APTS Assessment on Statistical Inference

Simon Shaw, s.shaw@bath.ac.uk
University of Bath

Cambridge, 16-20 December 2019

Principles for Statistical Inference

1. Consider Birnbaum's Theorem, (WIP \wedge WCP) \leftrightarrow SLP. In lectures, we showed that $($ WIP \wedge WCP $) \rightarrow$ SLP but not the converse. Hence, show that SLP \rightarrow WIP and $\mathrm{SLP} \rightarrow$ WCP.
2. Consider, given θ, a sequence of independent Bernoulli trials with parameter θ. We wish to make inferences about θ and consider two possible methods. In the first, we carry out n trials and let X denote the total number of successes in these trials. Thus, $X \mid \theta \sim \operatorname{Bin}(n, \theta)$ with

$$
f_{X}(x \mid \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad x=0,1, \ldots, n
$$

In the second method, we count the total number Y of trials up to and including the r th success so that $Y \mid \theta \sim \operatorname{Nbin}(r, \theta)$, the negative binomial distribution, with

$$
f_{Y}(y \mid \theta)=\binom{y-1}{r-1} \theta^{r}(1-\theta)^{y-r}, \quad y=r, r+1, \ldots
$$

Suppose that we observe $x=r=3$ and $y=n=12$.
(a) For $\theta=1 / 2$, calculate $\mathbb{P}(X \leq 3 \mid \theta=1 / 2)$ and $\mathbb{P}(Y \geq 12 \mid \theta=1 / 2)$. Consider the hypothesis test

$$
H_{0}: \theta=\frac{1}{2} \quad \text { versus } \quad H_{1}: \theta<\frac{1}{2}
$$

For each method, what would you conclude for a test at significance level 5% ? Interpret what this result says for the relationship between p-values and the Stopping Rule Principle (SRP).
(b) For a univariate parameter θ, a popular (default) noninformative prior distribution for θ in the model $\left\{\mathcal{X}, \Theta, f_{X}(x \mid \theta)\right\}$ is the Jeffreys prior,

$$
\pi_{X}(\theta) \propto \sqrt{I_{X}(\theta)}
$$

where the proportionality is with respect to θ and

$$
I_{X}(\theta)=-\mathbb{E}\left(\left.\frac{d^{2}}{d \theta^{2}} \log f_{X}(x \mid \theta) \right\rvert\, \theta\right)
$$

is the Fisher information.
(i) Obtain the Jeffreys prior distribution for each of the two methods. You may find it useful to note that $E(Y \mid \theta)=\frac{r}{\theta}$. Are these prior distributions both proper?
[Hint: You may wish to consider the Beta distribution.]
(ii) For each method, calculate the posterior distribution for θ with the Jeffreys prior. Comment upon your answers.
(iii) What conclusions would a Bayesian statistician, using a prior distribution that reflected their prior knowledge about θ, do in this situation?

Statistical Decision Theory

3. Suppose we have a hypothesis test of two simple hypotheses

$$
H_{0}: X \sim f_{0} \quad \text { versus } \quad H_{1}: X \sim f_{1}
$$

so that if H_{i} is true then X has distribution $f_{i}(x)$. It is proposed to choose between H_{0} and H_{1} using the following loss function.

		Decision	
		H_{0}	H_{1}
Outcome	H_{0}	c_{00}	c_{01}
	H_{1}	c_{10}	c_{11}

where $c_{00}<c_{01}$ and $c_{11}<c_{10}$. Thus, $c_{i j}=L\left(H_{i}, H_{j}\right)$ is the loss when the 'true' hypothesis is H_{i} and the decision H_{j} is taken. Show that a decision rule $\delta(x)$ for choosing between H_{0} and H_{1} is admissible if and only if

$$
\delta(x)=\left\{\begin{array}{cl}
H_{0} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}>c \\
H_{1} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}<c \\
\text { either } H_{0} \text { or } H_{1} & \text { if } \frac{f_{0}(x)}{f_{1}(x)}=c
\end{array}\right.
$$

for some critical value $c>0$.
[Hint: Consider Wald's Complete Class Theorem and a prior distribution $\pi=\left(\pi_{0}, \pi_{1}\right)$ where $\pi_{i}=\mathbb{P}\left(H_{i}\right)>0$. You may assume that for all $x \in \mathcal{X}, f_{i}(x)>0$.]
4. Let X_{1}, \ldots, X_{n} be exchangeable random variables so that, conditional upon a parameter θ, the X_{i} are independent. Suppose that $X_{i} \mid \theta \sim N\left(\theta, \sigma^{2}\right)$ where the variance σ^{2} is known, and that $\theta \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ where the mean μ_{0} and variance σ_{0}^{2} are known. We wish to produce a point estimate d for θ, with loss function

$$
\begin{equation*}
L(\theta, d)=1-\exp \left\{-\frac{1}{2}(\theta-d)^{2}\right\} . \tag{1}
\end{equation*}
$$

