APTS-ASP	APTS-ASP
APTS Applied Stochastic Processes Wilfrid Kendall w.s.kendall@warwick.ac.uk Department of Statistics, University of Warwick 12th July 2008	Introduction 1: Markov chains and reversibility 2: Martingales 3: Stopping times 4: Counting and compensating 5: Central Limit Theorem 6: Recurrence 7: Foster-Lyapunov criteria 8: Cutoff
APTS-ASP $L_{\text {Introduction }}$	
Introduction ". . you never learn anything unless you are willing to take a risk and tolerate a little randomness in your life." - Heinz Pagels, The Dreams of Reason, 1988. This module is intended to introduce students to two important notions in stochastic processes - reversibility and martingales - identifying the basic ideas, outlining the main results and giving a flavour of some significant ways in which these notions are used in statistics. These notes outline the content of the module; they represent work-in-progress and will grow, be corrected, and be modified as the module lectures progress.	Probability provides one of the major underlying languages of statistics, and purely probabilistic concepts often cross over into the statistical world. So statisticians need to acquire some fluency in the general language of probability and to build their own mental map of the subject. The Applied Stochastic Processes module aims to contribute towards this end. Corrections and suggestions are of course welcome! Email w.s.kendall@warwick.ac.uk. All images in these notes either are constructed by the author or have been released into the public domain.
APTS-ASP $L_{\text {Introduction }}$ $L_{\text {Learning outcomes }}$	
Learning Outcomes After successfully completing this module an APTS student will be able to: - describe and calculate with the notion of a reversible Markov chain, both in discrete and continuous time; - describe the basic properties of discrete-parameter martingales and check whether the martingale property holds; - recall and apply some significant concepts from martingale theory; - explain how to use Foster-Lyapunov criteria to establish recurrence and speed of convergence to equilibrium for Markov chains.	These outcomes interact interestingly with various topics in applied statistics. However the most important aim of this module is to help students to acquire general awareness of further ideas from probability as and when that might be useful in their further research.
APTS-ASP $L_{\text {Introduction }}$ $L_{\text {An important instruction }}$	
First of all, read the preliminary notes ... They provide notes and examples concerning a basic framework covering: - Probability and conditional probability; - Expectation and conditional expectation; - Discrete-time countable-state-space Markov chains; - Continuous-time countable-state-space Markov chains; - Poisson processes.	The purpose of the preliminary notes is not to provide all the information you might require concerning probability, but to serve as a prompt about material you may need to revise, and to introduce and to establish some basic choices of notation.

Some useful texts (I)

"There is no such thing as a moral or an immoral book. Books are well written or badly written."

- Oscar Wilde (1854-1900),

The Picture of Dorian Gray, 1891, preface
The next three slides list various useful textbooks. At increasing levels of mathematical sophistication:

1. Häggström (2002) "Finite Markov chains and algorithmic applications".
2. Grimmett and Stirzaker (2001) "Probability and random processes".
3. Breiman (1992) "Probability".
4. Norris (1998) "Markov chains".
5. Williams (1991) "Probability with martingales".

WARUM'

APTS-ASP	11
$L_{\text {Introduction }}$	
$\quad L_{\text {Some useful texts }}$	

Some useful texts (II): free on the web

N	APTS-ASP
	L So

1. Häggström (2002) is a delightful introduction to finite state-space discrete-time Markov chains, from point of view of computer algorithms.
2. Grimmett and Stirzaker (2001) is the standard undergraduate text on mathematical probability. This is the book I advise my undergraduate students to buy, because it contains so much material
3. Breiman (1992) is a first-rate graduate-level introduction to probability.
4. Norris (1998) presents the theory of Markov chains at a more graduate level of sophistication, revealing what I have concealed, namely the full gory story about Q-matrices.
5. Williams (1991) provides an excellent graduate treatment for theory of martingales: mathematically demanding.
6. Doyle and Snell (1984) "Random walks and electric networks" available on web at
www.arxiv.org/abs/math/0001057.
7. Kindermann and Snell (1980) "Markov random fields and their applications" available on web at
www.ams.org/online_bks/conm1/.
8. Meyn and Tweedie (1993) "Markov chains and stochastic stability" available on web at
www.probability.ca/MT/.
9. Aldous and Fill (2001) "Reversible Markov Chains and Random Walks on Graphs" only available on web at www.stat.berkeley.edu/~aldous/RWG/book.html.

APTS-ASP	13
$L_{\text {Introduction }}$	
$\quad L_{\text {Some useful texts }}$	

Some useful texts (III): going deeper

Here are a few of the many texts which go much further

1. Kingman (1993) gives a very good introduction to the wide circle of ideas surrounding the Poisson process.
2. We'll cover reversibility briefly in the lectures, but Kelly (1979) shows just how powerful the technique can be.
3. Steele (2004) is the book to read if you decide you need to know more about (mathematical) inequality.
4. Aldous (1989) is a book full of what ought to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. See
www.stat. berkeley.edu/~aldous/Research/research8o.html.
5. $\emptyset \mathrm{ksendal}$ (2003) is an accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all.
6. Stoyan et al. (1995) discusses a range of techniques used to handle probability in geometric contexts.

- 1: Markov chains and reversibility

Martoc chans and reessibliy

$$
=2
$$

$=2$

Markov chains and reversibility

"People assume that time is a strict progression of cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey . . . stuff."

The Tenth Doctor,
Doctor Who, in the episode "Blink", 2007

Introduction and simplest non-trivial example
Birth, death and immigration
Detailed balance definition and theorem
M/M/1 queue
Random chess
Ising model

We begin our module with the important, simple and subtle idea of a reversible Markov chain, and the associated notion of detailed balance; we will return to these ideas periodically through the module. This first major theme isolates a class of Markov chains for which computation of the equilibrium distribution is relatively straightforward.
(Remember from the pre-requisites: if a chain is irreducible and positive-recurrent then it has an equilibrium distribution $\underline{\pi}$; and if it is aperiodic then $\underline{\pi}$ is also the limiting long-time empirical distribution. Moreover $\underline{\pi} \cdot \underline{P}=\underline{\pi}$ However if there are k states then these matrix equation presents k equations each potentially involving all k unknowns ... a complexity issue if k is large!)

Markov chains and reversibility

Here is detailed balance in a nutshell:
Suppose we could solve for $\underline{\pi}$ in $\pi_{x} p_{x y}=\pi_{y} p_{y x}$
(discrete-time) or $\pi_{x} q_{x y}=\pi_{y} q_{y x}$ (continuous-time). In both
cases simple algebra then shows $\underline{\pi}$ solves the equilibrium equations.
So on a prosaic level it is always worth trying this easy route;
if the detailed balance equations are insoluble then revert to
the more complicated equilibrium equations $\underline{\pi} \cdot \underline{\underline{P}}=\underline{\pi}$,
respectively $\underline{\pi} \cdot \underline{Q}=\underline{0}$.
We will consider reversibility of Markov chains in both discrete and continuous time, the computation of equilibrium distributions for such chains, and application to some illustrative examples.

