estimator is the same for an uncountably
large class of loss functions. Depending on your point of view, this
is either its most attractive or its most disturbing feature.

Proof of Theorem 3.5. Here is a proof that does not involve differenti-
ation. The BRT (Theorem 3.2) asserts that

δ∗(y) = argmin
a∈Ω

E{L(a, Θ) |Y = y}. (3.5)

So let ψ(y) := E(Θ |Y = y). For simplicity, treat θ as a scalar. Then

L(a, θ) ∝ (a− θ)2

= (a− ψ(y) + ψ(y)− θ)2

= (a− ψ(y))2 + 2(a− ψ(y))(ψ(y)− θ) + (ψ(y)− θ)2.

Take expectations conditional on Y = y to get

E{L(a, Θ) |Y = y} ∝ (a− ψ(y))2 +E{(ψ(y)− θ)2 |Y = y}, (†)

where the cross-product term is zero. Only the first term contains a,
and this term is minimized over a by setting a = ψ(y), as was to be
shown.

The extension to vector θ with loss function (3.4) is straight-
forward, but involves more ink. It is crucial that Q in (3.4) is
positive definite, because otherwise the first term in (†), which
becomes (a− ψ(y))TQ (a− ψ(y)), is not minimized if and only if
a = ψ(y).

Now apply the CCT (Theorem 3.4) to this result. For quadratic
loss, a point estimator for θ is admissible if and only if it is the
conditional expectation with respect to some positive prior distribu-
tion π.7 Among the casualties of this conclusion is the Maximum 7 This is under the conditions of

Theorem 3.4, or with appropriate
extensions of them in the non-finite
cases.

Likelihood Estimator (MLE),

θ̂(y) := arg max
θ∈Ω

f (y; θ).

Stein’s paradox showed that under quadratic loss, the MLE is not
always admissible in the case of a Multinormal distribution with
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known variance, by producing an estimator which dominated it.
This result caused such consternation when first published that it
might be termed ‘Stein’s bombshell’. See Efron and Morris (1977)
for more details, Samworth (2012) for an accessible proof, and Efron
and Hastie (2016) for the consequences. Persi Diaconis thought
this was such a powerful result that he focused on it for his brief
article on Mathematical Statistics in the The Princeton Companion to
Mathematics (Ed. T. Gowers, 2008, 1056 pages). Nevertheless, the
MLE is still the dominant point estimator in large areas of applied
statistics, even though its admissibility under quadratic loss is
questionable.

3.6 Set estimation

For set estimation the action space is A = 2Ω, and the loss function
L(a, θ) represents the (negative) consequences of choosing a ⊂ Ω as
a set estimate of Θ, when the true value of Θ is θ.

There are two contradictory requirements for set estimators of Θ.
We want the sets to be small, but we also want them to contain Θ.
There is a simple way to represent these two requirements as a loss
function, which is to use

L(a, θ) = |a|+ κ · (1− 1θ∈a) for some κ > 0 (3.6a)

where |a| is the volume of a.8 The value of κ controls the trade-off 8 Technically, Lebesgue measure, if Ω is
a convex subset of Rd.between the two requirements. If κ ↓ 0 then the Bayes rule is the

empty set, for all y. If κ ↑ ∞ then the Bayes rule is Ω, for all y. For
κ in-between, the Bayes rule will depend on beliefs about Y and the
value y. Theorem 3.6 below continues to hold for the much more
general set of loss functions

L(a, θ) = g(|a|) + h(1− 1θ∈a) (3.6b)

where g is non-decreasing and h is strictly increasing. This is a
large set of loss functions, which should satisfy most clients who do
not have a specific loss function already in mind.

For point estimators there was a simple characterisation of
the Bayes rule for quadratic loss functions (Theorem 3.5). For
set estimators the situation is not so simple. However, for loss
functions of the form (3.6) there is a simple necessary condition for
a rule to be a Bayes rule. A set a ⊂ Ω is a level set of the posterior
distribution exactly when a =

{
θ : p(θ | y) ≥ k

}
for some k.

Theorem 3.6. If δ∗ : Y → 2Ω is a Bayes rule for the loss function in
(3.6a), then it is a level set of the posterior distribution.

Proof. For fixed y, I show that if a is not a level set of the posterior
distribution, then there is an a′ 6= a which has a smaller expected
loss; hence δ∗(y) 6= a according to the Bayes Rule theorem (BRT,
Theorem 3.2).

First, note that

E{L(a, Θ) |Y = y} = |a|+ κ ·P(Θ 6∈ a |Y = y). (†)
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Now suppose that a is not a level set of p(θ | y). In that case
there is a θ ∈ a and a θ′ 6∈ a for which p(θ′ | y) > p(θ | y). Let
a′ = a ∪ dθ′ \ dθ.9 Then |a′| = |a|, but 9 Here, dθ is the tiny region of Ω

around θ, and dθ′ is the tiny region of
Ω around θ′, for which |dθ| = |dθ′|.P(Θ 6∈ a′ |Y = y) < P(Θ 6∈ a |Y = y).

