APTS-ASP 1	APTS-ASP 2
	Introduction
APTS Applied Stochastic Processes	1: Markov chains and reversibility
	2: Martingales
Wilfrid Kendall	3: Stopping times
w.s.kendall@warwick.ac.uk	4: Counting and compensating
Department of Statistics, University of Warwick	5: Central Limit Theorem
12th July 2008	6: Recurrence
	7: Foster-Lyapunov criteria
variante ar WarWICK	8: Cutoff
	APTS-ASP
APTS-ASP 3	(N)
	Introduction
Introduction	N Then notes update the exact of the module, days representation of the provide and information of the module, days representation of the second and the second and the second and the be module as the module before propers.
" you never learn anything unless you are willing to take a risk and	Probability provides one of the major underlying languages of statistics, and purely probabilistic concepts often cross over into the statistical world. So
tolerate a little randomness in your life." – Heinz Pagels, The Dreams of Reason, 1988.	statisticians need to acquire some fluency in the general language of probability and to build their own mental map of the subject. The <i>Applied Stochastic</i>
This module is intended to introduce students to two	Processes module aims to contribute towards this end.
important notions in stochastic processes — reversibility and	Corrections and suggestions are of course welcome! Email w.s.kendall@warwick.ac.uk. All images in these notes either are constructed by the author or have been
martingales — identifying the basic ideas, outlining the main results and giving a flavour of some significant ways in which	released into the public domain.
these notions are used in statistics.	
These notes outline the content of the module; they	
represent work-in-progress and will grow, be corrected, and be modified as the module lectures progress.	
warwick	
APTS-ASP 5	APTS-ASP
LIntroduction	
Learning Outcomes	Constraints of the second s
	These outcomes interact interestingly with various topics in applied statistics.
After successfully completing this module an APTS student will be able to:	However the most important aim of this module is to help students to acquire general awareness of further ideas from probability as and when that might be
describe and calculate with the notion of a reversible	useful in their further research.
Markov chain, both in discrete and continuous time; describe the basic properties of discrete-parameter 	
martingales and check whether the martingale property	
holds;	
 recall and apply some significant concepts from martingale theory; 	
explain how to use Foster-Lyapunov criteria to establish	
recurrence and speed of convergence to equilibrium for Markov chains.	
Warwick	
APTS-ASP 7	APTS-ASP The of all, read the preliminary rotes
	 Introduction An important instruction First of all, read the preliminary notes Provide the second se
First of all, read the preliminary notes	Original Prist of all, read the preliminary notes Outware considered and previous data data.
· · · ·	The purpose of the preliminary notes is not to provide all the information you
- 1	might require concerning probability, but to serve as a prompt about material you may need to revise, and to introduce and to establish some basic choices of potation
They provide notes and examples concerning a basic framework covering:	notation.
 Probability and conditional probability; 	
 Expectation and conditional expectation; 	
 Discrete-time countable-state-space Markov chains; Continuous-time countable-state-space Markov chains; 	
 Poisson processes. 	
THE UNIVERSITY OF	

APTS-ASP 9 L Introduction L Some useful texts	APTS-ASP Introduction Some useful texts (I) Some useful texts (I) Some useful texts (I)
 Some useful texts (I) "There is no such thing as a moral or an immoral book. Books are well written or badly written." Oscar Wilde (1854-1900), The Picture of Dorian Gray, 1891, preface The next three slides list various useful textbooks. At increasing levels of mathematical sophistication: Häggström (2002) "Finite Markov chains and algorithmic applications". Grimmett and Stirzaker (2001) "Probability and random processes". Breiman (1992) "Probability". Norris (1998) "Markov chains". Williams (1991) "Probability with martingales". 	 Häggström (2002) is a delightful introduction to finite state-space discrete-time Markov chains, from point of view of computer algorithms. Grimmett and Stirzaker (2001) is the standard undergraduate text on mathematical probability. This is the book I advise my undergraduate students to buy, because it contains so much material. Breiman (1992) is a first-rate graduate-level introduction to probability. Norris (1998) presents the theory of Markov chains at a more graduate level of sophistication, revealing what I have concealed, namely the full gory story about Q-matrices. Williams (1991) provides an excellent graduate treatment for theory of martingales: mathematically demanding.
APTS-ASP Lintroduction LSome useful texts (II): free on the web	APTS-ASP Introduction Some useful texts Some useful texts (II): free on the web
 Doyle and Snell (1984) "Random walks and electric networks" available on web at www.arxiv.org/abs/math/0001057. Kindermann and Snell (1980) "Markov random fields and their applications" available on web at www.ams.org/online_bks/conml/. Meyn and Tweedie (1993) "Markov chains and stochastic stability" available on web at www.probability.ca/MT/. Aldous and Fill (2001) "Reversible Markov Chains and Random Walks on Graphs" only available on web at www.stat.berkeley.edu/~aldous/RWG/book.html. 	 Doyle and Snell (1984) lays out (in simple and accessible terms) an important approach to Markov chains using relationship to resistance in electrical networks. Kindermann and Snell (1980) is a sublimely accessible treatment of Markov random fields (Markov property, but in space not time). Consult Meyn and Tweedie (1993) if you need to get informed about theoretical results on rates of convergence for Markov chains (eg, because you are doing MCMC). Aldous and Fill (2001) is the best unfinished book on Markov chains known to me (at the time of writing these notes).