We will consider:

- simple symmetric random walk;
- the birth-death-immigration process;
- the $M / M / 1$ queue;
- a discrete-time chain on a 8×8 state space;
- Gibbs’ samplers (briefly);
- and Metropolis-Hastings samplers (briefly).

Test understanding: show the detailed balance equations (discrete-case) lead to equilibrium equations by applying them and then $\sum_{x} p_{y x}=1$ to $\sum_{x} \pi_{x} p_{x y}$.

-Simplest non-trivial example (I)

1. Test understanding: explain why X is aperiodic when non-reflected simple symmetric random walk has period 2.
2. Test understanding: verify solution of equilibrium equations.
3. - Develop Markov property to deduce $X_{0}, X_{1}, \ldots, X_{n-1}$ is conditionally independent of X_{n+1}, X_{n+2}, \ldots given X_{n}. Hence reversed Markov chain is still Markov (though not necessarily time-homogeneous in more general circumstances). Suppose the reversed chain has kernel $\bar{p}_{y, x}$

- Use definition of conditional probability to compute
$\bar{p}_{y, x}=\mathbb{P}\left[X_{n-1}=x, x_{n}=y\right] / \mathbb{P}\left[X_{n}=y\right]$,
- then $\mathbb{P}\left[X_{n-1}=x, X_{n}=y\right] / \mathbb{P}\left[X_{n}=y\right]=\mathbb{P}\left[X_{n-1}=x\right] p_{x, y} / \mathbb{P}\left[X_{n}=y\right]$.
- now substitute, using $\mathbb{P}\left[X_{n}=i\right]=\frac{1}{k+1}$ for all i so $\bar{p}_{y, x}=p_{x, y}$.
- Symmetry of kernel ($p_{x, y}=p_{y, x}$) then shows backwards kernel $\bar{p}_{y, x}$ is same as forwards kernel $\bar{p}_{y, x}=p_{y, x}$.
The construction generalizes ... so the link between reversibility and detailed balance holds generally. $\pi_{x} \mathbb{P}\left[X_{n}=y \mid X_{n-1}=x\right] / \pi_{y}=\mathbb{P}\left[X_{n}=y \mid X_{n-1}=x\right]$ so this case by symmetry of the kernel the equilibrium chain has the same transition kernel (so looks the same) whether run forwards or backwards in time.

WARWMCK

APTS-ASP	21
$L_{1:}$ Markov chains and reversibility	
$L_{\text {Introduction and simplest non-trivial example }}$	

Simplest non-trivial example (II)

There is a computational aspect to this.

1. Even in more general cases, if the π_{i} depend on i then above computations show reversibility holds if equilibrium distribution exists and equations of detailed balance hold: $\pi_{x} p_{x, y}=\pi_{y} p_{y, x}$.
2. Moreover if one can solve for π_{i} in $\pi_{x} p_{x, y}=\pi_{y} p_{y, x}$ then it is easy to show $\underline{\pi} \cdot \underline{\underline{P}}=\underline{\pi}$.
3. Consequently if one can solve the equations of detailed balance, and if the solution can be normalized to have unit total probability, then the result also solves the equilibrium equations.

WARMCK

APTS-ASP

$L_{1: ~ M a r k o v ~ c h a i n s ~ a n d ~ r e v e r s i b i l i t y ~}$
$\left\llcorner_{\text {Birth, death and immigration }}\right.$

Birth-death-immigration process

The same idea works for continuous-time Markov chains: replace transition probabilities $p_{x, y}$ by rates $q_{x, y}$ and equilibrium equation $\underline{\pi} \cdot \underline{P}=\underline{\pi}$ by differentiated variant using Q-matrix: $\underline{\pi} \cdot \underline{\underline{Q}}=\underline{0}$.

Definition

The birth-death-immigration process has transitions:

- Birth $(X \rightarrow X+1$ at rate $\lambda X)$;
- Death ($X \rightarrow X-1$ at rate μX);
- plus an extra Immigration term $(X \rightarrow X+1$ at rate $\alpha)$.

Hence $q_{x, x+1}=\lambda x+\alpha ; q_{x, x-1}=\mu x$.
Equilibrium is derived easily from detailed balance:

$$
\pi_{x}=\frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \ldots \cdot \frac{\alpha}{\mu} \cdot \pi_{0}
$$

\simeq APTS-ASP		
- \square^{\top} : Markov chains and reversibility		
O	- Introduction and simplest non-trivial example	10mes
$\stackrel{\infty}{\circ}$	$\square_{\text {Simplest non-trivial example (II) }}$	
앙		amim

1. Test understanding: check this.
2. Test understanding: check this.
3. Even in this simple example there is an evident improvement in complexity. Detailed balance involves k equations each with two unknowns, easily "chained together". The equilibrium equations involve k equations of which $k-2$ involve three unknowns. In general the detailed balance equations can be solved unless "chaining together by different routes" delivers inconsistent results. Kelly (1979) goes into more detail about this.
Test understanding: show detailed balance doesn't work for 3-state chain with transition probabilities $\frac{1}{3}$ for $0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0$ and $\frac{2}{3}$ for $2 \rightarrow 1$, $1 \rightarrow 0,0 \rightarrow 2$.
Test understanding: show detailed balance does work for doubly reflected asymmetric simple random walk. We will see there are still major computational issues for more general Markov chains, connected with determining the normalizing constant to ensure $\sum_{i} \pi_{i}=1$.

Reversibility here is decidedly non-trivial \ldots. We need $0 \leq \lambda<\mu$ and $\alpha>0$. Note that for this population process the rates $q_{x, x \pm 1}$ make sense and are defined only for $x=0,1,2, \ldots$..
Detailed balance equations:

$$
\pi_{x} \times \mu x=\pi_{x-1} \times(\lambda(x-1)+\alpha) .
$$

Test understanding: check the calculations!
Normalizing constant can be computed exactly when $\lambda<\mu$ via

$$
\pi_{0}^{-1}=\sum_{x=0}^{\infty} \frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \ldots \cdot \frac{\alpha}{\mu}=\left(\frac{\mu}{\mu-\lambda}\right)^{\frac{\alpha}{\lambda}} .
$$

If the condition $\lambda<\mu$ is not satisfied then the sum does not converge and therefore there can be no equilibrium!
If $\alpha=0$ then equilibrium = extinction....
Poisson process: $\lambda=\mu=0$.