Thus
E{L(a′, Θ) |Y = y} < E{L(a, Θ) |Y = y}

from (†), showing that δ∗(y) 6= a.

Now relate this result to the CCT (Theorem 3.4). First, Theo-
rem 3.6 asserts that δ being a level set of the posterior distribution is
necessary (but not sufficient) for δ to be a Bayes rule for loss func-
tions of the form (3.6). Second, the CCT asserts that being a Bayes
rule is necessary (but not sufficient) for δ to be admissible.10 So be- 10 Necessary but not sufficient because

being a Bayes rule AND having a
positive prior distribution is equivalent
to being admissible by the CCT, so
being a Bayes rule without a condition
on the prior distribution is necessary
but not sufficient. As before, terms
and conditions apply in the non-finite
cases.

ing a level set of a posterior distribution for some prior distribution
π (which is not allowed to depend on y) is a necessary condition for
being admissible under (3.6).

Now no one actually has (3.6) as their loss function; κ is a very
inaccessible quantity. Eq. (3.6) is a generic loss function designed to
help understand the features of a useful set estimator. Bayesian set
estimators are usually level 95% high posterior density (HPD) regions.
This is the level set of the posterior distribution which contains 95%
of the posterior probability; other levels are also used.11 So HPD 11 HPD regions have the useful prop-

erty of being nested for different
levels.

regions satisfy the necessary condition for being a set estimator for
the generic loss function (3.6).

Frequentist set estimators achieve a similar outcome if they are
level sets of the likelihood function f (y; •), because the posterior
distribution is proportional to the likelihood function under a
uniform prior distribution.12 Frequentists do not need to actually 12 Or an almost-uniform prior dis-

tribution, in the case where Ω is
unbounded, because the prior distribu-
tion will have to taper or be truncated
in order to integrate to 1 over Ω.

adopt a unform prior distribution: they only need to point out that
the uniform prior distribution ensures the admissibility of their
‘level-sets of the likelihood function’ estimator for the generic loss
function (3.6), via the CCT.

3.7 Hypothesis tests

For hypothesis tests, the action space is a partition of Ω, denoted

H :=
{

H0, H1, . . . , Hd
}

.

Each element of H is termed a hypothesis; it is traditional to number
the hypotheses from zero, where H0 is termed the null hypothesis.
The loss function L(Hi, θ) represents the (negative) consequences
of choosing element Hi, when the true value of Θ is θ. It would be
usual for the loss function to satisfy

θ ∈ Hi =⇒ L(Hi, θ) = min
i′

L(Hi′ , θ)

on the grounds that an incorrect choice of element should never
incur a smaller loss than the correct choice.
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There is one case where we have a complete theory of Bayes/ad-
missible rules. Let Ω = {θ0, θ1}, with Hi = {θi}, for which the loss
function will have the form

L θ0 θ1

H0 0 `1

H1 `0 0

with `0, `1 > 0. Then it is straightforward to show that the Bayes
rule for choosing between H0 and H1 has the form

f (y; θ0)

f (y; θ1)


< c choose H1

= c toss a coin

> c choose H0

(3.7)

where c = (π1/π0) · (`1/`0). Thus the CCT states that a decision
rule is admissible if and only if it has the form in (3.7) for some
c > 0.

In situations more complicated than this, it is extremely chal-
lenging and time-consuming to specify a loss function. And yet
statisticians would still like to choose between hypotheses, in de-
cision problems whose outcome does not seem to justify the effort
required to specify the loss function.13 13 Just to be clear, important decisions

should not be based on cut-price
procedures: an important decision
warrants the effort required to specify
a loss function.

There is a generic loss function for hypothesis tests, but it is
hardly defensible. The 0-1 (’zero-one’) loss function is

L(Hi, θ) = 1− 1θ∈Hi ,

i.e., zero if θ is in Hi, and one if it is not (see Fig. 3.2). Its Bayes rule
is to select the hypothesis with the largest posterior probability. It
is hard to think of a reason why the 0-1 loss function would ap-
proximate a wide range of actual loss functions, unlike in the cases
of generic loss functions for point estimation and set estimation.
This is not to say that it is wrong to select the hypothesis with the
largest posterior probability; only that the 0-1 loss function does not
provide a very compelling reason.

θ

L(H3, θ)

H1 H3 H4 H5

0

1

Figure 3.2: Zero-one loss function.

* * *
There is another approach which has proved much more popular.

In fact, it is the dominant approach to hypothesis testing. This is to
co-opt the theory of set estimators, for which there is a defensible
generic loss function (see section 3.6). The statistician can use her
set estimator δ : Y→ 2Ω to make at least some distinctions between
the members of H, on the basis of the value of the observable, yobs:

• ‘Accept’ Hi exactly when δ(yobs) ⊂ Hi,

• ‘Reject’ Hi exactly when δ(yobs) ∩ Hi = ∅,

• ‘Undecided’ about Hi otherwise.

