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Part I (extension): quantile regression for censored data



Survival data analysis

Censoring

I Characteristic of survival (duration/time-to-event) data
I Data are censored if observation on the subject/experimental

unit had ceased before the event of interest had occurred.
I Censoring could occur for instance if:

I a clinical trial of a new lung cancer therapy terminates before
all the patients in the study are dead due to lung cancer;

I the subject dies from a reason completely unconnected with
the disease;

I the researchers may simply have lost contact with a subject.



Assumptions

Right censoring

I A censored observation involves a subject whose time to event
is unknown (except that it is at least greater than the time for
which the subject was observed).

I E.g. some subjects in the study may have not experienced the
event of interest at the end of the study or time of analysis.

I As the incomplete nature of this observation occurs in the
upper tail of the distribution of the time to the event of
interest, the observation is termed right-censored.

Other types of censoring

I Left censoring, interval censoring



Assumptions

Data
I Observations are either (complete) event times (e.g. a death

time) or censored (e.g. left, right or interval censored).
I For the purposes of this course, only right-censored data will

be considered.
I Let ti denote the observation time for the ith individual

(i = 1, . . . , n) in a sample of n individuals. Further define an
indicator function δi = 1 if the ith observation time is an
event time, δi = 0 if the ith observation time is right-censored.

I Each individual’s data consist of an observation time and an
“event type” indicator function, (ti , δi ).



Time horizons



Survival function

Definition and properties

I Denote the time to event as T , a positive random variable,
with distribution function F (t) = P(T < t) and density
function f (t).

I The survival function, S(t), is defined as

S(t) = P(T ≥ t) = 1− F (t) for any t > 0.

I S(t) is a strictly non-increasing function with a value of 1 at
the origin (t = 0) and decreasing to 0 at t =∞.

I Event time distributions are usually skewed and hence the
most appropriate ‘central’ summary of the distribution is
provided by the median survival time, i.e. the value t∗ such
that S(t∗) = 0.5.



Hazard function

Definition and properties

I The hazard rate or hazard function, λ(t), is expressed as

λ(t) = lim
∆t→0

P(T ≤ t + ∆t | T ≥ t)

∆t

I Rate at which an individual is likely to experience the event of
interest in the next small time interval, ∆t, given that the
individual has survived up to that point (up to time t).

I λ(t) ≥ 0
I Cumulative hazard (total hazard up to time t):

Λ(t) =

∫ t

0
λ(u)du



Relationships between functions

S(t) = 1− F (t)

F (t) =

∫ t

0
f (u)du;

f (t) =
dF (t)

dt
= −dS(t)

dt

λ(t) =
f (t)

S(t)

S(t) = exp

{
−
∫ t

0
λ(u)du

}
f (t) = λ(t) exp

{
−
∫ t

0
λ(u)du

}
Any one of these defines all the others.



Empirical distribution function

Definition: empirical distribution function (EDF)

Given a sample entirely composed of complete data, the EDF is
defined as

ŜEDF (t) =
number surviving beyond t

number in the sample

Problem
In the presence of censoring, the EDF estimator is biased and a
modification is needed.



The Kaplan-Meier estimator

Definitions and assumptions

I Sample consisting of n observation times t1, . . . , tn
I m event times and n −m censored observations
I Ordered event times: t(1) < t(2) < . . . < t(m) where m ≤ n
I Assume t(0) = 0
I rj : number of individuals who are alive (and hence at risk)

just before t(j), for j = 1, . . . ,m
I dj : number of individuals who die at time t(j).



The Kaplan-Meier estimator

Probability estimates

I Since there are rj individuals at risk just before t(j) and dj
deaths at t(j), the probability that an event of interest occurs
during the interval [t(j), t(j+1)) is estimated by

dj/rj .

I Probability of surviving through this interval:

1− dj/rj = sj/rj

where sj is the number of individuals in the sample who
survive at least beyond time t(j).



The Kaplan-Meier estimator

Survival function:

S(t(i)) = P(T > t(i)) = P(T > t(i) | T > ti−1)P(T > ti−1)

= P(T > ti | T > t(i−1))P(T > t(i−1) | T > t(i−2))P(T > t(i−2))

= . . .