APTS-ASP 13	APTS-ASP Come useful texts Come useful texts Come useful texts (III): going deeper Come useful texts (III): going deeper Come useful texts (III): going deeper Come useful texts (III): going deeper
 Some useful texts (III): going deeper Kingman (1993) "Poisson processes". Kelly (1979) "Reversibility and stochastic networks". Stable (2004) "The Courbu Schwarz mester class". 	 Here are a few of the many texts which go much further 1. Kingman (1993) gives a very good introduction to the wide circle of ideas surrounding the Poisson process. 2. We'll cover reversibility briefly in the lectures, but Kelly (1979) shows just how powerful the technique can be.
 Steele (2004) "The Cauchy-Schwarz master class". Aldous (1989) "Probability approximations via the Poisson clumping heuristic". Øksendal (2003) "Stochastic differential equations". Stoyan, Kendall, and Mecke (1995) "Stochastic geometry and its applications". 	 Steele (2004) is the book to read if you decide you need to know more about (mathematical) inequality. Aldous (1989) is a book full of what <i>ought</i> to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. See www.stat.berkeley.edu/~aldous/Research/research80.html. Øksendal (2003) is an accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all. Stoyan et al. (1995) discusses a range of techniques used to handle probability in geometric contexts.
 Aldous (1989) "Probability approximations via the Poisson clumping heuristic". Øksendal (2003) "Stochastic differential equations". Stoyan, Kendall, and Mecke (1995) "Stochastic geometry and its applications". 	 about (mathematical) inequality. Aldous (1988) is a book full of what <i>ought</i> to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. See www.stat.berkeley.edu/~aldous/Research/research80.html. Øksendal (2003) is an accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all. Stoyan et al. (1995) discusses a range of techniques used to handle probability in geometric contexts.
 Aldous (1989) "Probability approximations via the Poisson clumping heuristic". Øksendal (2003) "Stochastic differential equations". Stoyan, Kendall, and Mecke (1995) "Stochastic geometry and its applications". 	 about (mathematical) inequality. Aldous (1989) is a book full of what <i>ought</i> to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. See www.stat.berkeley.edu/~aldous/Research/research80.html. Øksendal (2003) is an accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all. Stoyan et al. (1995) discusses a range of techniques used to handle

APTS-ASP 17	APTS-ASP 1: Markov chains and reversibility Introduction and simplest non-trivial example Markov chains and reversibility Markov chains and reversibility Markov chains and reversibility Markov chains and reversibility
Markov chains and reversibility	Rectified g (b) = 0 Provide the second sec
Here is detailed balance in a nutshell: Suppose we could solve for $\underline{\pi}$ in $\pi_x p_{xy} = \pi_y p_{yx}$ (discrete-time) or $\pi_x q_{xy} = \pi_y q_{yx}$ (continuous-time). In both cases simple algebra then shows $\underline{\pi}$ solves the equilibrium equations. So on a prosaic level it is always worth trying this easy route; if the detailed balance equations are insoluble then revert to the more complicated equilibrium equations $\underline{\pi} \cdot \underline{P} = \underline{\pi}$, respectively $\underline{\pi} \cdot \underline{Q} = \underline{0}$. We will consider reversibility of Markov chains in both discrete and continuous time, the computation of equilibrium distributions for such chains, and application to some illustrative examples.	We will consider: • simple symmetric random walk; • the birth-death-immigration process; • the $M/M/1$ queue; • a discrete-time chain on a 8×8 state space; • Gibbs' samplers (briefly); • and Metropolis-Hastings samplers (briefly). Test understanding: show the detailed balance equations (discrete-case) lead to equilibrium equations by applying them and then $\sum_{x} p_{yx} = 1$ to $\sum_{x} \pi_{x} p_{xy}$.
APTS-ASP 19 1: Markov chains and reversibility Introduction and simplest non-trivial example	APTS-ASP 1: Markov chains and reversibility Lintroduction and simplest non-trivial example Simplest non-trivial example (I)
Simplest non-trivial example (I)	Compared and the control of the c
Consider doubly-reflected simple symmetric random walk X on $\{0, 1,, k\}$, with reflection "by prohibition": moves $0 \rightarrow -1, k \rightarrow k + 1$ are replaced by $0 \rightarrow 0, k \rightarrow k$. ANIMATION 1. X is irreducible and aperiodic , so there is a unique equilibrium distribution $\underline{\pi} = (\pi_0, \pi_1,, \pi_k)$. 2. The equilibrium equations $\underline{\pi} \cdot \underline{P} = \underline{\pi}$ are solved by $\pi_i = \frac{1}{k+1}$ for all <i>i</i> . 3. Consider X in equilibrium and run backwards in time . Calculation then shows, $\mathbb{P}[X_{n-1} = x X_n = y] =$ $\pi_X \mathbb{P}[X_n = y X_{n-1} = x]/\pi_y = \mathbb{P}[X_n = y X_{n-1} = x]$ so in this case <i>by symmetry of the kernel</i> the equilibrium chain has the same transition kernel (so looks the same) whether run forwards or backwards in time.	 Test understanding: explain why X is aperiodic when <i>non-reflected</i> simple symmetric random walk has period 2. Test understanding: verify solution of equilibrium equations. Develop Markov property to deduce X₀, X₁,, X_{n-1} is conditionally independent of X_{n+1}, X_{n+2}, given X_n. Hence reversed Markov chain is <i>still</i> Markov (though not necessarily time-homogeneous in more general circumstances). Suppose the reversed chain has kernel p _{y,x}. Use definition of conditional probability to compute p _{y,x} = P[X_{n-1} = x, X_n = y] / P[X_n = y], then P[X_{n-1} = x, X_n = y] / P[X_n = y] = P[X_{n-1} = x] p_{x,y} / P[X_n = y]. now substitute, using P[X_n = i] = 1/k+1 for all is o p _{y,x} = p_{x,x}. Symmetry of kernel (p_{x,y} = p_{y,x}). then shows backwards kernel p _{y,x} is same as forwards kernel p _{y,x} = p_{y,x}. The construction generalizes so the link between reversibility and detailed balance holds generally.