Note that these three terms are given in scare quotes, to indicate
that they acquire a technical meaning in this context. We do not use
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the scare quotes in practice, but we always bear in mind that we
are not “accepting Hi” in the vernacular sense, but simply asserting
that δ(yobs) ⊂ Hi for our particular choice of δ.

In order to see how this approach plays out, we need to dis-
tinguish three types of hypothesis. The traditional distinction is
between simple hypotheses, where Hi = {θi}, a single element of Ω,
and composite hypotheses, where Hi comprises more than a single
element of Ω. Within composite hypotheses, though, we have degen-
erate hypotheses, which have zero volume in Ω, and non-degenerate
hypotheses, which have positive volume; simple hypotheses always
have zero volume. So here is the picture:

Simple

**
Hypotheses

77

''

Degenerate (zero volume)

Composite

44

**
Non-degenerate (positive volume).

Obviously, it is effectively impossible to put a set inside a degen-
erate hypothesis, and so it is effectively impossible to accept a
degenerate hypothesis using a set estimator—it is only possible
reject it, or to be undecided.

To illustrate, suppose that the model is

E =
{
R, (µ, σ2) ∈ R×R++, f

}
where f is the Normal probability density function (see Fig. 3.3).
H1 : {µ = 0, σ2 = 1} would be a simple hypothesis; H2 : {µ = 0}
would be a composite degenerate hypothesis, and H3 : {µ > 0}
would be a composite non-degenerate hypothesis. It is possible
to reject or be undecided about all three hypotheses, but it is only
possible to accept H3. Some statistics teachers seem to be confused
about this, asserting that “it is never possible to accept the null
hypothesis”, or similar. This is not true in general, but it is true in
the special case where the null hypothesis is degenerate (as is often
the case in practice).

µ

σ2

0

● H1

H2

H3

Figure 3.3: Different types of hy-
pothesis. H1 : µ = 0, σ2 = 1 is simple;
H2 : µ = 0 is composite but den-
generate; H3 : µ > 0 is composite and
non-degenerate.

This set-estimator approach to hypothesis testing seems quite
clear-cut, but we must end on two cautions. First, the statistician
has not solved the decision problem of choosing an element of
H. She has solved a different problem. Based on a set estimator,
she may reject H0 on the basis of yobs, but that does not mean she
should proceed as though H0 is false. This would require her to
solve the correct decision problem, for which she would have to
supply a loss function.

Second, in many situations, a hypothesis test is only superficially
the right approach: attractive because of its simplicity, but limited
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for the same reason. For example, suppose that H0 : {µ ≤ 0} and
H1 : {µ > 0}, where a positive value of µ indicates that a new type
of drug does more good than harm. One could accept H1 and yet
the set estimate could be pressed close up against the line µ = 0
without touching it, or one could be undecided about H1 and yet
most of the set estimate could be much larger than µ = 0, with
only a small tail crossing over. It is excessively crude to reduce a
set estimate to a discrete choice between elements of H, and for this
reason many statisticians have never done a hypothesis test.14 This 14 Including me, since I became a

proper statistician.is not a new revelation. Over fifty years ago, Edwards et al. (1963,
p. 213) wrote

No aspect of classical statistics has been so popular with psycholo-
gists and other scientists as hypothesis testing, though some classical
statisticians agree with us that the topic has been overemphasized.
A statistician of great experience told us, “I don’t know much about
tests, because I have never had occasion to use one.”

Plus ça change, as they say.
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This chapter is a continuation of Chapter 3, and the same condi-
tions hold; re-read the introduction to Chapter 3 if necessary. As
usual, the model is

{
Y, Ω, f

}
.

4.1 Confidence procedures and confidence sets

Definition 4.1 (Confidence procedure). C : Y→ 2Ω is a level-(1− α)

confidence procedure exactly when

P{θ ∈ C(Y); θ} ≥ 1− α for all θ ∈ Ω.

If the probability equals (1− α) for all θ, then C is an exact level-
(1− α) confidence procedure.1 1 Exact is a special case. But when it

necessary to emphasize that C is not
exact, the term ‘conservative’ is used.The value P{θ ∈ C(Y); θ} is termed the coverage of C at θ. Thus a

95% confidence procedure has coverage of at least 95% for all θ, and
an exact 95% confidence procedure has coverage of exactly 95% for
all θ.

It is helpful to distinguish between the confidence procedure
C, which is a function of y, and the result when C is evaluated at
the observations yobs, which is a set in Ω. I like the terms used in
Morey et al. (2016), which I will also adapt to p-values in Defini-
tion 4.5.

Definition 4.2 (Confidence set). C(yobs) is a level-(1− α) confidence
set exactly when C is a level-(1− α) confidence procedure.