=
i∏

j=1

P(T > t(j) | T > t(j−1))



The Kaplan-Meier estimator

Sample-based estimate: the KM (product-limit) estimator

ŜKM(t) =
i∏

j=1

sj
rj

for t(i) ≤ t < t(i+1), i = 1, . . . ,m

since the estimate of P(T > t(j) | T > t(j−1)) will be sj/rj .



The Kaplan-Meier estimator

Redistributing to the right (Efron 1967)

I Ordered observation times with mass 1/n associated with
each observation initially.

I Distribute the mass 1/n of the first censored observation
encountered equally to all times to its right.

I Continue until the mass of all the censored observations has
been distributed.

I This resulting distribution of masses, or weights, is precisely
the KM estimator.

I The KM estimator is similar to the EDF but with different
weights.



Illustrative example of the Kaplan-Meier estimator

I 10 observations: 3,4,5+,6,6+,8+,11,14,15,16+.

I The Kaplan-Meier estimator is calculated as follows:

t di ri S(t)

3 1 10 0.9
4 1 9 (1− 1/9) ∗ 0.9 = 0.8
6 1 7 (1− 1/7) ∗ 0.8 = 0.686
11 1 4 (1− 1/4) ∗ 0.686 = 0.514
14 1 3 (1− 1/3) ∗ 0.514 = 0.343
15 1 2 (1− 1/2) ∗ 0.343 = 0.171
16 1 1 0

I Since the last observation is censored, the survival function
could either stay at the same level or be set to 0.



The reweighting-to-the-right algorithm

Data Step 0 Step 1 Step 2

3 1/10 0.1 0.1
4 1/10 0.1 0.1
5+ 1/10 0.0 0.0
6 1/10 1/10+(1/7)1/10=0.114 0.114
6+ 1/10 1/10+(1/7)1/10=0.114 0.0
8+ 1/10 1/10+(1/7)1/10=0.114 0.114+(1/5)0.114=0.137
11 1/10 1/10+(1/7)1/10=0.114 0.114+(1/5)0.114=0.137
14 1/10 1/10+(1/7)1/10=0.114 0.114+(1/5)0.114=0.137
15 1/10 1/10+(1/7)1/10=0.114 0.114+(1/5)0.114=0.137
16+ 1/10 1/10+(1/7)1/10=0.114 0.114+(1/5)0.114=0.137
Data Step 3 S(t)

3 0.1 0.9
4 0.1 0.8
5+ 0.0 0.8
6 0.114 0.686
6+ 0.0 0.686
8+ 0.0 0.686
11 0.137+(1/4)0.137=0.171 0.515
14 0.137+(1/4)0.137=0.171 0.343
15 0.137+(1/4)0.137=0.171 0.171
16+ 0.137+(1/4)0.137=0.171 0.0



Motivation for Censored Regression Quantiles (CRQ)

I Portnoy (2003): generalisation of
reweighting-to-the-right algorithm
to allow covariates

I Main idea: split censored
observations by assigning weights
to them as they get crossed by the
quantile hyperplane.



Censored Regression Quantiles

Consider the linear censored quantile regression model:

Random variables: {(xi , Ti ) : i = 1, ..., n} with xi ∈ Rp and
β(τ) ∈ Rp satisfying

Pxi

{
Ti ≤ xT

i β(τ)
}

= τ i = 1, ..., n

Also assume censoring points: {Ci : i = 1, ..., n} such that the
observables are Yi = min{Ti , Ci}

Censoring indicator: δi ≡ I {Ti ≤ Ci}

Generally: {(Ti , xi , Ci ) : i = 1, ..., n} are assumed to be i.i.d.
and (Ti , Ci ) | xi independent.



The grid algorithm for CRQ

Let ε > 0 be given and define a grid of τ -values:

ε ≤ t1 < t2 < · · · < tM ≤ 1− ε

βk = β(tk), k = 1, · · · , M

β = (β1, · · · , βM) ∈ RMp

As in Portnoy (2003), assume the usual regression quantile at
τ = t1 (using all the data) lies below all censored points.

