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What this course is about?

Fitting smooth relationships to describe temporal patterns and
potential drivers (nutrients, water fleas and temperature) of water
quality in a lake.

Output from an additive model with fitted values (black line),
pink variability band and partial residuals.



What this course is about?
Fitting smooth surfaces to explain spatiotemporal variation in
river nutrient levels.

The colour on the left surface provides the average levels over
time, smoothed over space, with monitoring locations in blue. The
video on the right shows how this average pattern changes as we
move through time.



What this course is about?

Fitting relationships to appropriate quantiles to explain body
mass index (BMI) using age.



What this course is about?

Extending the previous approaches to summarise temperature
seasonal patterns across multiple Canadian weather stations.



What this course is about?

Extending the previous approaches to summarise temperature
seasonal functions for multiple Canadian weather stations.



What this course is about? - Flexible Regression

I flexibility in the mean:

Yi = f (xi ,β) + εi .

minimise
n∑

i=1

(yi − f (xi ))2.

I flexibility in the response quantile:

e.g. median regression minimise

n∑
i=1

|yi − f (xi )|

.



What this course is about? - Flexible Regression

I flexibility in the mean:

I Nonparametric regression - Chapter 2;

I (Generalised) Additive Models (GAMs) - Chapter 4

I flexibility in the response quantile:

I Quantile regression - Chapter 3;

I (Generalised) additive quantile regression - Chapter 5



What this course is about? - Flexible Regression

To help illustrate the ideas there are also 2 practical lab sheets:

I Lab 1 - nonparametric regression/quantile regression with
splines

I Lab 2 - (Generalised) Additive (quantile) Models (GAMs)

Note: The following R packages are required to work through the practical lab
material:

I gamlss

I ggplot2

I mgcv

I quantreg

I rpanel

I splines



Chapter 2 - motivation

Example 2.1 Great Barrier Reef data

Zone an indicator for the closed (1) and open (0) zones
Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position
Longitude longitude of the sampling position

Depth bottom depth
Score1 catch score 1
Score2 catch score 2



Chapter 2 - motivation

Figure 2.1: Great Barrier Reef data
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Nonparametric regression

Nonparametric regression

I Approaches for nonparametric regression

I Properties of smooth functions

I Why use splines?

I How to construct splines in 1D?

I Penalty-based approaches



2.1 Nonparametric regression

A simple nonparametric regression model has the form

Yi = f (xi ) + εi , i = 1, . . . , n

where the data (xi , yi ) are described by a smooth curve f plus
independent errors εi .

Smoothing is used to estimate f ().



2.1 Nonparametric regression

Smoothers have two main uses:

Description - to aid ‘visually’ in the exploration of a relationship
or pattern.

Estimation - to estimate the dependence of the mean of Y on
the predictor x .



2.1 Nonparametric regression

The two key questions that arise regarding the definition of a
smoother are:

I Which smoothing method should be used?

I What level of smoothing is appropriate?



2.1 Nonparametric regression

Which smoothing method should be used?

I local fitting approaches;

I spline based methods.



2.2 A local fitting approach

For example, local linear regression. Solve the least squares
problem:

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2 w(xi − x ; h)

and take as the estimate at x the value of α̂, as this defines the
position of the local regression line at the point x . The weight
function, w(xi − x ; h), is a kernel function (see preliminary
material).



2.2 A local fitting approach

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2 w(xi − x ; h)

The left plot shows an illustration of a window around a target
point, the right plot gives an example of a normal kernel density
with different values for standard deviation which would determine
the width of the window before weights tail-off to zero.



2.2.3 Local linear regression in R

A local linear regression fit for the Reef data can be obtained
using the R library sm.
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2.2.2 A local fitting approach - properties

I Sometimes computational or practical reasons can constrain
our choice of smoother.

I Expressions for bias and variance (derived in section 2.2.1)
can help us to choose between smoothing approaches.

I There is a trade-off between following the data closely (low
bias, possibly large variance) and obtaining a smooth function
(low variance, possibly large bias).



2.3 Regression splines

Example 2.3 - Which function fits the data better? - bias
versus variance (Figure 2.4)
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2.3 Regression splines

Example 2.3 - Which function fits the data better? - bias
versus variance (Figure 2.4)
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2.3 Regression splines

Example 2.3 - Which can we learn from this example?

I Difficult to do smoothing without knowing / understanding
the context.

I Family of smooth functions too rich to be able to only rely on
the data.

I Alternatives to local fitting approaches

I Splines based on truncated power series and B-splines

I Penalties or Bayesian approaches to penalise wiggliness



2.3.1 Regression splines - polynomial regression

Linear regression

E(Yi ) = β0 + β1xi for i = 1, . . . , n,

In matrix-vector notation:

E(y) = Bβ with y = (Y1, . . . ,Yn)> and B =

 1 x1
...