Detaled balance and reversiblily

1. Proof of theorem is routine: see example of random walk above.
2. The reversibility phenomenon has surprisingly deep ramifications! Consider birth-death-immigration example above and ask yourself whether it is apparent that the time-reversed process in equilibrium looks statistically the same as the original process. (Note: both immigrations and births
convert to deaths, and vice versa....)

Detailed balance and reversibility

Definition

The Markov chain X satisfies detailed balance if
Discrete time: there is a non-trivial solution of $\pi_{x} p_{x, y}=\pi_{y} p_{y, x}$;
Continuous time: there is a non-trivial solution of $\pi_{x} q_{x, y}=\pi_{y} q_{y, x}$.

Theorem
The irreducible Markov chain X satisfies detailed balance and the solution $\left\{\pi_{x}\right\}$ can be normalized by $\sum_{x} \pi_{x}=1$ if and only if $\left\{\pi_{\chi}\right\}$ is an equilibrium distribution for X and X started in equilibrium is statistically the same whether run forwards or backwards in time.

WARMIC'

APTS-ASP $L_{1: ~ M a r k o v ~ c h a i n s ~ a n d ~ r e v e r s i b i l i t y ~}^{\text {a }}$ $L_{M / M / 1}$ queue			
$M / M / 1$ queue			2
Here we have - Arrivals: $X \rightarrow X+1$ at rate λ; - Departures: $X \rightarrow X-1$ at rate μ if $X>0$. Hence detailed balance: $\mu \pi_{x}=\lambda \pi_{x-1}$ and therefore when $\lambda<\mu$ (stability) the equilibrium distribution is $\pi_{x}=\rho^{x}(1-\rho)$ for $x=0,1, \ldots$, where $\rho=\frac{\lambda}{\mu}$ (the traffic intensity). Reversibility/detailed balance is more than a computational device: consider Burke's theorem, if a stable $M / M / 1$ queue is in equilibrium then people leave according to a Poisson process of rate λ. Hence if a stable $M / M / 1$ queue feeds into another stable $\cdot / M / 1$ queue then in equilibrium the second queue on its own behaves as an $M / M / 1$ queue in equilibrium.	We recall the $M / M / 1$ queue example discussed in the preliminary notes. Birth-death-immigration processes and queueing processes are examples of generalized birth-death processes; only $X \rightarrow X \pm 1$ transitions, hence detailed balance equations easily solved. Note: the $M / M / 1$ queue is non-linear. Linearity allows solution of forwards equations: we do not discuss this here. Detailed balance is also a subtle and important tool for the study of Markovian queueing networks (e.g. Kelly 1979). The argument connecting reversibility to detailed balance runs both ways. If detailed balance equations can be solved to derive equilibrium then the process is reversible if run in equilibrium. Hence a one-line proof of Burke's theorem: if queue is run backwards in time then departures become arrivals. Test understanding: use Burke's theorem for a feed-forward $\cdot / M / 1$ queueing network (no loops) to show that in equilibrium each queue viewed in isolation is $M / M / 1$. This uses the fact that independent thinnings and superpositions of Poisson processes are still Poisson....		
APTS-ASP L_{1} : Markov chains and reversibility $L_{\text {Random chess }}$	\qquad		Random chess (Aldous and Fill 2001, Chl, Ch3g2) Example (A mean Knight's tour) Place a chess Knight at the corner of a standard 8×8 chesshore \qquad 1. What as the equabrium distribution? \square \square
Random chess (Aldous and Fill 2001, Ch1, Ch3§2)			

Example (A mean Knight's tour)

Place a chess Knight at the corner of a standard 8×8 chessboard. Move it randomly,
at each move choosing uniformly from available legal chess moves independently of the past.

(use detailed balance)
2. Is the resulting Markov chain periodic?
(what if you sub-sample at even times?)
3. What is the mean time till the Knight
returns to its starting point?
(inverse of equilibrium probability)
WARUMCK
What is the equilibrium distribution?

1. Use $\pi_{v} / d_{v}=\pi_{u} / d_{u}$ if $u \leftrightarrow v$, where d_{u} is the degree of u. Also use fact, there are $168=(2+2 \times 3+5 \times 4+4 \times 6+6 \times 8) \times 4 / 2$ different edges. So total degree is 2×168 and equilibrium probability at corner is $2 /(2 \times 168)$.
2. Period 2 (white versus black). Sub-sampling at even times makes chain aperiodic on squares of one colour.
3. Inverse of equilibrium probability shows that mean return time to corner is 168.
(2)

\sim	APTS-ASP
\sim	1: Markov chains and reversibility
	L Ising model
0	L
$\dot{0}$	Libbs' sampler for Ising model

1. Sample applications: idealized model for magnetism, simple binary image. Physics: interest in fragment expanding to fill whole lattice: cases of zero-interaction, sub-critical, critical ($\frac{k T}{J}=2.269185$), super-critical. The Ising model is the nexus for a whole variety of scientific approaches, each bringing their own rather different questions.
2. $i \sim j$ if i and j are lattice neighbours.

Note, physics treatments use a (physically meaningful) over-parametrization $J \rightarrow \frac{J}{k T}, H \rightarrow m H$.
The $H \sum_{i} s_{i} \tilde{s}_{i}$ term can be interpreted physically as modelling an external magnetic field, or statistically as a noisy image conditioning the image. For a simulation physics view of the Ising model, see the expository article by David Landau in Kendall et al. (2005).
3. Actually computing the normalizing constant here is hard in the sense of complexity theory (see for example Jerrum 2003).

ㄱ \quad 1: Markov chains and reversibility
\qquad

Gibbs’ sampler for Ising model

(II) Gibbs' sampler (or heat-bath)

- Consider Markov chain with states which are Ising configurations on an $n \times n$ lattice, moving as follows:
- Set \underline{s} to be a given configuration, with $\underline{s}^{(i)}$ obtained by flipping spin i,
- Choose a site i in the lattice at random;
- Compute the conditional probability $\mathbb{P}\left[\underline{s} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right]$ of current configuration given configuration at other sites
- Flip the current value of S_{i} with probability $\mathbb{P}\left[\underline{s}^{(i)} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right]$, otherwise leave unchanged.
- Simple general calculations show,

$$
\sum_{i} \frac{1}{n^{2}} \mathbb{P}\left[\underline{s}^{(i)}\right] \times \mathbb{P}\left[\underline{s} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right]=\mathbb{P}[\underline{s}]
$$

so chain has Ising model as equilibrium distribution.

