
APTS High-dimensional statistics:

Preliminary material

Rajen D. Shah
University of Cambridge
r.shah@statslab.cam.ac.uk

May 26, 2019

1 Introduction

This APTS course aims to cover a selection of important topics in the thriving area of
high-dimensional statistics. Whilst maximum likelihood estimation often o↵ers reason-
able solutions to classical statistical problems where we have many observations for a few
carefully chosen variables, the challenges of the high-dimensional setting demand radically
di↵erent approaches.

Our focus in this course will be the methods that have been introduced to address these
challenges, some of which are the most cited among all statistical methods introduced in
recent years. Rather than aiming for complete coverage of the methods of high-dimensional
statistics (which in any case would be impossible), we will focus on a few key ones to try
understand why they work, and to investigate their strengths and weaknesses. Stating and
proving theorems are a convenient and e↵ective way of building an understanding of these
methods, and this is the route we will take, though simulation studies will also be helpful
along the way.

This preliminary material goes through some of the basic mathematics and statistics
you will need to understand well in order to get the most out of the analyses we will go
through in the course. Much of this is likely to be familiar to you, but for example sections 6
and 9 may contain some material you have not seen before. We will briefly review these
two sections in the course, but it will certainly be helpful for you to have looked through
them carefully here.

1.1 Books

There are several books that cover parts of the material of the course. Two excellent ones
are listed below.
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The Elements of Statistical Learning [Hastie et al., 2001] is freely available online.
You may wish to look at chapters 3 and 17 up to the end of 17.3.2. It is slightly less
mathematical than this course but great for gaining some intuition.

Statistics for High-dimensional Data [Bühlmann and van de Geer, 2011] gives a
more in-depth treatment of parts of our course. You may wish to look initially at chapter
2. Chapters 6, 10, 11 and 13 cover the material of the course, but are much more advanced.

1.2 Notation

Here we collect some matrix and vector notation we use in this preliminary material and
throughout the course.

Given A,B ✓ {1, . . . , p}, and x 2 Rp, we will write xA for the sub-vector of x formed
from those components of x indexed by A. Similarly, we will write MA for the submatrix
of M formed from those columns of M indexed by A. Further, MA,B will be the submatrix
of M formed from columns and rows indexed by A and B respectively. For example,
x{1,2} = (x1, x2)T , M{1,2} is the matrix formed from the first two columns of M, and
M{1,2},{1,2} is the top left 2⇥ 2 submatrix of M.

In addition, when used in subscripts, we will use �j and �jk to denote {1, . . . , p} \
{j} := {j}c and {1, . . . , p} \ {j, k} := {j, k}c respectively. So for example, M�jk is the
submatrix of M that has columns j and k removed.

The matrix and vector subsetting operations will always occur first, so e.g. MT
A =

(MA)T .

2 Norms

For a d-dimensional vector v 2 Rd, its `p-norm, where p 2 [1,1) is defined to be

kvkp =
✓ dX

j=1

|vj|p
◆1/p

.

We also define the `1-norm kvk1 = maxj |vj|. We will primarily be interested in the cases
p = 1, 2,1. One can show that

(i) for a scalar t 2 R and v 2 Rd, ktvkp = |t|kvkp;

(ii) if kvkp = 0 then v = 0;

(iii) for u,v 2 Rd, ku+ vkp  kukp + kvkp.

Properties (i) and (ii) are rather clear from the definition, but showing (iii), which is
known as the triangle inequality, is more involved.
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Exercise 2.1. Show that we also have what is sometimes known as the reverse triangle
inequality, that

ku� vkp � kukp � kvkp.

Hölder’s inequality states that when p, q 2 [1,1] are such that p�1 + q
�1 = 1, where

1/1 is understood to be 0,
|vT

u|  kvkpkukq.

The case where p = q = 2 is known as the Cauchy–Schwarz inequality.

Exercise 2.2. Show that ku + vk2
2
= kuk2

2
+ 2uT

v + kvk2
2
. Further show property (iii)

above for the `2-norm using the Cauchy–Schwarz inequality.

Exercise 2.3. Prove Hölder’s inequality when p = 1, q = 1 i.e. show that

kuk1kvk1 = max
j

|uj|
X

k

|vk| � |uT
v|.

For u 2 R let us define

sgn(u) =

8
><

>:

1 if u > 0

0 if u = 0

�1 if u < 0.