APTS-ASP 21 L 1: Markov chains and reversibility L Introduction and simplest non-trivial example Simplest non-trivial example (II)	APTS-ASP L: Markov chains and reversibility L: Introduction and simplest non-trivial example Simplest non-trivial example (II) C: Simplest non-trivial example (II)
 Simplest non-trivial example (ii) There is a computational aspect to this. Even in more general cases, if the π_i depend on <i>i</i> then above computations show reversibility holds if equilibrium distribution exists and equations of detailed balance hold: π_xp_{x,y} = π_yp_{y,x}. Moreover if one can solve for π_i in π_xp_{x,y} = π_yp_{y,x} then it is easy to show <u>π · P</u> = <u>π</u>. Consequently if one can solve the equations of detailed balance, and if the solution can be normalized to have unit total probability, then the result also solves the equilibrium equations. 	1. Test understanding: check this. 2. Test understanding: check this. 3. Even in this simple example there is an evident improvement in complexity. Detailed balance involves <i>k</i> equations each with two unknowns, easily "chained together". The equilibrium equations involve <i>k</i> equations of which $k - 2$ involve three unknowns. In general the detailed balance equations can be solved unless "chaining together by different routes" delivers inconsistent results. Kelly (1979) goes into more detail about this. Test understanding: show detailed balance doesn't work for 3-state chain with transition probabilities $\frac{1}{3}$ for $0 - 1$, $1 - 2$, $2 - 0$ and $\frac{2}{3}$ for $2 - 1$, $1 - 0$, $0 - 2$. Test understanding: show detailed balance <i>does</i> work for doubly reflected <i>asymmetric</i> simple random walk. We will see there are still major computational issues for more general Markov chains, connected with determining the normalizing constant to ensure $\sum_i \pi_i = 1$.
APTS-ASP 23 L 1: Markov chains and reversibility Birth, death and immigration Birth-death-immigration process	APTS-ASP 1: Markov chains and reversibility Birth, death and immigration Birth-death-immigration process Comparison of the second
The same idea works for continuous-time Markov chains: replace transition probabilities $p_{x,y}$ by rates $q_{x,y}$ and equilibrium equation $\underline{\pi} \cdot \underline{P} = \underline{\pi}$ by differentiated variant using <i>Q</i> -matrix: $\underline{\pi} \cdot \underline{Q} = \underline{0}$.	Reversibility here is decidedly non-trivial We need $0 \le \lambda < \mu$ and $\alpha > 0$. Note that for this population process the rates $q_{x,x\pm 1}$ make sense and are defined only for $x = 0, 1, 2,$ Detailed balance equations: $\pi_x \times \mu x = \pi_{x-1} \times (\lambda(x-1) + \alpha)$.
Definition The birth-death-immigration process has transitions: • Birth $(X \to X + 1 \text{ at rate } \lambda X)$; • Death $(X \to X - 1 \text{ at rate } \mu X)$; • plus an extra Immigration term $(X \to X + 1 \text{ at rate } \alpha)$. Hence $q_{x,x+1} = \lambda x + \alpha$; $q_{x,x-1} = \mu x$. • Equilibrium is derived easily from detailed balance: $\pi_x = \frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \dots \cdot \frac{\alpha}{\mu} \cdot \pi_0$.	Test understanding: check the calculations! Normalizing constant can be computed exactly when $\lambda < \mu$ via $\pi_0^{-1} = \sum_{x=0}^{\infty} \frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \ldots \cdot \frac{\alpha}{\mu} = \left(\frac{\mu}{\mu-\lambda}\right)^{\frac{\alpha}{\lambda}}.$ If the condition $\lambda < \mu$ is not satisfied then the sum does not converge and therefore there can be no equilibrium! If $\alpha = 0$ then equilibrium = extinction Poisson process: $\lambda = \mu = 0$.