APTS-ASP	35
$L_{1:}$ Markov chains and reversibility	
$\quad L_{\text {Ising model }}$	

Gibbs’ sampler for Ising model

This is a particular example of the Gibbs' sampler in the special context of Ising models.

1. Note that the configurations can be viewed as vectors of ± 1 's listing the various spins at different sites.
2. In case of the Ising model, noting that $s_{i}^{(i)}=-s_{i}$,

$$
\mathbb{P}\left[\underline{s} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right] \propto \frac{\exp \left(J \sum_{j: j \sim i} s_{i} s_{j}\right)}{\exp \left(J \sum_{j: j \sim i} s_{i} s_{j}\right)+\exp \left(-J \sum_{j: j \sim i} s_{i} s_{j}\right)} .
$$

Obvious changes if external field.
3. This is really a completely general computation!

Note how complicated the equilibrium equations are: n^{2} equations, each with n^{2} terms on left-hand side
4. General pattern for Gibbs sampler: update individual random variables according to their conditional distributions given all other random variables.
5. Conditional distributions, so ratios, so normalizing constants cancel out.
(III) Detailed balance

- Detailed balance calculations provide a much easier justification: merely check
$\frac{1}{n^{2}} \mathbb{P}\left[\underline{s}^{(i)}\right] \times \mathbb{P}\left[\underline{s} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right]=\frac{1}{n^{2}} \mathbb{P}[\underline{s}] \times \mathbb{P}\left[\underline{s}^{(i)} \mid\left\{\underline{s}^{(i)}, \underline{s}\right\}\right]$.
- Here is an animation of a Gibbs' sampler producing an Ising model conditioned by a noisy image, produced by systematic scans: 128×128, with 8 neighbours. Noisy image to left, draw from Ising model to right.

Cibs's sampler for sising model bss sampler for sting ma

骨

1. Test understanding: check the detailed balance calculations.

This also works for processes obtained from:

- systematic scans
- coding ("simultaneous updates on alternate colours of a chessboard") but not for wholly simultaneous updates.

2. The example is taken from a discussion of "perfect simulation", but that is another story! See
www.warwick.ac.uk/go/wsk/ising-animations
for more on perfect sampling for the Ising model.

APTS-ASP	37
$L_{1:}$ Markov chains and reversibility	
$\quad L_{\text {Ising model }}$	

Metropolis-Hastings

1. An important alternative to the Gibbs' sampler, even more closely connected to detailed balance:

- Suppose $X_{n}=x$;
- Pick y using a transition probability kernel $\alpha(x, y)$ (the proposal kernel);
- accept the proposed transition $x \rightarrow y$ with probability

$$
q(x, y)=\min \left\{1, \frac{\pi(y) \alpha(y, x)}{\pi(x) \alpha(x, y)}\right\}
$$

- if transition accepted, set $X_{n+1}=y$; otherwise set $X_{n+1}=x$.

2. If π satisfies detailed balance then π is an equilibrium distribution.

WARMCK

APTS-ASP	39
$L_{2:}$ Martingales	

Martingales

"One of these days . . . a guy is going to come up to you and show you a nice brand-new deck of cards on which the seal is not yet broken, and this guy is going to offer to bet you that he can make the Jack of Spades jump out of the deck and squirt cider in your ear. But, son, do not bet this man, for as sure as you are standing there, you are going to end up with an earful of cider."

Frank Loesser.
Guys and Dolls musical, 1950, script

Simplest possible example
Thackeray's martingale
Populations
Definitions
Finance example
Martingales and likelihood
Chicken Little

This is the second major theme of these notes: martingales are a class of random processes which are closely linked to ideas of conditional expectation. Briefly, martingales model your fortune if you are playing a fair game. (There are associated notions of "supermartingale", for a game unfair to you, and "submartingale", for a game fair to you.) But martingales can do so much more!

Martingales pervade modern probability

1. We say the random process X is a martingale if it
satisfies the martingale property:
人 \quad Simplest possible example

We use X as a convenient abbreviation for the stochastic process $\left\{X_{n}: n \geq 0\right\}$, et cetera.

$$
\begin{aligned}
& \mathbb{E}\left[X_{n+1} \mid X_{n}, X_{n-1}, \ldots\right]= \\
& \quad \mathbb{E}\left[X_{n} \text { plus jump at time } n \mid X_{n}, X_{n-1}, \ldots\right]=X_{n} .
\end{aligned}
$$

2. Simplest possible example: simple symmetric random walk $X_{0}=0, X_{1}, X_{2}, \ldots$. The martingale property follows from independence and distributional symmetry of jumps.
3. For convenience and brevity, we often replace $\mathbb{E}\left[\ldots \mid X_{n}, X_{n-1}, \ldots\right]$ by $\mathbb{E}\left[\ldots \mid \mathcal{F}_{n}\right]$ and think of "conditioning on \mathcal{F}_{n} " as "conditioning on all events which can be determined to have happened by time n ".
4. For a conversation with the inventor, see
www.dartmouth.edu/~chance/Doob/conversation.html
5. Expected future level of X is current level.
6. We use \mathcal{F}_{n} notation without comment in future, usually representing conditioning by $X_{0}, X_{1}, \ldots, X_{n}$ (if X is martingale in question). Sometimes further conditioning will be added; but \mathcal{F}_{n+1} always represents at least as much conditioning as \mathcal{F}_{n}. Crucially, the "Tower property" of conditional expectation then applies:

$$
\mathbb{E}\left[\mathbb{E}\left[Z \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right] .
$$

Test understanding: deduce

$$
\mathbb{E}\left[X_{n+k} \mid \mathcal{F}_{n}\right]=X_{n} .
$$

4. There is an extensive theory about the notion of a filtration of σ-algebras or σ-fields, $\left\{\mathcal{F}_{n}: n \geq 0\right\}$. We avoid going into details...

I first became aware of the boat race in about 1970, at which time the martingale property would have seemed not to apply.

There is now a much more satisfactory balance, but I still have my doubts as to the validity of the martingale property here....

Could this represent a martingale?
WARWICK

APTS-ASP	45
$L_{2: ~}$ Martingales	
$\quad L_{\text {Thackeray's martingale }}$	

Thackeray's martingale

1. MARTINGALE:

- spar under the bowsprit of a sailboat;
- a harness strap that connects the nose piece to the girth; prevents the horse from throwing back its head.