With a slight abuse of notation, for v 2 Rd, also define sgn(v) = (sgn(v1), . . . , sgn(vd))T .
Note that sgn(v)Tv = kvk1.

Exercise 2.4. Show that kvk1 
p
dkvk2 when v 2 Rd.

3 Matrix algebra

The course will assume you are already familiar with the APTS Statistical Computing
module and have a thorough understanding of linear algebra. We briefly review some key
elements of this here, as well as adding some more material that will be useful for our
developments.

Any symmetric matrix M 2 Rd⇥d may be expressed in its eigendecomposition:

M = UDU
T

where U 2 Rd⇥d is an orthogonal matrix whose columns are eigenvectors of M (so U
T
U =

UU
T = I) and D is diagonal with D11 � D22 � · · · � Ddd being the corresponding

eigenvalues of M. We say such an M is positive semi-definite if uT
Mu � 0 for all u 2 Rd.

It is positive definite if uT
Mu > 0 for all u 6= 0.

Exercise 3.1. Check that kUvk2 = kvk2 for orthogonal U.
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Exercise 3.2. Show that a symmetric matrix is positive definite if and only if all its
eigenvalues are positive. Argue that a positive definite matrix is invertible.

Exercise 3.3. Show that if A 2 Rd⇥p then A
T
A is positive semi-definite.

The maximum and minimum eigenvalues, cmin(M), cmax(M), of a symmetric matrix M

obey the following.

cmax(M) = sup
v2Rd:kvk2=1

kMvk2, cmin(M) = inf
v2Rd:kvk2=1

kMvk2.

Indeed,

sup
v2Rd:kvk2=1

kMvk2 = sup
v2Rd:kvk2=1

p
vTUD2UTv

= sup
u2Rd:kuk2=1

p
uTD2u making the substitution u = U

T
v

= sup
u2Rd:kuk2=1

✓ dX

j=1

D
2

jju
2

j

◆1/2


n

sup
u2Rd:kuk2=1

( max
j=1,...,d

D
2

jjkuk22)
o1/2

by exercise 2.3

= D11 = cmax(M).

The inequality above is an equality when u has u1 = 1, uj = 0 for all j > 1.

Exercise 3.4. Write out the argument for the corresponding result for the minimum eigen-
value. Show further that for any A ✓ {1, . . . , d}, cmin(M)  cmin(MA,A)  cmax(MA,A) 
cmax(M).

The trace tr(M) of a square matrix is the sum of its diagonal entries:

tr(M) =
dX

j=1

Mjj.

If matrices A and B have dimensions such that AB and BA are valid matrix multiplica-
tions, then tr(AB) = tr(BA).

Exercise 3.5. Show that the trace of a symmetric matrix is the sum of its eigenvalues.

The singular value decomposition (SVD) is a generalisation of an eigendecomposition
of a square matrix. We can factorise any X 2 Rn⇥p into its SVD

X = UDV
T
.
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Here the U 2 Rn⇥n and V 2 Rp⇥p are orthogonal matrices and D 2 Rn⇥p has D11 � D22 �
· · · � Dmm � 0 where m = min(n, p) and all other entries of D are zero. To compute such
a decomposition typically requires O(npmin(n, p)) operations. The rth columns of U and
V are known as the rth left and right singular vectors of X respectively, and Drr is the
rth singular value.

When n > p, we can replaceU by its first p columns andD by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV

T where
U 2 Rn⇥p has orthonormal columns (but is no longer square) andD is square and diagonal.
There is an analogous version for when p > n.

4 Multivariate calculus

Given a function f : Rd ! R, we will denote the column vector of partial derivatives or
gradient vector by

@f

@x
=

@

@x
f =

✓
@f

@x1

, . . . ,
@f

@xd

◆T

.

You may be more familiar with the alternative notation rf . Check that you are happy
with the following derivatives of common functions:

@(cTx)

@x
= c

@(xT
Ax)

@x
= (A+A

T )x.

It is straightforward (but slightly tedious) to show these results by e.g. expressing x
T
Ax =P

i,j xiAijxj and di↵erentiating this with respect to xk.

Exercise 4.1. Compute

@

@�
k�k2

2
/2

@

@�
kY �X�k2

2
/2.

Of course the chain rule then also gives, for example

@(g(xT
Ax))

@x
= g

0(xT
Ax)(A+A

T )x.