APTS-ASP

WARWICK

APTS-ASP 81 L 3: Stopping times	APTS-ASP 3: Stopping times
Harmonic functions	 Arr 13-537 Stopping times Harmonic functions Martingales and bounded harmonic functions Construction of the stopping of the stopping times Construction of the stopping of the s
Martingales and bounded harmonic functions	Maintingates and bounded national functions based hance leave a device a device of the second seco
 Consider a discrete state-space Markov chain X with transition kernel p_{ij}. Suppose f(i) is a bounded harmonic function: a function for which f(i) = ∑_j f(j)p_{ij}. Then f(X) is a bounded martingale, hence must converge as time increases to infinity. The simplest example: consider simple random walk X absorbed at boundaries a < b. Then f(x) = x-a/b-a is a bounded harmonic function, and can be shown to satisfy f(x) = P[X hits b before a X₀ = x]. Another example: given branching process Y and family size generating function G(s), suppose ζ is smallest non-negative root of ζ = G(ζ). Set f(y) = ζ^y. Check this is a non-negative martingale (and therefore harmonic). WARKER 	 The terminology supermartingale/submartingale was actually chosen to mirror the potential-theoretic terminology superharmonic/subharmonic. Use martingale convergence theorem and optional stopping theorem. We'd like to say, therefore f(y) = ℙ[Y becomes extinct Y₀ = y]. Since ζ ≤ 1, it follows f is bounded, so this follows as before. Further significant examples come from, for example, multidimensional random walk absorbed at boundary of a geometric region.
APTS-ASP 83 L 4: Counting and compensating	APTS-ASP -4: Counting and compensating Counting and compensating Counting and compensating Counting and compensating Counting and compensating
Counting and compensating	
<text><text><text></text></text></text>	We can now make a connection between martingales and Markov chains. We start with the Poisson process, viewed as a process used for counting incidents, and show how martingales can be used to describe much more general counting processes.
APTS-ASP 85	APTS-ASP
APTS-ASP 85 - 4: Counting and compensating - Simplest example: Poisson process	4: Counting and compensating Simplest example: Poisson process Simplest example: Poisson process
4: Counting and compensating	4: Counting and compensating Simplest example: Poisson process
L-4: Counting and compensating LSimplest example: Poisson process	4: Counting and compensating Simplest example: Poisson process Simplest example: Poisson process
Let counting and compensating Simplest example: Poisson process Simplest example: Poisson process Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda = \mu = 0$. The result is a Poisson process of rate α as described before: Definition A continuous-time Markov chain N is a Poisson process of rate $\alpha > 0$ if the only transitions are $N \rightarrow N + 1$ of rate α . Theorem If N is Poisson process of rate α then $\mathbb{P}[N_t = k] = \mathbb{P}[Poisson(\alpha t) = k] = \frac{(\alpha t)^k}{k!}e^{-\alpha t}$. The times of transitions are often referred to as incidents. WARDING	$ \begin{aligned} & \left\{ \begin{array}{l} \text{ for containing and compensating} \\ \text{ Simplest example: Poisson process} \end{array} \right\} & \left[\begin{array}{l} \text{ for containing and compensation} \\ \text{ Simplest example: Poisson process} \end{array} \right] & \left[\begin{array}{l} \text{ for containing and compensation} \\ \text{ for any A of length measure a, the point pattern marks the incidents of a poisson counting process of rate α. \\ \text{ for containing process of rate α. \\ \end{array} $
L₄: Counting and compensating Limplest example: Poisson process Simplest example: Poisson process Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda = \mu = 0$. The result is a Poisson process of rate α as described before: Definition A continuous-time Markov chain N is a Poisson process of rate α > 0 if the only transitions are $N \to N + 1$ of rate α. Theorem If N is Poisson process of rate α then $\mathbb{P}[N_t = k] = \mathbb{P}[Poisson(\alpha t) = k] = \frac{(\alpha t)^k}{k!}e^{-\alpha t}$. The times of transitions are often referred to as incidents.	100000 1000000 1000000 100000000 1000000000000000000000000000000000000
Let counting and compensating Simplest example: Poisson process Simplest example: Poisson process Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda = \mu = 0$. The result is a Poisson process of rate α as described before: Definition A continuous-time Markov chain N is a Poisson process of rate $\alpha > 0$ if the only transitions are $N \rightarrow N + 1$ of rate α . Theorem If N is Poisson process of rate α then $\mathbb{P}[N_t = k] = \mathbb{P}[Poisson(\alpha t) = k] = \frac{(\alpha t)^k}{k!}e^{-\alpha t}$. The times of transitions are often referred to as incidents. WARKING	Fight 1 Counting and compensating Simplest example: Poisson process Fight 2 Counting and compensating Simplest example: Poisson process Fight 2 Counting and compensating Poisson Process Fight 2 Counting Process Fight 2 Counting Proces