2. MARTINGALE in gambling:

The original sense is given in the OED: "a system in gambling which consists in doubling the stake when losing in the hope of eventually recouping oneself." The oldest quotation is from 1815 but the nicest is from 1854: Thackeray in The Newcomes I. 266 "You have not played as yet? Do not do so; above all avoid a martingale if you do."
3. Result of playing Thackeray's martingale system and stopping on first win: set fortune at time n to be M_{n}.
If $X_{1}=-1, \ldots, X_{n}=-n$ then
$M_{n}=-1-2-\ldots-2^{n-1}=1-2^{n}$, otherwise $M_{n}=1$. WARMCK

checrays mantingale ander 2 2

1. This is the "doubling" strategy. The equestrian meaning resembles the probabilistic definition to some extent
2. Notice how Thackeray's martingale is really based on a simple symmetric random walk.
Test understanding: compute the expected value of M_{n} from first principles.
3. Test understanding: what should be the value of $\mathbb{E}\left[\tilde{M}_{n}=1\right]$ if \tilde{M} is computed as for M but stopping play if M hits level $1-2^{N}$? (Think about this, but note that a satisfactory answer has to await discussion of optiona stopping theorem in next section.)

APTS-ASP

$L_{2 \text { : Martingales }}$
$\left\llcorner_{\text {Populations }}\right.$

Martingales and populations

1. Consider a branching process Y : population at time n is Y_{n}, where $Y_{0}=1$ (say) and Y_{n+1} is the sum $Z_{n, 1}+\ldots+Z_{n, Y_{n}}$ of Y_{n} independent copies of a non-negative integer-valued family-size r.v. Z.
2. Suppose $\mathbb{E}[Z]=\mu<\infty$. Then $X_{n}=Y_{n} / \mu^{n}$ defines a martingale.
3. Suppose $\mathbb{E}\left[s^{Z}\right]=G(s)$. Let $H_{n}=Y_{0}+\ldots+Y_{n}$ be total of all populations up to time n. Then $s^{H_{n}} /\left(G(s)^{H_{n-1}}\right)$ defines a martingale
4. In both these examples we can use $\mathbb{E}\left[\ldots \mid \mathcal{F}_{n}\right]$, representing conditioning by all $Z_{m, i}$ for $m \leq n$.

49 -2: Martingales
$L_{\text {Definitions }}$

Definition of a martingale

Formally:

Definition
X is a martingale if $\mathbb{E}\left[\left|X_{n}\right|\right]<\infty$ (for all n) and

$$
X_{n}=\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]
$$

\simeq APTS-ASP
ㄱ 2: Martingales

1. It is important that the X_{n} are integrable

2. It is a consequence that X_{n} is part of the conditioning expressed by \mathcal{F}_{n}. 3. Sometimes we expand the reference to \mathcal{F}_{n}.

$$
x_{n}=\mathbb{E}\left[x_{n+1} \mid x_{n}, x_{n-1}, \ldots, x_{1}, x_{0}\right]
$$

$X_{n}=\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]$.

APTS-ASP	51		
$L_{\text {2: }}$ Martingales			Supermartingales and submartingales Definition
$\left\llcorner_{\text {Definitions }}\right.$			$\left\|X_{a}\right\|$ is a supermartingale if $E\left[\left\|X_{0}\right\|\right]<m$ \|for all m and
Supermartingales and submartingales			

Two associated definitions

Definition

$\left\{X_{n}\right\}$ is a supermartingale if $\mathbb{E}\left[\left|X_{n}\right|\right]<\infty$ (for all n) and

$$
X_{n} \geq \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]
$$

(and X_{n} forms part of conditioning expressed by \mathcal{F}_{n}).

1. It is important that the X_{n} are integrable.

It is now not automatic that X_{n} forms part of the conditioning expressed by \mathcal{F}_{n}, and it is important that this is part of the definition.
2. It is important that the X_{n} are integrable.

Again it is important that X_{n} forms part of the conditioning expressed by \mathcal{F}_{n}.
How to remember the difference between "sub-" and "super-"? Suppose $\left\{X_{n}\right\}$ measures your fortune in a casino gambling game. Then "sub-" is bad and "super-" is good for the casino!
Wikipedia: life is a supermartingale, as one's expectations are always no greater than one's present state.
Definition
$\left\{X_{n}\right\}$ is a submartingale if $\mathbb{E}\left[\left|X_{n}\right|\right]<\infty($ for all n) and

$$
X_{n} \leq \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right],
$$

(and X_{n} forms part of conditioning expressed by \mathcal{F}_{n}).

1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation.
2. This holds even if the walk is stopped on first return to 0 .
3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation.
4. Consider branching process $\left\{Y_{n}\right\}$ and consider Y_{n} on its own instead of Y_{n} / μ^{n}. This is a supermartingale if $\mu<1$ (sub-critical case), a submartingale if $\mu>1$ (super-critical case), a martingale if $\mu=1$ (critical case).

WARICK

APTS-ASP

$L_{2 \text { : Martingales }}$
LFinance example

An example of importance in finance

1. Suppose N_{1}, N_{2}, \ldots are independent identically distributed normal random variables of mean 0 and variance σ^{2}, and put $S_{n}=N_{1}+\ldots+N_{n}$.
2. Then the following is a martingale:

$$
Y_{n}=\exp \left(S_{n}-\frac{n}{2} \sigma^{2}\right)
$$

3. A modification exists for which the N_{i} have non-zero mean μ.
Hint: $S_{n} \rightarrow S_{n}-n \mu$.
Here (modifications of) Y_{n} provides the simplest model for market price fluctuations appropriately discounted.
4. In fact $\left\{S_{n}\right\}$ is a martingale, though this is not the point here.
5. Test understanding: Prove this!

Hint: $\mathbb{E}\left[\exp \left(N_{1}\right)\right]=e^{\sigma^{2} / 2}$.
3. Test understanding: figure out the modification!
4. A continuous-time variation on this (using Brownian motion) is an important baseline model in mathematical finance. Note that the martingale can be expressed as

$$
Y_{n+1}=Y_{n} \exp \left(N_{n+1}-\frac{\sigma^{2}}{2}\right)
$$

Martingales and likelihood

- Suppose X_{1}, X_{2}, \ldots are observed at times 1, 2, Write down likelihood at time n :

$$
L\left(\theta ; X_{1}, \ldots, X_{n}\right)=p\left(X_{1}, \ldots, X_{n} \mid \theta\right)
$$

- If θ_{0} is "true" value then (computing expectation with $\theta=\theta_{0}$)

$$
\mathbb{E}\left[\left.\frac{L\left(\theta_{1} ; X_{1}, \ldots, X_{n+1}\right)}{L\left(\theta_{0} ; X_{1}, \ldots, X_{n+1}\right)} \right\rvert\, \mathcal{F}_{n}\right]=\frac{L\left(\theta_{1} ; X_{1}, \ldots, X_{n}\right)}{L\left(\theta_{0} ; X_{1}, \ldots, X_{n}\right)}
$$