So a confidence procedure is a function, and a confidence set
is a set. If Ω ⊂ R and C(yobs) is convex, i.e. an interval, then
a confidence set (interval) is represented by a lower and upper
value. We should write, for example, “using procedure C, the 95%
confidence interval for θ is [0.78, 0.85]”, inserting “exact” if the
confidence procedure C is exact.

* * *

The challenge with confidence procedures is to construct one
with a specified level (look back to Section 1.4). You could propose
an arbitrary C : Y→ 2Ω, and then laboriously compute the coverage
for every θ ∈ Ω. At that point you would know the level of C as a
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confidence procedure, but it is unlikely to be 95%; adjusting C and
iterating this procedure many times until the minimum coverage
was equal to 95% would be exceedingly tedious. So we need to
go backwards: start with the level, e.g. 95%, then construct a C
designed to have this level.

Definition 4.3 (Family of confidence procedures). C : Y× [0, 1]→ 2Ω

is a family of confidence procedures exactly when C(• ; α) is a level-
(1− α) confidence procedure for every α ∈ [0, 1]. C is a nesting
family exactly when α < α′ implies that C(y; α) ⊃ C(y; α′).

4.2 Significance procedures, and duality

Before defining a significance procedure, we need some additional
concepts. Let X and Y be two scalar random quantities. Then X
stochastically dominates Y exactly when

P(X ≤ v) ≤ P(Y ≤ v) for all v ∈ R.

Visually, the distribution function for X is never to the left of the
distribution function for Y.2 Although it is not in general use, I 2 Recollect that the distribu-

tion function of X has the form
FX(x) := P(X ≤ x) for x ∈ R.

define the following term.

Definition 4.4 (Super-uniform). The random quantity X is super-
uniform exactly when it stochastically dominates a standard uni-
form random quantity, i.e.

P(X ≤ u) ≤ u for all u ∈ [0, 1].

Now we can define a significance procedure: note the similari-
ties with the definition of a confidence procedure, which are not
coincidental.

Definition 4.5 (Significance procedure).

1. p : Y→ R is a significance procedure for θ0 ∈ Ω exactly when p(Y)
is super-uniform under θ0. If p(Y) is uniform under θ0, then p is
an exact significance procedure for θ0.

2. p(yobs) is a significance level or p-value for θ0 exactly when p is a
significance procedure for θ0.

3. p : Y×Ω→ R is a family of significance procedures exactly when
p(• ; θ0) is a significance procedure for θ0, for every θ0 ∈ Ω.

With this definition, the punchline is easy to anticipate.
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Theorem 4.6 (Duality theorem).

1. Let p be a family of significance procedures. Then

C(y; α) :=
{

θ ∈ Ω : p(y; θ) > α
}

is a nesting family of confidence procedures.

2. Conversely, let C be a nesting family of confidence procedures. Then

p(y; θ0) := inf
{

α : θ0 6∈ C(y; α)
}

is a family of significance procedures.

If either is exact, then the other is exact as well.

Proof.
Proof of (1). It is clear that C is nesting. So we need to show that

P{θ ∈ C(Y; α); θ} ≥ 1− α for all θ ∈ Ω. So let θ be arbitrary, and
then:

P{θ ∈ C(Y; α); θ} = P{p(Y; θ) > α; θ}
= 1−P{p(Y; θ) ≤ α; θ}
= 1− (≤ α) p super-uniform for all θ

≥ 1− α

as needed to be shown. If p is exact, then the inequality is replaced
by an equality, and hence C is exact as well.

Proof of (2). We need to show that p(Y; θ0) is super-uniform for
all θ0 ∈ Ω. The crucial insight is that

inf
{

α : θ0 6∈ C(y; α)
}
≤ u ⇐⇒ θ0 6∈ C(y; u).

This follows by the nesting property. Here I am finessing the issue
of the boundary of C by assuming that if α∗ := inf{α : θ0 6∈ C(y; α)},
then θ0 6∈ C(y; α∗). So let θ0 and u ∈ [0, 1] be arbitrary, and then

P{p(Y; θ0) ≤ u; θ0} = P{θ0 6∈ C(Y; u); θ0} ≤ u

because C(• ; u) is a level-(1− u) confidence procedure. Hence
p is super-uniform, as needed to be shown. If C is exact, then
the inequality is replaced by an equality, and hence p is exact as
well.

Theorem 4.6 shows that confidence procedures and significance
procedures are two sides of the same coin. If we have a way of
constructing families of confidence procedures then we have a way
of contructing families significance procedures, and vice versa. If
we have a good way of constructing confidence procedures then
(presumably, and in principle) we have a good way of constructing
significance procedures. This is helpful because, as Section 4.3 will
show, there are an uncountable number of families of significance
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procedures, and so there are an uncountable number of families of
confidence procedures. Naturally, in both these cases, almost all of
the possible procedures are useless for our inference. So just being
a confidence procedure, or just being a signifiance procedure, is
never enough. We need to know how to make good choices.