L₄: Counting and compensating Simplest example: Poisson process Simplest example: Poisson process Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda = \mu = 0$. The result is a Poisson process of rate α as described before: Definition A continuous-time Markov chain N is a Poisson process of rate α > 0 if the only transitions are $N \to N + 1$ of rate α. Theorem If N is Poisson process of rate α then $\mathbb{P}[N_t = k] = \mathbb{P}[Poisson(\alpha t) = k] = \frac{(\alpha t)^k}{k!}e^{-\alpha t}$. The times of transitions are often referred to as incidents. WARKING APTS-ASP L₄: Counting and compensating Listinglest example: Poisson process	4: Counting and compensating Simplest example: Poisson process Simplest example: Poisson procesprecespont procespontential, Poisson, an

APTS-ASP 121 └-5: Central Limit Theorem └Martingale case	APTS-ASP 5: Central Limit Theorem Martingale case Convergence to Brownian motion
Convergence to Brownian motion Plot of $X_1/\sqrt{n},, X_1/\sqrt{n}$ for $n = 10, 100, 1000, 10000$. $\int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \int_{-0.5}^{$	Convergence to Brownian motion
and Var $[B_{t+s} - B_s] = t$, continuous paths.	APTS-ASP
Les	No. 10 - 50 r Karrison - 6: Recurrence 3 mmmenue - 80 - Recurrence - 80 - Recurrence
Recurrence	N We have a theory of recurrence for discrete state space Markov chains. But what if
"A bad penny always turns up" Old English proverb. Speed of convergence Irreducibility for general chains Regeneration and small sets Harris-recurrence Examples	
WARWICK	
APTS-ASP 125 L=6: Recurrence	APTS-ASP 6: Recurrence Motivation from MCMC Motivation from MCMC
 Motivation from MCMC Given a probability density p(x) of interest, for example a Bayesian posterior, we could address the question of drawing from p(x) by using for example Gaussian random-walk Metropolis-Hastings. Thus proposals are normal, mean the current location x, fixed variance-covariance matrix. Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain X which has transition mechanism which mixes a density with staying at the start-point. Evidently the chain almost surely <i>never</i> visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply 	Motivation from MCMC In the discrete sector of the operation of the sector of the sect
APTS-ASP 127 L 6: Recurrence	APTS-ASP - 6: Recurrence - 6: Recurrence - 6: Recurrence
 Recurrence We already know, if X is a Markov chain on a discrete state-space then its transition probabilities converge to a unique limiting equilibrium distribution if: X is irreducible; X is aperiodic; X is positive-recurrent. How in general can one be quantitative about the speed at which convergence to equilibrium can occur? and what if the state-space is not discrete? 	 6: Recurrence Generation of the state state of a convergence for Markov chains in discrete case (uniform and geometric ergodicity). Making sense of continuous state-space, <i>φ</i>-irreducibility, Harris-recurrence. Small sets. Application to important examples. 1. the state space of X cannot be divided into regions some of which are inaccessible from others; 2. the state space of X cannot be broken into periodic cycles; 3. the mean time for X to return to its starting point is finite.
THE ONLY AND A CONTRACT OF A C	

APTS-ASP 153 L-7: Foster-Lyapunov criteria L-Positive recurrence	APTS-ASP -7: Foster-Lyapunov criteria -9 -9 -9 -9 -5ketch of proof -5ketch of
Sketch of proof Proof.	C S S C C C C C C C C C C C C C C C C C
 Y_n = Λ(X_n) + an is non-negative supermartingale up to time T = inf{m ≥ 0 : X_m ∈ C} > n: E [Y_{min{n+1,T}} 𝓕_n, T > n] ≤ (Λ(X_n)-a)+a(n+1) = Y_n. Hence Y_{min{n,T}} converges. So ℙ[T < ∞] = 1 (for otherwise Λ(X) > c and Y_n > c + an). Moreover E[Y_T X₀] ≤ Λ(X₀). So Now use finiteness of b to show E[T* X₀] < ∞, where T* first regeneration in C. 4. φ-irreducibility: positive chance of hitting A before first 	 There is a stationary version of the renewal process of successive regenerations on <i>C</i>. One can construct a "bridge" of <i>X</i> conditioned to regenerate on <i>C</i> at time 0, and then to regenerate again on <i>C</i> at time <i>n</i>. Hence one can sew these together to form a stationary version of <i>X</i>, which therefore has the property that <i>X</i>_t has the equilibrium distribution for all time <i>t</i>.
regeneration in <i>C</i> . Hence $\mathbb{E}[T_A X_0] < \infty$.	
APTS-ASP 155 L 7: Foster-Lyapunov criteria L Positive recurrence	APTS-ASP 7. Foster-Lyapunov criteria Positive recurrence A converse
A converse Suppose on the other hand that $\mathbb{E}[T X_0] < \infty$ for all starting points X_0 , where C is some small set and T is the first time for X to return to C. The Foster-Lyapunov criterion for positive recurrence follows for $\Lambda(x) = \mathbb{E}[T X_0 = x]$ if $\mathbb{E}[T X_0]$ is bounded on C.	 φ-irreducibility then follows automatically. Indeed, (supposing lag 1 for simplicity) [[Λ(X_{n+1}) J_Tn] ≤ Λ(X_n) - 1 + b [_{X_n∈C]}, where b is the mean value of E[Y_T X] if x is chosen using the regeneration probability measure for C. Moreover if the renewal process of successive regenerations on C is aperiodic then a coupling argument shows general X will converge to equilibrium. If the renewal process of successive regenerations on C is not aperiodic then one can sub-sample Showing that X has an equilibrium is then a matter of probabilistic constructions using the renewal process of successive regenerations on C.