2. Hence likelihood ratios are really the same thing as martingales.
3. The martingale in the finance example can also arise in this way, as the likelihood ratio between two different values of θ if the model is that the X_{i} are independent identically distributed $N\left(\theta, \sigma^{2}\right)$.
4. Simple case of normal data with unknown mean θ :

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right) \propto \exp \left(\sum_{1}^{n} x_{i}-\frac{n}{2} \theta^{2}\right) .
$$

\square

1. An comet may or may not collide with Earth in n days time. Chaotic dynamics: model by supposing comet may follow one of n possible paths, of which just one leads to collision at day n.
2. Each day, new observations eliminate exactly one of possible paths: path to be eliminated on day r is chosen from $n-r+1$ surviving paths uniformly at random and independently of the past.
3. This is a considerable simplification of chaotic dynamics, but not unreasonable.
4. This models the fact that observations are hard to come by, and do not provide much information.
5. Let D be indicator random variable indicating event that collision occurs, and compute $\mathbb{E}\left[D \mid \mathcal{F}_{r}\right]$ where \mathcal{F}_{r} captures information of whether or not collision occurs by day r.
Probability of collision grows more and more rapidly (1/(n-r) on day r) till either it suddenly falls to zero (if collision path eliminated before n) or collision actually occurs (if collision path not eliminated before day n). Therefore collision probability increases day by day (engendering increasing despair), hopefully until it falls to zero (engendering mass relief).
6. Compute conditional collision probability at day r, supposing collision path is not yet been eliminated. Deduce that conditional collision probabilities at days $r=0,1, \ldots, n$ form a martingale.

APTS-ASP	61
$\left\llcorner_{3: ~}\right.$ Stopping times	

Stopping times

"Hurry please it's time."
T. S. Eliot,

The Waste Land, 1922
"No-look-ahead" condition
Random walk example
Branching process example
Events revealed by stopping time
Optional Stopping Theorem
Application to gambling
Hitting times
Martingale convergence
Harmonic functions

Playing a fair game, what happens if you adopt a strategy of leaving the game at a random time? For "reasonable" random times, this should offer you no advantage. Here we seek to make sense of the term "reasonable".
Note that the gambling motivation is less frivolous than it might appear. Mathematical finance is about developing trading strategies (complex gambles!) aimed at controlling uncertainty.
APTS-ASP 63

$\left\llcorner_{3 \text { : Stopping times }}\right.$

Stopping times

The big idea

$\begin{aligned} & \sim \text { APTS-ASP } \\ & \underset{\sim}{\sim} \quad 3: \text { Stopping times } \end{aligned}$	Stoppin times
边	

How can T fail to be "nice"? Consider simple symmetric random walk X begun at 0.

1. Example of "looking ahead": Set $S=\sup \left\{X_{n}: 0 \leq n \leq 10\right\}$ and set $T_{2}=\inf \left\{n: X_{n}=S\right\}$. Then $\mathbb{E}\left[X_{T_{2}}\right] \geq \mathbb{P}[S>0]>0=\mathbb{E}\left[X_{0}\right]$
2. Example of being "too big": $T_{1}=\inf \left\{n: X_{n}=1\right\}$ so (assuming T is almost surely finite) $\mathbb{E}\left[X_{T_{1}}\right]=1>0=\mathbb{E}\left[X_{0}\right]$
3. Example of possibly being infinite: asymmetric simple random walk X begun at $0, \mathbb{E}\left[X_{1}\right]<0, T_{1}=\inf \left\{n: X_{n}=1\right\}$ as above.

For a random time T to be "nice", two things are required:

1. T must not "look ahead";
2. T must not be "too big".

- ANIMATION

3. Note that in general a useful random time T can have positive chance of being infinite.

Non-obvious "no-look-ahead" condition

Definition

A non-negative integer-valued random variable T is said to be a stopping time if (equivalently) for all n

- $[T \leq n]$ is determined by information at time n;
- or $[T \leq n] \in \mathcal{F}_{n}$
- or we can write rules (Bernoulli random variables) ζ_{0}, ζ_{1}, \ldots with ζ_{n} in \mathcal{F}_{n}, such that

$$
\left[\zeta_{n}=1\right]=[T \leq n] .
$$

Note that we need to have a clear notion of exactly what might be \mathcal{F}_{n}, information revealed by time n.

Here is a poetical illustration of a non-stopping time, due to my father David Kendall:

There is a rule for timing toast, You never need to guess;
Just wait until it starts to smoke, And then ten seconds less.
(Adapted from a "grook" by Piet Hein, Grooks I/ MIT Press, 1968.)
Recall the example on previous slide of T being the time to hit 1 for a negatively-biased simple random walk begun at 0 : stopping times can have positive chance of being infinite.

APTS-ASP	67
$\left\llcorner_{\text {3: Stopping times }}\right.$	
$\quad L_{\text {Random walk example }}$	

Example using random walks

1. X need not be symmetric, need not be simple. Indeed a Markov chain or even a general random process would do.
2. We could replace $n>0$ by $n \geq 0, X \geq 10$ by $X \in A$ for some subset A of state-space, .
thus we could have $T_{A}=\inf \left\{n>0: X_{n} \in A\right\}$ (the "hitting time on A ").
3. In case of hitting time on A,

$$
\left[T_{A} \leq n\right]=\left[X_{1} \in A\right] \cup \ldots \cup\left[X_{n} \in A\right]
$$

so [$T_{A} \leq n$] is determined by information at time n, so T_{A} is a stopping time.
4. General hitting times T_{A} need not be "too big": example if X is simple symmetric random walk begun at 0 and $A=\{ \pm 10\}$.

- Finally, T is typically "too big": so long as it is almost

The random time $T=\inf \left\{n>0: X_{n} \geq 10\right\}$ is a stopping time.

- Indeed [$T \leq n$] is clearly determined by information at time n :

$$
[T \leq n]=\left[X_{1} \geq 10\right] \cup \ldots \cup\left[X_{n} \geq 10\right]
$$

\section*{surely finite, we find that $0=\mathbb{E}\left[X_{0}\right]<\mathbb{E}\left[X_{T}\right]$. Finiteness is the case if $\mathbb{E}\left[X_{1}\right]>0$ or if $\mathbb{E}\left[X_{1}\right]=0$ and $\mathbb{P}\left[X_{1}>0\right]>0$.
 | $\quad \begin{array}{l}\text { Surely finite, we find that } 0=\mathbb{E}\left[X_{0}\right]< \\ \\ \text { Finiteness is the case if } \mathbb{E}\left[X_{1}\right]>0 \text { or if } \mathbb{E}\left[X_{1}\right]=0\end{array}$ |
| :--- |
| $\begin{array}{l}\text { APTS-ASP } \\ L_{3:} \\ L_{\text {Branching process example }}\end{array}$ |
| Example using branching processes |}

Let Y be a branching process of mean-family-size μ (so Y_{n} / μ^{n} determines a martingale), with $Y_{0}=1$.