...
1 xn

.

B - matrix of basis functions
β - vector of basis coefficients

Basis functions: B0(x) = 1,B1(x) = x .



2.3.1 Regression splines - polynomial regression

Figure: 2.5 A simple linear
regression line with underlying
simulated data

Figure: 2.6 The basis functions
for simple linear regression 1, x



2.3.1 Regression splines - polynomial regression

Polynomial regression

E(Yi ) = β0 + β1xi + . . .+ βrx
r
i for i = 1, . . . , n,

just corresponds to

B =

 1 x1 . . . x r1
...

...
. . .

...
1 xn . . . x rn

 .

Polynomial regression is a basis expansion technique.

β̂ = (B
>

B)−1B
>

y



2.3.1 Regression splines - polynomial regression

Example 2.4: Glucose levels in potatoes

●

●

●

●

●

●

●

●

●
●

●

●

●

●

5 10 15 20

10
0

15
0

20
0

25
0

Weeks

G
lu

co
se

Polynomial regression can be a useful tool for small datasets.
(if a small degree of polynomial is used)



2.3.1 Regression splines - polynomial regression

Simulated example 2.5 : yi = 1− x3i − 2 exp(−100x2i ) + εi with
x = (−1,−0.98, . . . , 0.98, 1) and εi ∼ N(0, 0.12).
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2.3.1 Regression splines - polynomial regression - what is
going wrong?

Let’s look at the hat matrix (Figure 2.9): S = B(B>B)−1B>

(ŷ = Sy)
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2.3.1 Regression splines: spline-based model
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2.3.1 Regression splines - polynomial regression - problems

I Polynomials are not a local model.
 Oscillations (Runge’s phenomenon), “derivative
propagation”

I Likely to produce spurious edge effects on both ends of range.
(polynomial has to diverge to ±∞ as x → ±∞)

I Also very likely to be numerically unstable.
In our example:

I Condition number of B>B: 1.56× 1012

I For a B-spline: Condition number of B>B: 32.49

I Possible solution: Use piecewise polynomial functions.



2.3.1 Regression splines - piecewise polynomials
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2.3.2 Regression splines

Definition 2.1: (Polynomial) spline

Given a set of knots a = κ1 < κ2 < . . . < κl = b, a function
f : [a, b]→ R is called a (polynomial) spline of degree r if

I f (·) is a polynomial of degree r on each interval (κj , κj+1)
(j = 1, . . . , l − 1).

I f (·) is r − 1 times continuously differentiable.



2.3.2 Regression splines: degrees r = 0 and r = 1

Radiocarbon dating (Figure 2.12)
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2.3.2 Regression splines: degrees r = 2 and r = 3

Radiocarbon dating
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2.3.2 Regression splines: different numbers of knots (1)

Radiocarbon dating (Figure 2.13)
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2.3.2 Regression splines: different numbers of knots (2)

Radiocarbon dating
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2.3.2 Regression splines

Choice of degree and number of knots

Choice of degree r

I Degree r controls smoothness / differentiability
I The larger the degree r the more the spline behaves like a

polynomial.
I Rarely necessary to go beyond r = 3.

Choice of number of knots l
I Number of knots l controls smoothness / flexibility
I Alternative: Use “too many” knots and control flexibility

using roughness penalty (see later)



2.3.4 Regression splines - how to fit?

Minimise
n∑

i=1

(yi − f (xi ))2.

Represent f (xi ) as Bβ.

How to construct a basis?

B is formulated through:

I Truncated power basis;

I B-splines.



2.3.4 Regression splines - truncated power series

Definition 2.6: Truncated power basis

Given a set of knots κ1 < . . . < κm the truncated power basis of
degree r is given by(

1, x , . . . , x r , (x − κ1)r+, (x − κ2)r+, . . . , (x − κm)r+
)
,

where (z)r+ =

{
z r for z > 0
0 otherwise.



2.3.4 Regression splines - truncated power series

Truncated power series of degree 3 (Figure 2.15)
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2.3.4 Regression splines - truncated power series

How to fit a model using the truncated power basis?

I Use basis expansion

f (x) = β0 + β1x + . . .+ βrx
r

+ βr+1(x − κ1)r+ + . . .+ βr+m(x − κm)r+

I This is just a linear model with design matrix

B =

 1 x1 . . . x r1 (x1 − κ1)r+ . . . (x1 − κm)r+
...

...
. . .

...
...

. . .
...

