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What is quantile regression?

What is a quantile?
Y : random variable with CDF FY (y) = P(Y ≤ y).
The τth quantile of Y is

Qτ (Y ) = inf{y : FY (y) ≥ τ}

τ : quantile level, 0 < τ < 1.
I τ = 0.25: first quartile

I τ = 0.5: median

I τ = 0.75: third quartile

Qτ (Y ): nondecreasing function of τ .



Conditional quantile

Regression setting

Y : response variable

x: p-dimensional predictor

FY (y |x) = P(Y ≤ y |x): conditional CDF of Y given x

Then the τth conditional quantile of Y is defined as

Qτ (Y |x) = inf{y : FY (y |x) ≥ τ}.



Mean vs quantile regression

I Least squares linear mean regression model:

Y = xTβ + ε, E (ε) = 0.

Thus E(Y |x) = xTβ,

I Linear quantile regression model:

Qτ (Y |x) = xTβ(τ), 0 < τ < 1.

Qτ (Y |x) is a non-decreasing function of τ for any given x.



Example: location-scale shift model

Consider random variables Yi , i = 1, . . . , n where

Yi = α + zTi β + (1 + zTi γ)εi ,

with ε
i.i.d∼ F (·).

Conditional quantile function:

Qτ (Y |xi ) = α(τ) + zTi β(τ),

I α(τ) = α + F−1(τ) is nondecreasing in τ ;

I β(τ) = β + γF−1(τ) may depend on τ .

Location shift: γ = 0, so that β(τ) = β is constant across τ .



Galton’s strength of squeeze data



Galton’s strength of squeeze data
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Quantile treatment effects
I Xi = 0: control; Xi = 1: treatment

I Yi |Xi = 0 ∼ F (control distribution) and Yi |Xi = 1 ∼ G
(treatment distribution)

I Mean treatment effect:

∆ = E (Yi |Xi = 1)− E (Yi |Xi = 0) =

∫
ydG (y)−

∫
ydF (y).

I Quantile treatment effect:

δ(τ) = Qτ (Y |Xi = 1)− Qτ (Y |Xi = 0) = G−1(τ)− F−1(τ).

I Thus

∆ =

∫ 1

0
G−1(u)du −

∫ 1

0
F−1(u)du =

∫ 1

0
δ(u)du.

I Equivalent quantile regression model (with binary covariate):

Qτ (Y |X ) = α(τ) + δ(τ)X .



Location shift

F (y) = G (y + δ)⇒ δ(τ) = ∆ = δ.
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Scale shift

Scale shift: ∆ = δ(0.5) = 0, but δ(τ) 6= 0 at other quantiles.
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Location-scale shift
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Why quantile regression?

1. To study the impact of predictors on different quantiles of the
response distribution in order to provide a complete picture of the
relationship between Y and x.



Example: Tropical cyclones

I yi : max wind speeds of tropical cyclones in the North Atlantic

I xi : year 1978-2009
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Example: Tropical cyclones

Do the quantiles of max speed change over time?
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Why quantile regression?

2. It is robust to outliers in y observations.
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Why quantile regression?

3. It makes no distributional assumptions.



Equivariance properties

I β̂(τ ; ay ,X) = aβ̂(τ ; y ,X) for any constant a > 0

I β̂(τ ;−ay ,X) = −aβ̂(1− τ ; y ,X) (scale equivariance)

I β̂(τ ; y + Xγ,X) = β̂(τ ; y ,X) + γ where γ ∈ Rp (regression
shift)

I β̂(τ ; y ,XA) = A−1β̂(τ ; y , x) where A is any p × p nonsingular
matrix (reparameterisation of design)



Equivariance to monotone transformations

Suppose h(·) is an increasing function on R. Then for any variable
Y ,

Qh(Y )(τ) = h {Qτ (Y )} .

That is, the quantiles of the transformed random variable h(Y ) are
simply the transformed quantiles on the original scale.

This is not true in general for the mean, e.g.

E(log(Y )|X ) 6= log(E(Y |X ))

but

Qτ (log(Y |X )) = log(Qτ (Y |X ).



Interpolation

Linear quantile regression lines exactly fit p observations
(subgradient condition).

Which p points should be interpolated is determined by using all
observations.



Estimation of quantile regression coefficients

Mean regression – ordinary least squares (OLS)

I The mean E (Y ) minimises E{(Y − a)2}.
I The sample mean minimises

∑n
i=1(yi − a)2.

I The OLS estimator minimises
∑n

i=1(yi − xTi β)2.

Median regression – least absolute deviation (LAD)

I The median Q0.5(Y )minimises E |Y − a|.
I The sample median minimises

∑n
i=1 |yi − a|.

I Assuming Q0.5(y |x) = xTi β(0.5), β̂(0.5) can be obtained by
minimising

∑n
i=1 |yi − xTi β|.