4.3 Families of significance procedures

Here is a very general way to construct a family of significance pro-
cedures. Below I will show that this family is also easy to compute,
by simulation (after Theorem 4.8).

Theorem 4.7. This proof comes from Casella and Berger (2002, sec. 8.3.4).
Let t : Y→ R. Define

pt(y; θ0) := P
{

t(Y) ≥ t(y); θ0
}

.

Then pt is a family of significance procedures. If the distribution function
of t(Y) is continuous, then pt is exact.

Proof. Directly from the definition,

pt(y; θ0) = P{t(Y) ≥ t(y); θ0}
= P{−t(Y) ≤ −t(y); θ0} =: G(−t(y))

where G is the distribution function of −t(Y) under θ0. Then

pt(Y; θ0) = G(−t(Y))

which is super-uniform under θ0 according to the Probability
Integral Transform (see Section 4.7, notably Theorem 4.14). The
PIT also covers the case where the distribution function of t(Y) is
continuous, in which case pt(Y; θ0) is uniform under θ0.

So there is a family of significance procedures for each possible
function t : Y → R. Clearly only a tiny fraction of these can be
useful functions, and the rest must be useless. Some, like t(y) = c
for some constant c, are always useless. Others, like t(y) = sin(y1)

might sometimes be a little bit useful, while others, like t(y) = ∑i yi

might be quite useful—but it all depends on the circumstances.
Some additional criteria are required to separate out good from

poor choices of the test statistic t, when using the contruction in
Theorem 4.7. The most pertinent criterion is:

• Select a test statistic for which t(Y) which will tend to be larger
for decision-relevant departures from θ0.

This will ensure that pt(Y; θ0) will tend to be smaller under decision-
relevant departures from θ0; small p-values are more interesting,
precisely because significance procedures are super-uniform under
θ0.
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4.3.1 Computing p-values

Only in very special cases will it be possible to find a closed-
form expression for pt from which we can compute the p-value
pt(yobs; θ0). Instead, we can use simulation, according to the follow-
ing result (adapted from Besag and Clifford, 1989).

Theorem 4.8. For any finite sequence of scalar random quantities
X0, X1, . . . , Xm, define the rank of X0 in the sequence as

R :=
m

∑
i=1
1Xi≤X0 .

If X0, X1, . . . , Xm are exchangeable then R has a uniform distribution
on the integers 0, 1, . . . , m, and (R + 1)/(m + 1) has a super-uniform
distribution (see Definition 4.4).

Proof. By exchangeability, X0 has the same probability of having
rank r as any of the other X’s, for any r, and therefore

P(R = r) =
1

m + 1
for r = 0, 1, . . . , m (†)

and zero otherwise, proving the first claim.
To prove the second claim,3 3 Notation: bxc is the largest integer no

larger than x, termed the ‘floor’ of x.

P

{
R + 1
m + 1

≤ u
}

= P
{

R + 1 ≤ u(m + 1)
}

= P
{

R + 1 ≤ bu(m + 1)c
}

as R is an integer

=
bu(m+1)c−1

∑
r=0

P(R = r)

=
bu(m+1)c−1

∑
r=0

1
m + 1

from (†)

=
bu(m + 1)c

m + 1
≤ u,

as required.

To use this result, fix the test statistic t and define Ti := t(Yi)

where Y1, . . . , Ym iid∼ f (• ; θ0). Define

Rt(y; θ0) :=
m

∑
i=1
1−Ti≤−t(y) =

m

∑
i=1
1Ti≥t(y),

where θ0 is an argument to R because θ0 needs to be specified in
order to simulate T1, . . . , Tm. Then Theorem 4.8 implies that

Pt(y; θ0) :=
Rt(y; θ0) + 1

m + 1

has a super-uniform distribution under Y ∼ f (• ; θ0), because in this
case t(Y), T1, . . . , Tm are exchangeable. Furthermore, the Weak Law
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of Large Numbers (WLLN) implies that

lim
m→∞

Pt(y; θ0) = lim
Rt(y; θ0) + 1

m + 1

= lim
m−1{Rt(y; θ0) + 1}

m−1{m + 1}
= lim m−1Rt(y; θ0)

= P{T ≥ t(y); θ0} = pt(y; θ0).

Therefore, not only is Pt(Y; θ0) super-uniform under θ0, so that Pt

is a family of significance procedures for every m, but the limiting
value of Pt(y; θ0) as m becomes large is pt(y; θ0).

In summary, if you can simulate from your model under θ0

then you can produce a p-value for any test statistic t, namely
Pt(yobs; θ0), and if you can simulate cheaply, so that the number of
simulations m is large, then Pt(yobs; θ0) ≈ pt(yobs; θ0).