Exercise 4.2. Compute
@k�k2
@�

when � 6= 0.
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5 Convexity

In recent years the fields of optimisation and statistics have grown much closer. Researchers
in many areas of statistics are now expected to have a good grasp of basic topics in convex
optimisation in particular. High-dimensional statistics is one such area, with convexity
playing a crucial role in the formulation of key methods such as the Lasso, which we will
study in detail in the course.

Here we review some basic facts about convex sets and functions, which will provide
a foundation for the more detailed treatment of convex analysis and optimisation in the
course.

A set A ✓ Rd is convex if

x,y 2 A ) (1� t)x+ ty 2 A for all t 2 (0, 1).

In words, given any two points in A, the line segment between them is contained in A.

Exercise 5.1. Show that the set of symmetric d⇥ d positive definite matrices is a convex
subset of Rd⇥d.

A function f : Rd ! R is convex if

f
�
(1� t)x+ ty

�
 (1� t)f(x) + tf(y)

for all x,y 2 Rd and t 2 (0, 1). It is strictly convex if the inequality is strict for all
x,y 2 Rd, x 6= y and t 2 (0, 1).

Exercise 5.2. Let f1, . . . , fm : Rd ! R be convex functions. Show that if c1, . . . , cm � 0,
c1f1 + · · · cmfm is a convex function. Show furthermore that if one of the functions fj is
strictly convex, then the sum above is a strictly convex function.

Exercise 5.3. Suppose f : Rd ! R is convex and A 2 Rd⇥m. Show that g : Rm ! R
defined by g(x) = f(Ax) is convex.

Exercise 5.4. Show that if a strictly convex function f has a minimiser, then it must be
unique.

Proposition 1. If f : Rd ! R is convex and di↵erentiable then

@f(x)

@x
= 0 implies that x minimises f.

Proposition 2. If f : Rd ! R is twice continuously di↵erentiable then

(i) f is convex i↵. its Hessian H(x) is positive semi-definite for all x 2 Rd
,

(ii) f is strictly convex if H(x) is positive definite for all x 2 Rd
.

Exercise 5.5. Explain why � 7! k�k2
2
is strictly convex.

Exercise 5.6. Show that if

�̂ = argmin
�2Rp

{ky �X�k2
2
+ �k�k2

2
}

then �̂ = (XT
X+ �I)�1

X
T
y.
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6 Basic tail bounds

Tail bounds are vital for the study of many modern statistical algorithms. Here we will
review the most basic of these. We begin our discussion with the simplest tail bound,
Markov’s inequality. This states that given a non-negative random variable W ,

P(W � t)  E(W )

t
.

It follows from taking expectations of both sides of the inequality t {W�t}  W . This
immediately implies that given a strictly increasing function ' : R ! [0,1) and any
random variable W ,

P(W � t) = P{'(W ) � '(t)}  E('(W ))

'(t)
,

provided '(t) > 0. Applying this with '(t) = e
↵t (↵ > 0) yields the so-called Cherno↵

bound :
P(W � t)  inf

↵>0

e
�↵tEe↵W .

Consider the case when W ⇠ N (0, �2). Recall that the moment generating function
(mgf) of W is

Ee↵W = e
↵2�2/2

. (6.1)

Thus

P(W � t)  inf
↵>0

e
↵2�2/2�↵t = e

�t2/(2�2
)
.

Note that to arrive at this bound, all we required was (an upper bound on) mgf of W (6.1).
This motivates the following definition.

Definition 1. We say a random variable W with mean µ = E(W ) is sub-Gaussian if there
exists � > 0 such that

Ee↵(W�µ)  e
↵2�2/2

for all ↵ 2 R. We then say that W is sub-Gaussian with parameter �.

The normal example above immediately gives the following result.

Proposition 3 (Sub-Gaussian tail bound). If W is sub-Gaussian with parameter � and

E(W ) = µ, then

P(W � µ � t)  e
�t2/(2�2

)
.

It is often helpful to have a tail bound on the maximum of a collection of random
variables. A simple union bound can be helpful in this regard. This states that given
events ⌦1, . . . ,⌦m,

P([m⌦j) 
X

j

P(⌦j).

