
Lasso coefficients are sparse
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Lasso coefficients are sparse

Figure: Contours of ‖Y − Xβ‖22 are ellipses centred at β̂
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Ridge regression coefficients are always non-zero
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Benefits of sparse coefficients

Typically a sparse model fits well for high-dimensional data.

Sparse models can be easier to interpret.

In order to predict the response for a new observation, we only need
measurements of a few covariates.

Inner product xT β̂ for new data point x ∈ Rp fast to compute.

Figure: Schematic of signal Xβ0
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Ridge regression vs the Lasso

Gene expression data, n = 71 observations of p = 4088 predictors.
Response is riboflavin production by Bacillus subtilis.
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(a) Ridge regression
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(b) Lasso regression
(Tibshirani, 1996)
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Ridge regression vs the Lasso

Prostate cancer gene expression data. 52 tumour samples, 50 normal
samples (n = 102) with p = 6033 predictors.
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(a) Ridge regression
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(b) Lasso regression
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`q balls

Consider penalty functions ∝ ‖β‖q =
(∑p

k=1 β
q
k

)1/q
and p = 2.
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