The less-encouraging news is that this simulation-based ap-
proach is not well-adapted to constructing confidence sets. Let Ct

be the family of confidence procedures induced by pt using Duality
(Theorem 4.6). We can answer the question ‘Is θ0 ∈ Ct(yobs; α)?’
with one set of m simulations. These simulations give a value
Pt(yobs; θ0) which is either larger or not-larger than α. If Pt(yobs; θ0) > α,
then θ0 ∈ Ct(yobs; α), and otherwise it is not. Clearly, though, this
is not an effective way to enumerate all of the points in Ct(yobs; α),
because we would need to do m simulations for each point in Ω.

4.4 Good choices of confidence procedures

Here is a property that a confidence procedure may or may not
have.

Definition 4.9 (Level set property, LSP). A confidence procedure C
has the level set property exactly when

C(y) =
{

θ : f (y; θ) > g(y)
}

for some g : Y→ R.

Recollect from Section 3.6 that the LSP is akin to a necessary
condition for C to be an admissible set estimator under the loss
function in (3.6), by Theorem 3.6. So under these terms, which seem
reasonable, confidence procedures without the LSP would be bad
choices.

As usual, we must ask whether the LSP is vacuous: can we
construct a family of confidence procedures with the LSP? Indeed
we can. Here is a result that has pedagogic value,4 because it can be 4 This means that you may not want

to use these confidence procedures in
practice!

used to generate an uncountable number of families of confidence
procedures, each with the LSP.

Theorem 4.10. Let h be any PMF for Y. Then

C(y; α) :=
{

θ ∈ Ω : f (y; θ) > α · h(y)
}

(4.1)

is a family of confidence procedures, with the LSP.
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Proof. Define g(y, θ) := f (y; θ)
/

h(y), which may equal ∞ if
h(y) = 0. Then the result follows immediately from Theorem 4.6
part (1), because g(Y, θ) is super-uniform for each θ:

P{ f (Y; θ)
/

h(Y) ≤ u; θ} = P{h(Y)
/

f (Y; θ) ≥ 1/u; θ}

≤
E{h(Y)

/
f (Y; θ); θ}

1/u
Markov’s inequality

≤ 1
1/u

= u.

For the final inequality, let Y(θ) :=
{

y ∈ Y : f (y; θ) > 0
}

. Then

E{h(Y)
/

f (Y; θ); θ} = ∑
y∈Y(θ)

h(y)
f (y; θ)

· f (y; θ)

= ∑
y∈Y(θ)

h(y) ≤ 1,

because h is a probability mass function.

Among the interesting choices for h, one possibility is h = f (• ; θ0),
for some θ0 ∈ Ω. Note that with this choice, the confidence set
of (4.1) always contains θ0. So we know that we can construct a
level-(1− α) LSP confidence procedure whose confidence sets
will always contain θ0, for any θ0 ∈ Ω. Two statisticians can both
construct 95% confidence sets for θ which satisfy the LSP, using
different families of confidence procedures. Yet using the approach
in Section 3.7, the first statistician may reject the null hypothesis
that H0 : Θ = θ0, and the second statistician may fail to reject it,
for any θ0 ∈ Ω. This does not fill one with confidence about using
confidence procedures for hypothesis tests.

Actually, the situation is not as grim as it seems. Markov’s
inequality is very slack, and so the coverage of the family of con-
fidence procedures defined in Theorem 4.10 is likely to be much
larger than (1− α), e.g. much larger than 95%.

For any confidence procedure, the diameter of C(y) can grow
rapidly with its coverage.5 In fact, the relation must be extrememly 5 The diameter of a set in a metric

space such as Euclidean space is the
maximum of the distance between two
points in the set.

convex when coverage is nearly one, because, in the case where
Ω = R, the diameter at coverage = 1 is unbounded. So an increase
in the coverage from, say 95% to 99%, could easily correspond to a
doubling or more of the diameter of the confidence procedure.

A more likely outcome in the two statisticians situation is that
Ch(y; 0.05) is large for many different choices of h, in which case no
one rejects the null hypothesis, which is not a useful outcome for
a hypothesis test. But perhaps it is a useful antidote to the current
‘crisis of reproducibility’, in which far too many null hypotheses are
being rejected in published papers.

All in all, it would be much better to use an exact family of
confidence procedures which satisfy the LSP, if one existed. And,
for perhaps the most popular model in the whole of Statistics, this
is the case. This is the Linear Model with a Normal error. I do
not cover it here; see, e.g., Wood (2017, ch. 1). This model is a very
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special case, and it is unfortunate that so many people who are
learning statistics have their intuition shaped by it.

4.5 Generalizations

So far, confidence procedures and significance procedures have
been defined with respect to a point θ0 ∈ Ω. Often, though, we
require a more general treatment, where a confidence procedure
is defined for some g : θ 7→ φ, where g may not be bijective; or
where a significance procedure is defined for some Ω0 ⊂ Ω, where
Ω0 may not be a single point. These general treatments are always
possible, but the result is often very conservative. As discussed at
the end of Section 4.4, conservative procedures are formally correct
but they can be practically useless.

