Lasso coefficients are sparse

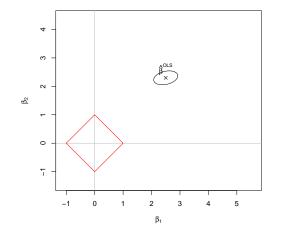


Figure: Contours of $\|\mathbf{Y} - \mathbf{X} \mathbf{\beta}\|_2^2$ are ellipses centred at $\hat{\mathbf{\beta}}^{OLS}$.

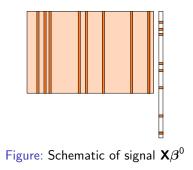
Figure: Contours of $\|\mathbf{Y} - \mathbf{X}\beta\|_2^2$ are ellipses centred at $\hat{\boldsymbol{\beta}}^{OLS}$.

Ridge regression coefficients are always non-zero

October 22, 2015 3 / 7

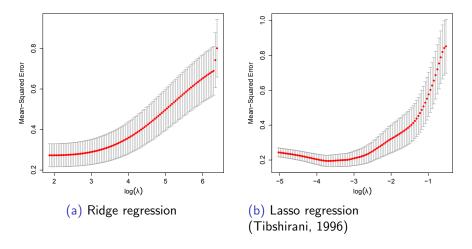
Benefits of sparse coefficients

- Typically a sparse model fits well for high-dimensional data.
- Sparse models can be easier to interpret.
- In order to predict the response for a new observation, we only need measurements of a few covariates.
- Inner product $\mathbf{x}^T \hat{\boldsymbol{\beta}}$ for new data point $\mathbf{x} \in \mathbb{R}^p$ fast to compute.

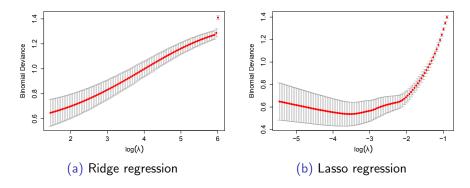


Ridge regression vs the Lasso

Gene expression data, n = 71 observations of p = 4088 predictors. Response is riboflavin production by *Bacillus subtilis*.



Prostate cancer gene expression data. 52 tumour samples, 50 normal samples (n = 102) with p = 6033 predictors.



ℓ_q balls

Consider penalty functions $\propto \|\beta\|_q = \left(\sum_{k=1}^p \beta_k^q\right)^{1/q}$ and p = 2.

Image: A matrix and a matrix

3