Define the initial β̂1 to be this regression quantile solution, and
define weights ŵi (t1) ≡ 1 (i = 1, · · · , n)



We obtain β̂k inductively as follows:
Suppose we have all β̂l and weights ŵi (tl) for l ≤ k

The regression quantile, β̂k+1 at tk+1 is obtained by minimising a
weighted regression quantile objective function.
Specifically define β̂k+1 to minimise over b

n∑
i=1

{
δiρtk+1

(Yi − xT
i b)

+(1− δi )
[
ŵi (tk+1,β)ρtk+1

(Ci − xT
i b)

+(1− ŵi (tk+1,β))ρtk+1
(Y ∗ − xT

i b)
]}

where Y ∗ is sufficiently large.



I Before progressing to next grid point, reconsider censored
observations with weight 1 (not crossed) before the grid point
tk . When moving from tk to tk+1 some censored observations
that were not yet crossed can be crossed. In that case these
observations (at Ci ) are reweighted with

ŵi (τ) ≡ (τ − τi )/(1− τi )

where τi (β̂) = tk+1; and an extra contribution to Y ∗ is added
with weight (1− ŵi ).

I This algorithm stops at the last grid point tM , or it ends at te
when only censored observations remain above xTβ̂(te).



CRQ (Portnoy) algorithm illustration

Start at τ = 0.05. No censored observations crossed at this point.
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CRQ (Portnoy) algorithm illustration

τ = 0.05, 0.15, 0.25: still no censored observations crossed.
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CRQ (Portnoy) algorithm illustration
τ = 0.05, 0.15, 0.25, 0.35. Weights are calculated as

τ̃i = 0.35, wi =
τ − 0.35

1− 0.35
for τ > 0.35.
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CRQ (Portnoy) algorithm illustration
τ = 0.05, 0.15, 0.25, 0.35, 0.45. Weight is calculated as

τ̃i = 0.45, wi =
τ − 0.45

1− 0.45
for τ > 0.45.
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Relationship with the Cox Proportional Hazards (PH)
model

I CRQ vs Cox Proportional Hazards model: agreement under
Accelerated Failure Time (AFT) model if log time is used as
the response in CRQ.

I Time T , random censoring to the right

I Survival function ST (t | x) = P(T > t | x)

I Hazard λ(t) = f (t)
S(t)

I Cox PH model: λ(t | x) = λ0(t) exp(xTβ)

I AFT model: log(Ti ) = xT
i β + ui , ui i.i.d. with

F (u) = 1− e−e
u

gives a Cox proportional hazards model with
Weibull baseline hazard.



AFT and CRQ

I Conditional quantile QT (τ | x) = inf {t : P(T ≤ t | x) ≥ τ}
I Log transformation: QT (τ | x) = exp(Qlog(T )(τ | x))

I AFT correspondence: use log(T ) as the response in CRQ

I Qlog(T )(τ | x) = xTβ + F−1
u (τ): xTβ shifts the location of

log(T )

I Introduce heterogeneity in the conditional distribution of
log(T ) by allowing β to vary with τ : Qlog(T )(τ | x) = xTβ(τ)



Some comments on CRQ

I CRQ vs regular quantile regression for uncensored data:

I CRQ: iterative estimating process (like KM);

I RQ: computes a single quantile at a time, e.g. median

I Confidence intervals for the CRQ regression coefficients are
obtained using bootstrap.

I Software implementation: crq() function in quanteg

package (setting method argument to "portnoy").

I Another method is "penghuang" , which generalises the
martingale representation of the Nelson-Aalen estimator.



Peng and Huang’s CRQ method

Peng and Huang (2008) extend the martingale representation of
the Nelson-Aalen estimator of the cumulative hazard function to
produce an “estimating equation” for conditional quantiles.

I ΛT (t|x) = − log{1− FT (t|x)}: cumulative hazard function of
T conditional on x;

I Ni (t) = I (Yi ≤ t, δi = 1);

I Mi (t) = Ni (t)− ΛT{t ∧ Yi |xi ) is a martingale process so that
E{Mi (t)|xi} = 0 for all t ≥ 0.

So
E
[
Ni{xT

i β0(τ)} − ΛT{xT
i β0(τ) ∧ Yi}|xi

]
= 0.