4.5.1 Marginalization of confidence procedures

Suppose that g : θ 7→ φ is some specified function, and we would
like a confidence procedure for φ. If C is a level-(1− α) confidence
procedure for φ then it must have φ-coverage of at least (1− α)

for all θ ∈ Ω. The most common situation is where Ω ⊂ Rp, and
g extracts a single component of θ: for example, θ = (µ, σ2) and
g(θ) = µ.

Theorem 4.11. Suppose that g : θ 7→ φ, and that C is a level-(1− α)

procedure for θ. Then gC is a level-(1− α) confidence procedure for φ.6 6 gC :=
{

φ : φ = g(θ) for some θ ∈ C
}

.

Proof. Follows immediately from the fact that θ ∈ C(y) implies that
φ ∈ gC(y) for all y, and hence

P{θ ∈ C(Y); θ} ≤ P{φ ∈ gC(Y); θ}

for all θ ∈ Ω. So if C has θ-coverage of at least (1− α), then gC has
φ-coverage of at least (1− α) as well.

This result shows that we can derive level-(1− α) confidence
procedures for functions of θ directly from level-(1− α) confidence
procedures for θ. Furthermore, if the confidence procedure for θ

is easy to enumerate, then the confidence procedure for φ is easy
to enumerate too—just by transforming each element. But it also
shows that the coverage of such derived procedures will typically
be more than (1− α), even if the original confidence procedure is
exact: thus gC is a conservative confidence procedure. As already
noted, conservative confidence procedures can often be far larger
than they need to be: sometimes too large to be useful.

4.5.2 Generalization of significance procedures

There is a simple result which extends a family of significance
procedures over a set in Ω.
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Theorem 4.12. Let Ω0 ⊂ Ω. If p is a family of significance procedures,
then

P(y; Ω0) := sup
θ0∈Ω0

p(y; θ0)

is super-uniform for all θ ∈ Ω0.

Proof. P(y; Ω0) ≤ u implies that p(y; θ0) ≤ u for all θ0 ∈ Ω. Let
θ ∈ Ω0 be arbitrary; then, for any u ≥ 0,

P{P(Y; Ω0) ≤ u; θ} ≤ P{p(Y; θ) ≤ u; θ} ≤ u, θ ∈ Ω0,

showing that P(y; Ω0) is super-uniform for all θ ∈ Ω0.

As with the marginalization of confidence procedures, this result
shows that we can derive a significance procedure for an arbitrary
Ω0 ⊂ Ω. The difference, though, is that this is rather impractical,
because of the need—in general—to maximize over a possibly
unbounded set Ω0. As a result, this type of p-value is not much
used in practice. It is sometimes replaced by simple approximations.
For example, if the parameter is (ν, θ) then a p-value for ν0 could
be approximated by plugging-in a specific value for θ, such as the
maximum liklehood value, and treating the model as though it
were parameterized by ν alone. But this does not give rise to a well-
defined significance procedure for ν0 on the basis of the original
model. Adopting this type of approach is something of an act of
desperation, for when Theorem 4.12 is intractable. The difficulty is
that you get a number, but you do not know what it signifies.

4.6 Reflections

4.6.1 On the definitions

The first thing to note is the abundance of families of confidence
procedures and significance procedures, most of which are useless.
For example, let U be a uniform random quantity. Based on the
definition alone,

C(y; α) =

{0} U < α

Ω U ≥ α,

is a perfectly acceptable family of exact confidence procedures, and

p(y; θ0) = U

is a perfectly acceptable family of exact significance procedures.
They are both useless. This absurdity has been captured in a car-
toon, see Fig. 4.1. You cannot object that these examples are patho-
logical because they contain the auxilliary random quantity U,
because the most accessible method for computing p-values also
contains auxilliary random quantities (see Section 4.3.1). You could
object that the family of significance procedures does not have the
LSP property (Definition 4.9), which is a valid objection if you in-
tend to apply the LSP rigorously. But would you then have to insist
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Figure 4.1: From https://xkcd.com/

1132/.

that every significance procedure’s dual confidence procedure (see
Theorem 4.6) should also have the LSP?

The second thing to note is how often confidence procedures and
significance procedures will be conservative. This means that there
is some region of the parameter space where the actual coverage
of the confidence procedure is more than the nominal coverage of
(1− α). Or where the significance procedure has a super-uniform
but not uniform distribution under θ0. As shown in this chapter:

• A generic method for constructing families of confidence proce-
dures with the LSP (see Theorem 4.10) is always conservative.

• Confidence procedures for non-bijective functions of the parame-
ters are always conservative (see Theorem 4.11).

• Significance procedures based on test statistics where t(Y) is

https://xkcd.com/1132/
https://xkcd.com/1132/
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discrete are always conservative (see Theorem 4.7).

• Significance procedures for composite hypotheses are always
conservative (see Theorem 4.12).