- The random time $T=\inf \left\{n: Y_{n}=0\right\}=\inf \left\{n: X_{n}=0\right\}$ is a stopping time.
- Indeed [$T \leq n$] is clearly determined by information at time n :

$$
[T \leq n]=\left[Y_{n}=0\right]
$$

since $Y_{n-1}=0$ implies $Y_{n}=0$ et cetera.

- Again T here is "too big": so long as it is almost surely finite then $1=\mathbb{E}\left[X_{0}\right]>\mathbb{E}\left[X_{T}\right]$.
Finiteness occurs if $\mu<1$, or if $\mu=1$ and there is positive chance of zero family size.

1. So $Y_{n}=Z_{n-1,1}+\ldots+Z_{n-1, Y_{n-1}}$ for independent family sizes $Z_{m, j}$. 2. For a more interesting example, consider
$S=\inf \{n$: at least one family of size 0 before $n\}$
2. In case of S, consider

$$
[S \leq n]=A_{0} \cup A_{1} \cup \ldots \cup A_{n-1}
$$

where $A_{i}=\left[Z_{i, j}=0\right.$ for some $\left.j \leq Y_{i}\right]$. Thus [$\left.S \leq n\right]$ is determined by information at time n, so S is a stopping time.
4. It is important to be clear about what is information provided at time n Here we suppose it to be made up only of the sizes of families produced by individuals in generations $0,1, \ldots, n-1$. Other choices are possible, of course.

APTS-ASP	71
$L_{3:}$ Stopping times	
$\quad L_{\text {Events revealed by stopping time }}$	

Events revealed by the time of a stopping time T

Suppose T is a stopping time.

Definition
The "pre- $T \sigma$-algebra" \mathcal{F}_{T} is composed of events which, if T does not occur later than time n, are themselves determined at time n. Thus:

$$
A \in \mathcal{F}_{T} \quad \text { if } \quad A \cap[T \leq n] \in \mathcal{F}_{n} \text { for all } n
$$

Definition

Random variables Z are said to be " \mathcal{F}_{T}-measurable" if events made up from them $([Z \leq z], \ldots)$ are in pre- $T \sigma$-algebra \mathcal{F}_{T}.

1. Consider random walk X begun at 0 and the stopping time $T=\inf \left\{n: X_{n} \geq 10\right\}$. Then the event $\left[X_{15}<5\right.$ and $\left.T>15\right]$ is in the pre- T σ-algebra \mathcal{F}_{T}.
2. The random variable $X_{\min \{15, T\}}$ is \mathcal{F}_{T}-measurable
3. Consider the branching process example with S being the time at which a zero-size family is first encountered. Then

$$
Y_{0}+Y_{1}+\ldots+Y_{S} \in \mathcal{F}_{S}
$$

Optional stopping theorem

Theorem
Suppose M is a martingale and $S \leq T$ are two bounded stopping times. Then

$$
\mathbb{E}\left[M_{T} \mid \mathcal{F}_{S}\right]=M_{S} .
$$

Uniform integrability: note we can take expectation of a single random variable X exactly when $\mathbb{E}[|X| ;|X|>n] \rightarrow 0$ as $n \rightarrow \infty$. (This fails when $\mathbb{E}[|X| ;|X|>n]=\infty!$). Uniform integrability requires this to hold uniformly for a whole collection of random variables X_{i} :

$$
\lim _{n \rightarrow \infty} \sup _{i} \mathbb{E}\left[\left|X_{i}\right| ;\left|X_{i}\right|>n\right]=0 .
$$

Examples: if the X_{i} are bounded, if there is a single non-negative random variable Z with $\mathbb{E}[Z]<\infty$ and $\left|X_{i}\right| \leq Z$ for all i, if the p-moments $\mathbb{E}\left[X_{i}^{p}\right]$ are bounded for some $p>1$.

We can generalize to general stopping times $S \leq T$ if either M is bounded or M is "uniformly integrable".

APTS-ASP	75
$\left\llcorner_{3:}\right.$ Stopping times	
$\quad L_{\text {Application to gambling }}$	

Gambling: you shouldn't expect to win

Suppose your fortune in a gambling game is X, a martingale begun at 0 (for example, a simple symmetric random walk. If N is the maximum time you can spend playing the game, and if $T \leq N$ is a bounded stopping time, then

$$
\mathbb{E}\left[X_{T}\right]=0 .
$$

Contrast Fleming (1953):
"Then the Englishman, Mister Bond, increased his winnings to exactly three million over the two days. He was playing a progressive system on red at table five. ... It seems that he is persevering and plays in maximums. He has luck."

There are exceptions, for example Blackjack (using card-counting: en.wikipedia.org/wiki/Card_counting).
I find proposed strategies in other games less convincing, for example the Labouchere system favoured by lan Fleming
(en.wikipedia.org/wiki/Labouch\�\�re_system):
The Labouchére system, also called the cancellation system, is a gambling strategy used in roulette. The user of such a strategy decides before playing how much money they want to win, and writes down a list of positive numbers that sum to the predetermined amount. With each bet, the player stakes an amount equal to the sum of the first and last numbers on the list. If only one number remains, that number is the amount of the stake. If bet is successful, the two amounts are removed from the list. If the bet is unsuccessful, the amount lost is appended to the end of the list. This process continues until either the list is completely crossed out, at which point the desired amount of money has been won, or until the player runs out of money to wager.

APTS-ASP

$L_{3 \text { : Stopping time }}$
$\left\llcorner_{\text {Hitting times }}\right.$

Martingales and hitting times

Suppose X_{1}, X_{2}, \ldots are independent Gaussian random variables of mean $-\mu<0$ and variance 1 . Let
$Y_{n}=X_{1}+\ldots+X_{n}$ and let T be the time when Y first exceeds level $\ell>0$.
Then $\exp \left(\alpha\left(Y_{n}+\mu n\right)-\frac{\alpha^{2}}{2} n\right)$ determines a martingale, and the optional stopping theorem can be applied to show

$$
\mathbb{E}[\exp (-p T)] \sim e^{-\left(\mu+\sqrt{\mu^{2}+2 p}\right) \ell} .
$$

This improves to an equality, at the expense of using more advanced theory, if we replace the Gaussian random walk Y by Brownian motion.