WARWICK	
APTS-ASP 157 - 7: Foster-Lyapunov criteria - Geometric ergodicity	APTS-ASP -7: Foster-Lyapunov criteria Geometric ergodicity -Geometric ergodicity -Geometric ergodicity -Geometric ergodicity -Geometric ergodicity -Geometric ergodicity
Geometric ergodicity The Foster-Lyapunov criterion for geometric ergodicity of a ϕ -irreducible Markov chain X on a state-space X: Theorem (Foster-Lyapunov criterion for geometric ergodicity) Given $\Lambda : X \to [1, \infty)$, positive constants $y \in (0, 1)$, $b, c \ge 1$, and a small set $C = \{x : \Lambda(x) \le c\} \subseteq X$ with $\mathbb{E}[\Lambda(X_{n+1}) \mathcal{F}_n] \le \gamma\Lambda(X_n) + b\mathbb{I}_{[X_n \in C]};$ then $\mathbb{E}[\gamma^{-T_A} X_0 = x] < \infty$ for any A with $\phi(A) > 0$, where $T_A = \inf\{n \ge 0 : X_n \in A\}$ is the time when X first hits A, and	1. In words, we can find a $\Lambda(X) \ge 1$ such that $\Lambda(X_n)/y'^n$ determines a supermartingale until $\Lambda(X)$ becomes small enough for X to belong to a small set! 2. We can rescale Λ so that $b = 1$. 3. The criterion for positive-recurrence is implied by this criterion. 4. We can enlarge C and alter b so that the criterion holds simultaneously for all $\mathbb{E}[\Lambda(X_{n+m}) \mathcal{F}_n]$.
moreover (under suitable periodicity conditions) X is geometrically ergodic.	
APTS-ASP 159 L 7: Foster-Lyapunov criteria L Geometric ergodicity	APTS-ASP -7: Foster-Lyapunov criteria Geometric ergodicity -Sketch of proof -1: v-sk_()r - drin memorial sementings vo -1: v-sk_()r - drin memorial s
Sketch of proof Proof.	O Second of proof O - In the second proof O - In the second proof proof O - In the second proof proof proof O - In the second proof proo
1. $Y_n = \Lambda(X_n) / \gamma^n$ defines non-negative supermartingale up to time T when X first hits C: $\mathbb{E} \left[Y_{\min\{n+1,T\}} \mathcal{F}_n, T > n \right] \leq \gamma \times \Lambda(X_n) / \gamma^{n+1} = Y_n.$	 Geometric ergodicity follows by a coupling argument which I do not specify here. The constant y here provides an upper bound on the constant y used in the definition of geometric ergodicity. However it is not necessarily a very good bound!
Hence $Y_{\min\{n,T\}}$ converges. 2. $\mathbb{P}[T < \infty] = 1$, for otherwise $\Lambda(X) > c$ and so $Y_n > c/y^n$ does not converge. Moreover $\mathbb{E}[y^{-T}] \leq \Lambda(X_0)$. 3. Finiteness of <i>b</i> shows $\mathbb{E}[y^{-T^*} X_0] < \infty$, where T^* is time of regeneration in <i>C</i> . 4. From ϕ -irreducibility there is positive chance of hitting <i>A</i> before regeneration in <i>C</i> . Hence $\mathbb{E}[y^{-T_A} X_0] < \infty$.	

APTS-ASP 161	APTS-ASP 7. Foster-Lyapunov criteria 6. Geometric ergodicity 1. Two converses 6. C
Two converses	N alos. A far no suz Solingi, N alos a far o suz Solingi, S for term exament detected alon de actiones et al granda far actiones et al term alor al term alor term alo
 Suppose on the other hand that E [y^{-T} X₀] < ∞ for all starting points X₀ (and fixed y ∈ (0, 1)), where C is some small set and T is the first time for X to return to C. The Foster-Lyapunov criterion for geometric ergodicity then follows for Λ(x) = E [y^{-T} X₀ = x] if E [y^{-T} X₀] is bounded on C. Uniform ergodicity follows if the Λ function is bounded above. But more is true. Strikingly, For Harris-recurrent Markov chains the existence of a geometric Foster-Lyapunov condition is equivalent to the property of geometric ergodicity. 	 This was used in Kendall 2004 to provide perfect simulation <i>in principle</i>. The Markov inequality can be used to convert the condition on Λ(X) into the existence of a Markov chain on [0,∞) whose exponential dominates Λ(X). The chain in question turns out to be a kind of queue (in fact, D/M/1). For y ≥ e⁻¹ the queue will not be recurrent; however one can sub-sample X to convert the situation into one in which the dominating queue will be positive-recurrent.