Exercise 6.1. Show that if W1, . . . ,Wm are all mean-zero sub-Gaussian random variables
with common parameter �, then

P(max
j

|Wj|  2A�
p
log(m))  2m�(2A2�1)

.
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7 Linear regression

Imagine data are available in the form of observations (Yi,xi) 2 R⇥ Rp, i = 1, . . . , n, and
the aim is to infer a simple regression function relating the average value of a response, Yi,
and a collection of predictors or variables, xi. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = X�0 + ", (7.1)

where Y 2 Rn is the vector of responses; X 2 Rn⇥p is the predictor matrix (or design
matrix) with ith row x

T
i ; " 2 Rn represents random error; and �0 2 Rp is the unknown

vector of coe�cients.
Provided p ⌧ n, a sensible way to estimate �0 is by ordinary least squares (OLS). This

yields an estimator �̂
OLS

with

�̂
OLS

:= argmin
�2Rp

kY �X�k2
2
= (XT

X)�1
X

T
Y, (7.2)

provided X has full column rank (i.e. the columns of X are linearly independent so Xz = 0

if and only if z = 0).

Exercise 7.1. Show that if X has full column rank then X
T
X is invertible.

Recall that for a random vector Z 2 Rd and m 2 Rk and A 2 Rk⇥d,

E(m+AZ) = m+AE(Z)

and

Var(m+AZ) = E[{m+AZ� E(m+AZ)}{m+AZ� E(m+AZ)}T ]
= E{A(Z� EZ)(Z� EZ)TAT}
= AE{(Z� EZ)(Z� EZ)T}AT

= AVar(Z)AT
.

Exercise 7.2. Show that when E(") = 0 and Var(") = �
2
I, we have E�0,�2(�̂

OLS

) = �0

and Var�0,�2(�̂
OLS

) = �
2(XT

X)�1.

8 The multivariate normal distribution

You should already know what a univariate normal distribution is: the density is given by

f(z;µ, �2) =
1p
2⇡�2

exp{�(x� µ)2/(2�2)}
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where µ 2 R is the mean and �
2
> 0 is the variance.

We say a random variable Z 2 Rd has a d-variate normal distribution if for every t 2 Rd,
t
T
Z has a univariate normal distribution. The multivariate normal distribution is uniquely

characterised by its mean and variance. Thus we can write Z ⇠ Nd(µ,⌃) when E(Z) = µ

and Var(Z) = ⌃. As a further consequence, we have that for A,B ✓ {1, . . . , d}, ZA is
independent of ZB if and only if Cov(ZA,ZB). When ⌃ is positive definite, the density of
Z is

f(z) =
1

(2⇡)p/2det(⌃)1/2
exp

✓
� 1

2
(z� µ)T⌃�1(z� µ)

◆
.

Exercise 8.1. Show that a�ne transformations of a multivariate normal Z are also normal,
that is show that for any m 2 Rk and A 2 Rk⇥d, m + AZ ⇠ Nk(m + Aµ,A⌃A

T ) is
multivariate normal.

9 Normal conditionals

Definition 2. If X, Y and Z are random vectors with a joint density fXYZ then we say
X is conditionally independent of Y given Z, and write

X ?? Y|Z
if

fXY|Z(x,y|z) = fX|Z(x|z)fY|Z(y|z).
Here fX|Z(x|z) for example is the conditional density of X given Z. Equivalently

X ?? Y|Z () fX|YZ(x|y, z) = fX|Z(x|z).
Now let Z ⇠ Np(µ,⌃) with ⌃ positive definite. Note ⌃A,A is also positive definite for

any A.

Proposition 4.

ZA|ZB = zB ⇠ N|A|(µA +⌃A,B⌃
�1

B,B(zB � µB), ⌃A,A �⌃A,B⌃
�1

B,B⌃B,A)

Proof. Let us write ZA = MZB + (ZA � MZB) with matrix M 2 R|A|⇥|B| such that
ZA �MZB and ZB are independent, i.e. such that

Cov(ZB, ZA �MZB) = ⌃B,A �⌃B,BM
T = 0.

This occurs when we take M
T = ⌃

�1

B,B⌃B,A. Because ZA � MZB and ZB are indepen-
dent, the distribution of ZA �MZB conditional on ZB = zB is equal to its unconditional
distribution. Now

E(ZA �MZB) = µA �⌃A,B⌃
�1

B,BµB

Var(ZA �MZB) = ⌃A,A +⌃A,B⌃
�1

B,B⌃B,B⌃
�1

B,B⌃B,A � 2⌃A,B⌃
�1

B,B⌃B,A

= ⌃A,A �⌃A,B⌃
�1

B,B⌃B,A.

SinceMZB is a function of ZB, conditional on ZB = zB, it equalsMzB. Then as ZA�MZB

is normally distributed, we have the result.
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