1 xn . . . x rn (xn − κ1)r+ . . . (xn − κm)r+





2.3.4 Regression splines - truncated power series
Illustration: Radiocarbon dating (Figure 2.19)
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2.3.4 Regression splines - truncated power series

Numerical problems (Figures 2.17, 2.18)
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Problem: Basis functions highly correlated (0.99921)
 B>B ill conditioned (condition number: 5.85× 109)



2.3.4 Regression splines - B-splines

Definition 2.7: B-spline basis

(a) Given a set of l knots the B-spline basis of degree 0 is given by the
functions (B0

1 (x), . . . ,B0
l−1(x)) with

B0
j (x) =

{
1 for κj ≤ x < κj+1

0 otherwise.

(b) Given a set of l knots the B-spline basis of degree r > 0 is given by
the functions (B r

1(x), . . . ,B r
l+r−1(x)) with

B r
j (x) =

x − κj−r
κj − κj−r

B r−1
j−1 (x) +

κj+1 − x

κj+1 − κj+1−r
B r−1
j (x).



2.3.4 Regression splines: B-spline basis of degree r = 1

Figure 2.20:
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2.3.4 Regression splines: B-spline basis of degree r = 2
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2.3.4 Regression splines: B-spline basis of degree r = 3
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2.3.4 Regression splines: B-splines

Model fitting using B-splines

I Use basis expansion

f (x) =
l+r−1∑
j=1

βjBj(x)

I This is just a linear model with design matrix

B =

 B r
1(x1) . . . B r

l+r−1(x1)
...

. . .
...

B r
1(xn) . . . B r

l+r−1(xn)

 .



2.3.4 Regression splines: B-splines
Illustration: Radiocarbon dating (Figure 2.24)
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2.3.4 Regression splines: B-splines

No more numerical problems (Figures 2.22, 2.23)
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Problem solved: Basis functions not highly correlated (0.8309 at
most)
 B>B not ill-conditioned (condition number: 358.263)



2.3.4 Regression splines: B-splines in R(Figure 2.21)

library(splines)

model <- lm(Rc.age~bs(Cal.age, df=10), data=radiocarbon)

with(radiocarbon, {

plot(Cal.age, Rc.age)

lines(Cal.age, predict(model))

})
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2.3.5 Penalised regression splines (P-splines) – Idea

I Positioning of knots can have large influence of fitted function
(especially if number of knots is small);

I Solution: Use “too many” knots and control flexibility using
roughness penalty;

I We will only consider quadratic roughness penalties of the
form ‖Dβ‖2.



2.3.5 Penalised regression splines (P-splines) – Idea

I Objective function (**see ridge regression):

n∑
i=1

(yi − f (xi ))2 + λ‖Dβ‖2

I λ controls the trade-off between following the data (λ ↓) and
a strongly regularised curve (λ ↑).



2.3.5 Penalised regression splines (P-splines) – Solution

I Solution for P-splines is

β̂ = (B>B + λD>D)−1B>y,

I Numerically more stable to use a QR decomposition to
minimise augmented system∥∥∥∥( y

0

)
−
(

B√
λD

)
β

∥∥∥∥2



2.3.6 Penalised regression splines - how to choose D?

Smoothing splines
One can show that

∫ b

a
f ′′(x)2 dx = β

>


∫ b
a B′′1 (x)B′′1 (x) dx . . .

∫ b
a B′′1 (x)B′′l+r−1(x) dx

.

.

.
. . .

.

.

.∫ b
a B′′1 (x)B′′l+r−1(x) dx . . .

∫ b
a B′′l+r−1(x)B

′′
l+r−1(x) dx

β

 Set D>D equal to this matrix of cross-products.

2.3.6 Penalised regression splines - difference
penalties

For equally-spaced knots we can also use difference penalties
(much simpler).



2.3.6 Penalised regression splines - second-order difference
penalty

D2 =

 1 −2 1 . . . 0
...

. . .
. . .

. . . 0
0 . . . 1 −2 1

 .

‖D2β‖2 =
∑

(βj+2 − 2βj+1 + βj)
2

(second-order differences)
0

●

●

●

β1 β2 β3



2.3.6 Penalised regression splines - second-order difference
penalty

I Shrinks the coefficients towards a linear
sequence.
 Shrinks the regression function f (·)
towards linear function.

I Adding a linear function to f (·) does not
change the penalty.

I Natural choise for spline basis of degree
r = 3.
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●

β1 β2 β3



2.3.7 Penalised regression splines in R

library(mgcv)

model <- gam(Rc.age~s(Cal.age), data=radiocarbon)

model

plot(model, residuals=TRUE)

2000 2200 2400 2600 2800 3000

−
40

0
−

20
0

0
20

0
40

0

Cal.age

s(
C

al
.a

ge
,7

.5
6)



Summary

Nonparametric regression

I Approaches for nonparametric regression

I Properties of smooth functions

I Why use splines?

I How to construct splines in 1D? (truncated power and
B-splines)

I Penalty-based approaches (P-splines)
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