APTS-ASP 163	APTS-ASP 7: Foster-Lyapunov criteria
Examples	Comparing Comparing Comparing -7: Foster-Lyapunov criteria Comparing
Examples	C C C C C C C C C C C C C C C C C C C
 General reflected random walk: X_{n+1} = max{X_n + Z_{n+1}, 0} with independent Z_{n+1} of continuous density, E [Z_{n+1}] < 0. Then (a) X is Lebesgue-irreducible on [0,∞); (b) Foster-Lyapunov criterion for positive recurrence applies. Similar considerations often apply to Metropolis-Hastings Markov chains based on random walks. Reflected Simple Asymmetric Random Walk: X_{n+1} = max{X_n + Z_{n+1}, 0} with independent Z_{n+1} such that P [Z_{n+1} = -1] = q = 1 - p = 1 - P [Z_{n+1} = +1] > ¹/₂. (a) X is counting-measure-irreducible on non-negative integers; (b) Foster-Lyapunov criterion for geometric ergodicity applies. Aim for E [e^{aZ_{n+1}] < 1 for some positive a.} 	 It is instructive to notice that the criteria continue to apply to a considerable variety of appropriately modified Markov chains. 1. (a) Test understanding: Lebesgue-irreducibility follows from continuous jump density by writing down chains of transitions; (b) Test understanding: Check Foster-Lyapunov criterion for positive recurrence for Λ(x) = x. 2. (a) Test understanding: this is the same as ordinary irreducibility for discrete-state-space Markov chains! (b) Test understanding: Check Foster-Lyapunov criterion for geometric ergodicity for Λ(x) = e^{ax} for small positive a. (Further practical remarks about contrast between theory and practice)
APTS-ASP 165	APTS-ASP - 7: Foster-Lyapunov criteria
Examples	7: Coster-Lyapunov criteria 6: Examples 6: Reflected Simple asymmetric random walk (II) 7: Coster-Lyapunov criteria 6: Coster
Reflected Simple asymmetric random walk (II)	C C C C C C C C C C C C C C
► Positive recurrence criterion: check for $\Lambda(x) = x$, $C = \{0\}$: $\mathbb{E}[\Lambda(X_1) X_0 = x_0] = \begin{cases} \Lambda(x_0) - (q-p) & \text{if } x_0 \notin C, \\ 0+p & \text{if } x_0 \in C. \end{cases}$ ► Geometric ergodicity criterion: check for $\Lambda = e^{ax}$, $C = \{0\} = \Lambda^{-1}(\{1\})$: $\mathbb{E}[\Lambda(X_1) X_0 = x_0] = \begin{cases} \Lambda(x_0) \times (pe^a + qe^{-a}) & \text{if } x_0 \notin C, \\ 1 \times (p + qe^{-a}) & \text{if } x_0 \in C. \end{cases}$ This works when $pe^a + qe^{-a} < 1$; equivalently when $0 < a < \log(q/p)$ (solve the quadratic in e^a !).	One may ask, does this kind of argument show that <i>all</i> positive-recurrent random walks can be shown to be geometrically ergodic simply by moving from $\Lambda(x) = x$ to $\Lambda(x) = e^{ax}$? The answer is no, essentially because there exist random walks whose jump distributions have negative mean but fail to have exponential moments
APTS-ASP 167	APTS-ASP S: Cutoff
	Catification of the second sec
Cutoff	
"I have this theory of convergence, that good things always happen with bad things." Cameron Crowe, Say Anything film, 1989 The cutoff phenomenon Cutoff and eigenvalues Two metrics A special case	In what way does a Markov chain converge to equilibrium? Is it a gentle exponential process? Or might most of the convergence happen relatively quickly? Once again we focus on reversible Markov chains, as these make computations simpler.

3. Bear in mind that in this finite-state-space context eigenfunctions are the same as eigenvectors!

(-8: Cutoff $ \begin{array}{c} -8 \text{ special case} \end{array} $ Cutoff (IV): upper bound in special case Sibbs' sampler for zero-interaction Ising model Model for Gibb's sampler. Consider $N \times N$ array of ± 1 . At each step choose entry at random, flip sign. As above, identify $\binom{N^2}{r}$ eigenfunctions of eigenvalue $1 - \frac{2r}{N^2}$, for $0 \le r \le N^2$. Set $n = \frac{N^2}{4}(\log(N^2) + \theta)$. $ \ \frac{P_x^{(n)}(\cdot)}{\pi(\cdot)} - 1 \ _{\pi}^2 = \sum_{r=1}^{N^2} \binom{N^2}{r} (1 - \frac{2r}{N^2})^{2n} $ $ \le \sum_{r=1}^{N^2} \binom{N^2}{r} \exp\left(-\frac{2r}{N^2}(\frac{N^2}{2}(\log(N^2) + \theta))\right) $ $ = \sum_{r=1}^{N^2} \binom{N^2}{r} (N^2)^{-r} e^{-r\theta} \le \sum_{r=1}^{N^2} \frac{1}{r!} e^{-r\theta} \le \exp(e^{-\theta}) $	— 1 1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} APTS-ASP \\ \hline & S: Cutoff \\ & Lotoff \\ & Cutoff (IV): upper bound in special case \end{array} \end{array} \qquad $	- 3.
L	PTS-ASP -8: Cutoff L-A special case Cutoff (V): lower bound in special case	179	$\begin{array}{c} \text{APTS-ASP} \\ \hline 8: \ \text{Cutoff} \\ \hline \text{Aspecial case} \\ \hline \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Cutoff (V): lower bound in special case} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	
	The upper bound suggests a cutoff: $dist_{TV}(P_X^{(n)}, \pi)) \leq \sqrt{\frac{\exp(e^{-\theta}) - 1}{2}}$		Calculations for other cases can be much harder. In general, expect cutoff when there are large numbers of "second" eigenvalues. Should one expect cutoff for the case of an Ising model with weak interaction?	