Connection between ΛT and the quantile functions:

ΛT{xT
i β0(τ) ∧ Yi |xi} = H(τ) ∧ H{FT (Yi |xi )}

=

∫ τ

0
I{Yi ≥ xT

i β0(u)}dH(u),

where H(u) = − log(1− u) for 0 ≤ u ≤ 1.



The estimating equation becomes

n−1/2
n∑

i=1

xi

[
Ni (x

T
i β)−

∫ τ

0
I{Yi ≥ xTi β(u)}dH(u)

]
= 0.

Approximating the integral on a grid, 0 = τ0 < τ1 < · · · < τJ < 1
yields a simple linear programming formulation to be solved at the
gridpoints,

αi (τj) =

j−1∑
k=0

I{Yi ≥ xTi β̂(τk)}{H(τk+1)− H(τk)},

yielding Peng and Huang’s final estimating equation,

n−1/2
∑

xi
[
Ni{xTi β(τ)} − αi (τ)

]
= 0.

Setting ri (b) = Yi − xTi b, this convex function for the Peng and
Huang problem takes the form

R(b, τj) =
n∑

i=1

ri (b) [αi (τj)− I{ri (b) < 0}δi ] = min!



Example: UIS data

In R:

> library(quantreg)

> library(survival)

> data(uis)

> fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE,

method = "Portnoy", data = uis)

> Sfit <- summary(fit,1:19/20)

> PHfit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis)

> plot(Sfit, CoxPHit = PHfit)

Reference: Koenker, 2008



Estimated quantile coefficients
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Part II: alternative approaches to conditional quantile
estimation



Bayesian quantile regression

I Let us revisit the linear quantile regression equation

Qτ (Y |x) = xTβ(τ).

I Given the observations y = (y1, . . . , yn), the posterior
distribution of β(τ), π(β|y) is given by

π(β|y) ∝ L(y|β)π(β)

where π(β) is the prior distribution of β and L(y|β) is the
likelihood function.

What should the likelihood be?



I Semiparametric and nonparametric Bayesian methods can be
used

I Usually involve mixtures of Dirichlet processes

+ Flexible

- Computation is hard

I Yu and Moyeed (2001): asymmetric Laplace distribution



Asymmetric Laplace distribution

I Suppose that the random variable Z follows the asymmetric
Laplace distribution.

I Density:
fτ (z) = τ(1− τ) exp[−ρτ (z)]

for 0 < τ < 1 where ρτ (z) = z(τ − I (z < 0)).

I If τ = 0.5, this reduces to the (symmetric) Laplace
distribution.

I Mean:

E (Z ) =
1− 2τ

τ(1− τ)

I Variance:

Var(Z ) =
1− 2τ + 2τ2

τ2(1− τ)2



I Incorporate location and scale parameters µ and σ to obtain

fτ (z ;µ, σ) =
τ(1− τ)

σ
exp

{
−ρτ

(
z − µ
σ

)}
I Minimising the quantile regression objective function is

equivalent to maximising the likelihood

L(y |β) = {τ(1− τ)}n exp

{
−

n∑
i=1

ρτ{yi − xT
i β)

}
,



R implementation

I Function bayesQR() from library(bayesQR)

I Usual arguments formula, quantile, plus number of MCMC
draws

fit.b <- bayesQR(y~x, quantile=c(.1,.25,.5,.75,.9), ndraw=5000)

plot(x, y, main="", cex=.6, xlab="x")

sum.b <- summary(fit.b, burnin=500)

for (i in 1:length(sum.b)){

abline(a=sum.b[[i]]$betadraw[1,1],

b=sum.b[[i]]$betadraw[2,1],lty=i,col=i)}

fit.OLS <- lm(y~x)

abline(fit.OLS,lty=1,lwd=2,col=6)

legend(x=0,y=max(y),legend=c(.1,.25,.50,.75,.9,"OLS"),

lty=c(1,2,3,4,5,1),lwd=c(1,1,1,1,1,2),

col=c(1:6),title="Quantile")



Bayes QR fit
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Properties of the AL-based Bayesian QR

I If a flat prior π(β) ∝ 1 is used, then

I the posterior distribution of β, π(β|y) is proper;

I the posterior mode is the frequentist estimator β̂(τ).

I However, when the AL likelihood is misspecified,

I the posterior chain from the Bayesian AL quantile regression
does not lead to valid posterior inference;

I correction to the covariance matrix of the posterior chain is
possible to enable an asymptotically valid posterior inference
(Yang, Wang and He, 2016).