Quantile coefficient estimation

I The τ th quantile Qτ (Y ) minimises E{ρτ (Y − a)}, where
ρτ (u) = u{τ − I (u < 0)} is the quantile loss function.

0

1

u

(u)

I The τ th sample quantile of Y minimises
∑n

i=1 ρτ (yi − a).

I Assuming Qτ (Y |x) = xTβ(τ), then β̂(τ) minimises∑n
i=1 ρτ (yi − xTi β).



How to minimise the objective function?

Linear programming problem

min
y∈Rm

yTb,

subject to the constraints

yTA ≥ cT,

and
y1 ≥ 0, · · · , ym ≥ 0,

where A is an m × n matrix, b ∈ Rm, c ∈ Rn.



How to minimise the objective function?

Dual problem

max
x∈Rn

cTx,

subject to constraints
Ax ≤ b

and
x ≥ 0.



Quantile regression as a linear programming problem

yi = xTi β(τ) + ei

= xTi β(τ) + (ui − vi ),

where

ui = ei I (ei > 0),

vi = |ei |I (ei < 0).

So

min
b

n∑
i=1

ρτ (yi − xTi b)

⇔ min
{b,u,v}

τ1Tn u + (1− τ)1Tn v

s.t. y − XTb = u− v

b ∈ Rp, u ≥ 0, v ≥ 0.



Implementation in R

I Function rq() from library(quantreg) fits quantile
regression models.

I Syntax:

rq(y ~ x, tau=.5, data,method=...)

I method="br" (default) implements the simplex method of
Barrodale and Roberts (1974) for optimising the objective
function.

I method="fn" implements the Frisch-Newton interior point
algorithm (Portnoy and Koenker, 1997).

I method="sfn" implements a version of the interior point
algorithm suitable for sparse design matrices (Koenker and
Ng, 2003).



Example: illustration with simulated data

library(quantreg)

taus <- 1:9/10

fit <- rq(y ~ x, data=dat, tau = taus)

ggplot(dat, aes(x,y)) + geom_point()

+ geom_quantile(quantiles = taus)
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Example: illustration with simulated data

> fit <- rq(y~x, data=dat, tau=.5)

> summary(fit)

Call: rq(formula = y ~ x, tau = 0.5, data = dat)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) 6.13147 5.91573 6.42189

x 0.10376 0.09776 0.11575



Statistical properties

Coefficient estimator

β̂(τ) = argmin
b∈Rp

n∑
i=1

ρτ (yi − xTi b).

Consistency

Under regularity conditions A1 and A2(i) (see next slide)

β̂(τ)
p→ β(τ).



Statistical properties

Regularity conditions

A1. The distribution functions of Y given xi ,Fi (·), are absolutely
continuous with continuous densities fi (·) that are uniformly
bounded away from 0 and ∞ at ξi (τ) = Qτ (Y |xi ).

A2. There exist positive definite matrices D0 and D1 such that
(i) limn→∞ n−1

∑n
i=1 xixTi = D0;

(ii) limn→∞ n−1
∑n

i=1 fi (ξi (τ)) xixTi = D1(τ);

(iii) maxi=1,...,n||xi || = o(n
1
2 ).



Statistical properties

Asymptotic normality

Under Conditions A1 and A2

√
n
(
β̂(τ)− β(τ)

)
d→ N

(
0, τ(1− τ)D−11 D0D

−1
1

)
.

Simplification in the case of i.i.d. errors

√
n
(
β̂(τ)− β(τ)

)
d→ N

(
0,
τ(1− τ)

f 2ε (0)
D−10

)
,

where fi (ξi (τ)) = fε(0).



Inference

I Idea: use asymptotic normality results to perform Wald-type
hypothesis tests and construct confidence intervals.

I Problem: Asymptotic covariance matrix involves the
unknown densities fi (xTi β(τ)) in non-i .i .d . settings, and fε(0)
in i .i .d . settings.

How do we estimate these?



Estimation in i.i.d. setting

Sparsity parameter

s(τ) =
1

f (F−1(τ))
(derivative of the quantile function F−1(t) with

respect to t)

Difference quotient estimator (Siddiqui,1960)

ŝn(t) =
F̂−1n (t + hn|x̄)− F̂−1n (t − hn|x̄)

2hn
,

where
I hn → 0 as n→∞,
I F̂−1n (t|x̄) is the estimated tth conditional quantile of Y given

x̄ = n−1
∑n

i=1 xi .



Estimation in non-i.i.d. settings

Estimation of D1(τ)

I Suppose the conditional quantiles of Y given x are linear at
quantile levels around τ .

I Then fit quantile regression at (τ ± hn)th quantiles, resulting
in β̂(τ − hn) and β̂(τ + hn).

I Estimate fi (ξi (τ)) by

f̃i (ξi (τ)) =
2hn

xTi β̂(τ + hn)− xTi β̂(τ − hn)
,

where ξi (τ) = Qτ (Y |xi ).