A conservative procedure is hard to interpret. For example, you
have set α = 0.05 and the conservative confidence procedure is
delivering “at least 95% coverage”. You don’t know how much
more than 95% you are getting in the region where the true value of
the parameter might be, but you do know that the set diameter is a
strongly convex function of coverage, so your quoted set may be far
larger than one with exactly 95% coverage, if it could be found.

4.6.2 On the intepretations

The technical definition of confidence procedures and significance
procedures is daunting for the non-specialist. Here is a typical
dialogue:

Statistician: The 95% confidence interval for your parameter is
(0.78, 0.85).

Client: So that means the probability that the true value of the
parameter lies in the interval (0.78, 0.85) is 95%.

Statistician: Err, no. (0.78, 0.85) is one realization of a random
interval with the property that it will contain the true value of the
parameter at least 95% of the time, no matter what the true value
happens to be.

Client: I’m not sure that’s what I wanted.

Here is a similar dialogue for a p-value:

Statistician: The p-value for your hypothesis is 0.07.

Client: So that means the probability that the hypothesis is true is
only 7%.

Statistician: Err, no. 7% is one realization of a random quantity
with the property that its probability of being not more than 7%
under your hypothesis is not more than 7%.

Client: I’m not sure that’s what I wanted.

This second dialogue could have gone differently, if the statistician
had focused on Theorem 4.7 as the functional definition of a p-
value.

Statistician: The p-value for your hypothesis is 0.07.

Client: So that means the probability that the hypothesis is true is
only 7%.

Statistician: Err, no. It means that the probability of a value of the
test statistic [here she names the statistic] being at least as large as
the observed value under your hypothesis is not more than 7%.

Client: I’m not sure that’s what I wanted.

* * *
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It is a very common observation, made repeatedly over the last
50 years, that clients think more like Bayesians than Frequentists, as
represented by these dialogues (see, e.g., Rubin, 1984). Frequentist
statisticians have to wrestle with the issue that their clients will
likely misinterpret their results. This is bad enough for confidence
sets (see, e.g., Morey et al., 2016), but potentially disastrous for
p-values. A p-value p(y; θ0) refers only to θ0,7 making no reference 7 Or Ω0 in the more general case.

at all to other hypotheses about Θ. But a posterior probability
p(θ0 | yobs) contrasts θ0 with other values in Ω which Θ might have
taken. The two outcomes can be radically different, as first captured
in Lindley’s paradox (Lindley, 1957). To leave your client thinking
that a small value for p(yobs; θ0) has rejected Θ = θ0 on the basis of
the data yobs is irresponsible, and potentially dangerous.

4.7 The Probability Integral Transform

Here is a very elegant and useful piece of probability theory. Let
X be a scalar random quantity with realm X and distribution
function F(x) := P(X ≤ x). By convention, F is defined for all
x ∈ R. By construction, limx↓−∞ F(x) = 0, limx↑∞ F(x) = 1, F is
non-decreasing, and F is continuous from the right, i.e.

lim
x′↓x

F(x′) = F(x).

Define the quantile function

F−(u) := inf
{

x ∈ R : F(x) ≥ u
}

. (4.2)

The following result is a cornerstone of generating random quanti-
ties with easy-to-evaluate quantile functions.

Theorem 4.13 (Probability Integral Transform, PIT). Let U have a
standard uniform distribution. If F− is the quantile function of X, then
F−(U) and X have the same distribution.

Proof. Let F be the distribution function of X. We must show that

F−(u) ≤ x ⇐⇒ u ≤ F(x) (†)

because then

P{F−(U) ≤ x} = P{U ≤ F(x)} = F(x)

as required. So stare at Figure 4.2 for a while.

It is easy to check that

u ≤ F(x) =⇒ F−(u) ≤ x,

which is one half of (†). It is also easy to check that

u′ > F(x) =⇒ F−(u′) > x.

Taking the contrapositive of this second implication gives

F−(u′) ≤ x =⇒ u′ ≤ F(x),

which is the other half of (†).
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Values for x0

1

••

•

F•

x

F(x)
u

F−(u)

u′

F−(u′)

Figure 4.2: Figure for the proof of The-
orem 4.13. The distribution function F
is non-decreasing and continuous from
the right. The quantile function F− is
defined in (4.2).

Theorem 4.13 is the basis for the following result; recollect the
definition of a super-uniform random quantity from Definition 4.4.
This result is used in Theorem 4.7.

Theorem 4.14. If F is the distribution function of X, then F(X) has a
super-uniform distribution. If F is continuous then F(X) has a uniform
distribution.

Proof. Check from Figure 4.2 that F(F−(u)) ≥ u. Then

P{F(X) ≤ u} = P{F(F−(U)) ≤ u} from Theorem 4.13

≤ P{U ≤ u}
= u.

In the case where F is continuous, it is strictly increasing except on
sets which have probability zero. Then

P{F(X) ≤ u} = P{F(F−(U)) ≤ u} = P{U ≤ u} = u,

as required.
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