Other related methods

Geraci and Bottai (2007, 2013) use the asymmetric Laplace
approach to fit linear quantile mixed models (lqmm package in R).

I Quantile regression with a random intercept effect:

Qτ (Yij |xij , bi ) = xT
ijβ + bi .

I Assume (Yij |xij ,η, bi ) ∼ AL(xT
ijβ + bi , σ, τ) and

bi ∼ N(0, ϕ2), where η = (β, σ, ϕ).

I Estimate η using an EM algorithm by integrating out bi from
f (y,b|η) = f (y |η,b)f (b|η).



Other related methods

I Tsionas (2003), Kozumi and Kobayashi (2011): Gibbs
sampling procedures for Bayesian quantile regression assuming
AL likelihood using a conditional Gaussian representation

I Li, Xi and Lin (2010): Bayesian regularised quantile regression

I Lum and Gelfand, 2012: Bayesian spatial quantile regression
assuming asymmetric Laplace process

I Yang and He (2012): Bayesian empirical likelihood

I Kottas (2009): Mixtures with Dirichlet process priors

I Reich et al. (2010), Reich et al. (2011): Bayesian QR for
clustered/spatial data

...



Part II: alternative approaches to conditional quantile
estimation



Generalised Additive Models for Location, Scale and Shape
I GAMLSS, Ribgy and Stasinopoulos (2005): generalisation of

GLMs and GAMs.

I Generalised: large number of response distributions/link
functions

I Additive: allow for non-parametric smooth terms as well as
the usual linear regression terms

I Location, Scale and Shape: focus not only on the mean but
also on how the spread and shape of the distribution of the
response depend on explanatory variables.

I Parameters:

I µ: location

I σ: spread

I τ : skewness (no relationship to the quantile level!)

I ν: kurtosis



Example: Box-Cox, Cole and Green distribution

f (y |µ, σ, ν) =
1√
2πσ

yν−1

µν
exp

(
−z2

2

)
where

z =


(y/µ)ν − 1

νσ
if ν 6= 0

log(y/µ)

σ
if ν = 0.



Implementation in R: gamlss package

Additive terms function in R

P-splines pb(), pbm(), cy()
Varying coefficient pvc()

Cubic splines cs()

Loess/ neural networks lo(), nn()
Fractional/picewise polynomials fp(), fk()
Non-linear fit nl()

Random effects random(), re()
Ridge regression ri()

Simon Wood’s GAM ga()

Decision trees tr()

Random walk and AR rw(), ar()

Lots of functionality! See Stasinopoulos et al. (2018) for a tutorial.



Example: GAMLSS for the NHANES BMI data

I National Health and Nutrition Examination Survey (US)

I Relationship between body mass index (BMI) and age

I In R:

> library(NHANES)

> library(gamlss)

> data(uis)

> model <- gamlss(BMI~ps(Age), sigma.formula=~ps(Age),

tau.formula=~ps(Age), data=NHANES,

family="BCCG")

> centiles(model.g, xvar=NHANES$Age, xlab="Age",

ylab="BMI", main="")



Example: quantile regression for the NHANES BMI data

> library(quantreg)

> plot(BMI~Age, data=NHANES, col="grey", pch=16, cex=0.5)

> newdata <- data.frame(Age=seq(2,80,len=500))

> model <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.9)

> lines(newdata$Age, predict(model, newdata), col=1, lwd=2)

> model <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.98)

> lines(newdata$Age, predict(model, newdata), col=2, lwd=2)

> legend("topleft", col=1:2, lwd=2,

c("0.90th quantile", "0.98th quantile"))



GAMLSS and RQ model for NHANES data
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Summary

Quantile regression: extensions and alternative approaches

I Censored regression quantiles: only one of many extensions to
quantile regression – active research area

I Bayesian quantile regression: using the asymmetric Laplace
distribution is appealing but several other approaches have
been/are being developed – active research area

I GAMLSS methods

+ are an attractive option for additive models for conditional
quantiles

+ avoid quantile crossing

+ have a stable R implementation with extensive documentation

- make distributional assumptions/involve complex distributions