	Since $n = \frac{N^2}{4}(\log(N^2) + \theta)$, the cutoff occurs at around $\frac{N^2}{4}\log(N^2)$ and lasts of order $\frac{N^2}{4}$. However to make sure this works, we also need a lower bound on dist _{TV} ($P_X^{(n)}, \pi$)). Achieve this by comparing means and variances of $Z \sum_{i=1}^{N^2} X_i$, where X_i is spin at site <i>i</i> . Simple estimates confirm that there is still substantial total variation distance at $\frac{N^2}{4}\log(N^2)$, so this is a real cutoff. Moral: effective convergence can be much faster than one realizes, and occur over a fairly well defined period of time. Ward	<u>v</u> jck	Probably The famous <i>Peres conjecture</i> says cutoff is to be expected for a chain with transitive symmetry if $(1 - \lambda_2)\tau \rightarrow \infty$, where λ_2 is the second largest eigenvalue (so $1 - \lambda_2$ is the "spectral gap"), and τ is the (deterministic) time at which the total variation distance to equilibrium becomes smaller than $\frac{1}{2}$. However there is a counterexample to Peres' conjecture as expressed above, (communication from Connor, PhD thesis 2007, which is communication of Diaconis, of work of which Diaconis knows). So the conjecture needs to be refined! Use Markov's inequality to convert mean and variance comparisons into inequalities. (Further practical remarks)	
	PTS-ASP -8: Cutoff LA special case	181	APTS-ASP 182 └-8: Cutoff └-A special case	
	Aldous, D. J. (1989).			1
	 Probability approximations via the Poisson clumping heuristic, Volume 77 of Applied Mathematical Sciences. New York: Springer-Verlag. Aldous, D. J. and J. A. Fill (2001). Reversible Markov Chains and Random Walks on Graphs. Unpublished. Athreya, K. B. and P. Ney (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493–501. Bayer, D. and P. Diaconis (1992). Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313. Breiman, L. (1992). Probability, Volume 7 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Corrected reprint of the 1968 original. 	<u>v</u> ick	 Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist. 42, 59-66. Doyle, P. G. and J. L. Snell (1984). Random walks and electric networks, Volume 22 of Carus Mathematical Monographs. Washington, DC: Mathematical Association of America. Fleming, I. (1953). Casino Royale. Jonathan Cape. Grimmett, G. R. and D. R. Stirzaker (2001). Probability and random processes (Third ed.). New York: Oxford University Press. Häggström, O. (2002). Finite Markov chains and algorithmic applications, Volume 52 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press. 	
	 Probability approximations via the Poisson clumping heuristic, Volume 77 of Applied Mathematical Sciences. New York: Springer-Verlag. Aldous, D. J. and J. A. Fill (2001). Reversible Markov Chains and Random Walks on Graphs. Unpublished. Athreya, K. B. and P. Ney (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493-501. Bayer, D. and P. Diaconis (1992). Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294-313. Breiman, L. (1992). Probability, Volume 7 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Corrected reprint of the 1968 original. 	млт. и УјСК	 Martingale central limit theorems. Ann. Math. Statist. 42, 59-66. Doyle, P. G. and J. L. Snell (1984). Random walks and electric networks, Volume 22 of Carus Mathematical Monographs. Washington, DC: Mathematical Association of America. Fleming, I. (1953). Casino Royale. Jonathan Cape. Grimmett, G. R. and D. R. Stirzaker (2001). Probability and random processes (Third ed.). New York: Oxford University Press. Häggström, O. (2002). Finite Markov chains and algorithmic applications, Volume 52 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press. 	

APTS-ASP 185 Ls: Cutoff	APTS-ASP 186
	□ A special case
 Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43(4), 309-318. Nummelin, E. (1984). General irreducible Markov chains and nonnegative operators, Volume 83 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press. Øksendal, B. (2003). Stochastic differential equations (Sixth ed.). Universitext. Berlin: Springer-Verlag. An introduction with applications. Steele, J. M. (2004). The Cauchy-Schwarz master class. MAA Problem Books Series. Washington, DC: Mathematical Association of America. An introduction to the art of mathematical inequalities. 	Stoyan, D., W. S. Kendall, and J. Mecke (1995). Stochastic geometry and its applications (Second ed.). Chichester: John Wiley & Sons. (First edition in 1987 joint with Akademie Verlag, Berlin). Williams, D. (1991). Probability with martingales. Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.
WARWICK	WARWICK
APTS-ASP 187 L-8: Cutoff L-A special case	
Photographs used in text	
 Police phone box en.wikipedia.org/wiki/Image: Earls_Court_Police_Box.jpg The standing martingale en.wikipedia.org/wiki/Image:Hunterhorse.jpg Boat Race: en.wikipedia.org/wiki/Image: Boat_Race_Finish_2008Oxford_winners.jpg Impact site of fragment G of Comet Shoemaker-Levy 9 on Jupiter en.wikipedia.org/wiki/Image: Impact_site_of_fragment_G.gif The cardplayers en.wikipedia.org/wiki/Image:Paul_C%C3% A9zanne%2C_Les_joueurs_de_carte_%281892-95%29.jpg Chinese abacus en.wikipedia.org/wiki/Image:Boulier1.JPG Error function en.wikipedia.org/wiki/Image:Error_Function.svg Boomerang en.wikipedia.org/wiki/Image:Boomerang.jpg Alexander Lyapunov en.wikipedia.org/wiki/Image: 	
Alexander_Ljapunow_jung.jpg Riffle shuffle (photo by Johnny Blood) en.wikipedia.org/wiki/Image:Riffle_shuffle.jpg	