(a) Let $f(\theta)$ denote the probability density function of $\theta \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$. Show that $\rho(f, d)$, the risk of d under $f(\theta)$, can be expressed as

$$
\rho(f, d)=1-\frac{1}{\sqrt{1+\sigma_{0}^{2}}} \exp \left\{-\frac{1}{2\left(1+\sigma_{0}^{2}\right)}\left(d-\mu_{0}\right)^{2}\right\}
$$

[Hint: You may use, without proof, the result that

$$
(\theta-a)^{2}+b(\theta-c)^{2}=(1+b)\left(\theta-\frac{a+b c}{1+b}\right)^{2}+\left(\frac{b}{1+b}\right)(a-c)^{2}
$$

for any $a, b, c \in \mathbb{R}$ with $b \neq-1$.]
(b) Using part (a), show that the Bayes rule of an immediate decision is $d^{*}=\mu_{0}$ and find the corresponding Bayes risk.
(c) Find the Bayes rule and Bayes risk after observing $x=\left(x_{1}, \ldots, x_{n}\right)$. Express the Bayes rule as a weighted average of d^{*} and the maximum likelihood estimate of $\theta, \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, and interpret the weights.
[Hint: Consider conjugacy.]
(d) Suppose now, given data y, the parameter θ has the general posterior distribution $f(\theta \mid y)$. We wish to use the loss function $L(\theta, d)$, as given in equation (1), to find a point estimate d for θ. By considering an approximation of $L(\theta, d)$, or otherwise, what can you say about the corresponding Bayes rule?

Confidence sets and p-values

5. Show that if p is a family of significance procedures then

$$
p\left(x ; \Theta_{0}\right)=\sup _{\theta \in \Theta_{0}} p(x ; \theta)
$$

is a significance procedure for the null hypothesis $\Theta_{0} \subset \Theta$, that is that $p\left(X ; \Theta_{0}\right)$ is super-uniform for every $\theta \in \Theta_{0}$.
6. Suppose that, given $\theta, X_{1}, \ldots, X_{n}$ are independent and identically distributed $N(\theta, 1)$ random variables so that, given $\theta, \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(\theta, 1 / n)$.
(a) Consider the test of the hypotheses

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta=1
$$

using the statistic \bar{X} so that large observed values \bar{x} support H_{1}. For a given n, the corresponding p-value is

$$
p_{n}(\bar{x} ; 0)=\mathbb{P}(\bar{X} \geq \bar{x} \mid \theta=0)
$$

We wish to investigate how, for a fixed p-value, the likelihood ratio for H_{0} for versus H_{1},

$$
L R\left(H_{0}, H_{1}\right):=\frac{f(\bar{x} \mid \theta=0)}{f(\bar{x} \mid \theta=1)}
$$

changes as n increases.
(i) Use R to create a plot of $L R\left(H_{0}, H_{1}\right)$ for each $n \in\{1, \ldots, 20\}$ where, for each n, \bar{x} is the value which corresponds to a p-value of 0.05 .
[Hint: You may need to utilise the qnorm and dnorm functions. The look of the plot may be improved by using a log-scale on the axes.]
(ii) Comment on your plot, in particular on what happens to the likelihood ratio as n increases. What is the implication for hypothesis testing and the corresponding (fixed) p-value?
(b) Consider the test of the hypotheses

$$
H_{0}: \theta=0 \quad \text { versus } \quad H_{1}: \theta>0
$$

using once again \bar{X} as the test statistic.
(i) Suppose that $\bar{x}>0$. Show that

$$
\operatorname{lr}\left(H_{0}, H_{1}\right):=\min _{\theta>0} \frac{f(\bar{x} \mid \theta=0)}{f(\bar{x} \mid \theta)}=\exp \left\{-\frac{n}{2} \bar{x}^{2}\right\}
$$

(ii) Use R to create a plot of $\operatorname{lr}\left(H_{0}, H_{0}\right)$ for a range of p-values for H_{0} from 0.001 to $0.1 .^{1}$ Comment on whether the conventional choice of 0.05 is a suitable threshold for choosing between hypotheses, or whether some other choice might be better. ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ The plot doesn't depend upon the actual choice of n and so you may choose $n=1$. Once again, the look of the plot may be improved by using a log-scale on the axes.
 ${ }^{2}$ For the origins of the use of 0.05 see Cowles, M. and C. Davis (1982). On the origins of the .05 level of statistical significance. American Psychologist 37(5), 553-558.