“Hendricks-Koenker sandwich”



Implementation in R

> # Assuming iid errors:

> summary.rq(fit, se="iid")

> # Hendricks-Koenker sandwich:

> summary.rq(fit, se="nid") # assuming non-iid errors

tau: [1] 0.5

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.13147 0.17754 34.53611 0.00000

x 0.10376 0.00888 11.67973 0.00000

> # Based on Powell kernel estimator

> summary.rq(fit, se="ker")



Rank score test

I Model: Qτ (Y |xi , zi ) = xTi β(τ) + zTi γ(τ)

I Hypotheses: H0 : γ(τ) = 0 vs H1 : γ(τ) 6= 0

where β(τ) ∈ Rp and γ(τ) ∈ Rq.

I Score function:

Sn =
√
n

n∑
i=1

z∗i ψτ (yi − xTi β̂(τ)),

where

I ψτ (u) = τ − I (u < 0);

I z∗ = (z∗i ) = z− x(xTΨx)−1xTΨz, Ψ = diag(fi (Qτ (Y |xi , zi ));

I β̂(τ) is the quantile coefficient estimator under H0.



Rank score test

I Under H0, as n→∞,

Sn = AN(0,M
1
2
n ),

where Mn = n−1
∑n

i=1 z∗i z∗Ti τ(1− τ).

I Then the rank-score test statistic

Tn = ST
n M

−1
n Sn

d→ χ2
q, under H0.

I In i .i .d . settings z∗ = (z∗i ) = {I − x(xTx)−1xT}z and
Mn = τ(1− τ)n−1

∑n
i=1 z∗i z∗Ti – no need to estimate the

nuisance parameters fi{Qτ (Y |xi , zi )}.
I The rank score test can be inverted to give confidence

intervals.



Implementation in R

The rank score method is the default method for standard error
and confidence interval estimation in library(quantreg):

> # assuming iid errors

> summary.rq(fit, se="rank", alpha=0.05, iid=TRUE)

> # assuming non-iid errors

> summary.rq(fit, se="rank", alpha=0.05, iid=FALSE)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) 6.13147 5.81521 6.54475

x 0.10376 0.08918 0.11880



Bootstrap methods

I An alternative approach is to use bootstrap for standard error
estimation

I Options include:

I residual bootstrap

I paired bootstrap

I Markov chain marginal bootstrap (MCMB)

I . . .

I See boot.rq() in library(quantreg)

> summary.rq(fit, se="boot", alpha=0.05) # default: paired

tau: [1] 0.5

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 6.13147 0.20251 30.27766 0.00000

x 0.10376 0.00772 13.43691 0.00000



Nonparametric quantile regression

I The ideas of

I local polynomial models,

I regression splines,

I penalised splines,

introduced earlier, can be applied to quantile regression.

I Decisions about the order of the spline, number of knots or
penalty parameter need to be made.



Example: motorcycle data

I Locally linear approach using the lprq function from
library(quantreg).

I This function computes a quantile regression fit at each of m
equally spaced x-values over the support of the observed x
points.

I The value of the smoothing parameter (bandwidth h) must be
provided.

I In R:

> library(MASS) # to get the mcycle data

> fit1 <- lprq(mcycle$times,mcycle$accel,h=.5,tau=0.5)

> fit2 <- lprq(mcycle$times,mcycle$accel,h=2,tau=0.5)



Local linear median regression fit for the motorcycle data
with h=0.5 and h=2
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Example: motorcycle data

I B-splines can be implemented using the function bs() in the
package splines in R.

I Here we control the level of smoothing via the degrees of
freedom.

> fit3 <- rq(accel~bs(times,df=5),tau=0.5, data=mcycle)

> fit4 <- rq(accel~bs(times,df=10),tau=0.5, data=mcycle)



Median regression fit using cubic B-splines with df=5 and
df=10 for the motorcycle data
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Example: motorcycle data

I Quantile smoothing splines using a roughness penalty can be
implemented via the rqss() function in library(quantreg)

in R.

I This function is quite flexible and allows specification of
monotonicity and convexity constraints.

I Penalty parameter λ has to be specified by the user (default
value is lambda=1).

I In R:

> fit5 <- rqss(accel~qss(times,constraint="N", lambda=1),

tau=0.5, data=mcycle)

> fit6 <- rqss(accel~qss(times,constraint="N", lambda=0.5),

tau=0.5, data=mcycle)



Median regression fit for the motorcycle data using quantile
smoothing splines with penalty λ = 1 and λ = 0.5.
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Remarks

I Spline methods are better than local linear methods in general.

I All methods require decisions to be made about the degree of
smoothing to be applied.

I Quantile crossing is an issue in general, and even more so with
nonparametric quantile regression, especially for τ near 0 or 1.



Summary

Quantile regression

I Quantiles and quantile regression

I Why use quantile regression?

I How to fit quantile regression models in R

I Splines for nonparametric quantile regression
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