	Martingales and hitting times Suppose X_{1}, X_{2}, \ldots are independent Gaussian random $Y_{n}=X_{1}+\ldots . X_{n}$ and let T be the time when Y first exceeds level $\ell>0$. Then exp $\left(\alpha\left(Y_{n}+\mu m\right)-\frac{x^{2}}{2} n\right)$ determines a martingale, and This improves to an equality, at the expense of using more advanced theory, if we replace the Caussian random walk Y by Brownian motion.

So $T=\inf \left\{n: Y_{n} \geq \ell\right\}$. Use the optional stopping theorem on the bounded stopping time $\min \{T, n\}$:

$$
\mathbb{E}\left[\exp \left(\alpha Y_{\min \{T, n\}}+\alpha\left(\mu-\frac{\alpha}{2}\right) \min \{T, n\}\right)\right]=1 .
$$

Use careful analysis of the left-hand side, letting $n \rightarrow \infty$, large ℓ,

$$
\mathbb{E}\left[\exp \left(\alpha \ell+\alpha\left(\mu-\frac{\alpha}{2}\right) T\right)\right] \sim 1
$$

Now set $\alpha=\mu+\sqrt{\mu^{2}+2 p}>0$, so $\alpha\left(\mu-\frac{\alpha}{2}\right)=-p$:

$$
\mathbb{E}[\exp (-p T)] \sim \exp \left(-\left(\mu+\sqrt{\mu^{2}+2 p}\right) \ell\right) .
$$

Improvement: Brownian motion is continuous in time and so cannot jump over the level ℓ without hitting it.

APTS-ASP

$L_{3 \text { : Stopping times }}$
-Martingale convergence

Martingale convergence

Theorem
Suppose X is a non-negative supermartingale. Then $Z=\lim X_{n}$ exists, moreover $\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right] \leq X_{n}$.

Theorem
Suppose X is a bounded martingale (or, more generally, uniformly integrable). Then $Z=\lim X_{n}$ exists, moreover $\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]=X_{n}$

Theorem

Suppose X is a martingale and $\mathbb{E}\left[X_{n}^{2}\right] \leq K$ for some fixed constant K. Then one can prove directly that $Z=\lim X_{n}$ exists, moreover $\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]=X_{n}$.

1. Consider symmetric simple random walk begun at 1 and stopped at 0 $X_{n}=Y_{\min \{n, T\}}$ if $T=\inf \left\{n: Y_{n}=0\right\}$ and Y is symmetric simple random walk. Clearly $X_{n}=Y_{\min \{n, T\}}$ is non-negative; clearly $X_{n}=Y_{\min }\{n, T\} \rightarrow Z=0$, since Y will eventually hit 0 ; clearly $0=\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right] \leq Y_{n}$ since $Y_{n} \geq 0$.
2. Thus symmetric simple random walk Y begin at 0 and stopped at ± 10 must converge to a limiting value Z. Evidently $Z= \pm 10$. Moreover since
$\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]=Y_{n}$ we deduce $\mathbb{P}\left[Z=10 \mid \mathcal{F}_{n}\right]=\frac{Y_{n}+10}{20}$.
3. Sketch argument: from martingale property

$$
\mathbb{E}\left[\left(X_{m+n}-X_{n}\right)^{2} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{m+n}^{2} \mid \mathcal{F}_{n}\right]-X_{n}^{2}
$$

hence $\mathbb{E}\left[X_{n}^{2}\right]$ is non-decreasing; hence it converges to a limiting value; hence $\mathbb{E}\left[\left(X_{m+n}-X_{n}\right)^{2}\right]$ tends to 0 .

Martingales and bounded harmonic functions

- Harmonic functions
-Martingales and bounded harmonic functions
- Consider a discrete state-space Markov chain X with transition kernel $p_{i j}$. Suppose $f(i)$ is a bounded harmonic function: a function for which $f(i)=\sum_{j} f(j) p_{i j}$. Then $f(X)$ is a bounded martingale, hence must converge as time increases to infinity.
- The simplest example: consider simple random walk X absorbed at boundaries $a<b$. Then $f(x)=\frac{x-a}{b-a}$ is a bounded harmonic function, and can be shown to satisfy

$$
f(x)=\mathbb{P}\left[X \text { hits } b \text { before } a \mid X_{0}=x\right] .
$$

- Another example: given branching process Y and family size generating function $G(s)$, suppose ζ is smallest non-negative root of $\zeta=G(\zeta)$. Set $f(y)=\zeta^{y}$. Check this is a non-negative martingale (and therefore harmonic). WARWick

1. The terminology supermartingale/submartingale was actually chosen to mirror the potential-theoretic terminology superharmonic/subharmonic
2. Use martingale convergence theorem and optional stopping theorem.
3. We'd like to say, therefore $f(y)=\mathbb{P}\left[Y\right.$ becomes extinct $\left.\mid Y_{0}=y\right]$. Since $\zeta \leq 1$, it follows f is bounded, so this follows as before.
4. Further significant examples come from, for example, multidimensiona random walk absorbed at boundary of a geometric region.

APTS-ASP	83
$L_{4:}$ Counting and compensating	8

Counting and compensating

"It is a law of nature we overlook, that intellectual versatility is the compensation for change, danger, and trouble."
H. G. Wells,

The Time Machine, 1896

We can now make a connection between martingales and Markov chains. We start with the Poisson process, viewed as a process used for counting incidents, and show how martingales can be used to describe much more general counting processes.

Simplest example: Poisson process
Compensators
Examples
Variance of compensated counting process
Counting processes and Poisson processes
Compensation of population processes

WARWMCK

APTS-ASP	85
$\left\llcorner_{4:}\right.$ Counting and compensating	

Simplest example: Poisson process

Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda=\mu=0$. The result is a Poisson process of rate α as described before:

Definition

A continuous-time Markov chain N is a Poisson process of rate $\alpha>0$ if the only transitions are $N \rightarrow N+1$ of rate α.

Theorem
If N is Poisson process of rate α then

$$
\mathbb{P}\left[N_{t}=k\right]=\mathbb{P}[\operatorname{Poisson}(\alpha t)=k]=\frac{(\alpha t)^{k}}{k!} e^{-\alpha t} .
$$

The times of transitions are often referred to as incidents. WARNick

\sim	APTS-ASP
\sim	L4: Counting and compensating
	LSimplest example: Poisson process
0	Simplest example: Poisson process

1. This has a claim to be the simplest possible continuous-time Markov chain Its state-space is very reducible, so it does not supply good examples for questions of equilibrium!
2. In one approach to stochastic processes this serves as a fundamental building block for more complicated processes.
3. Times between consecutive incidents are independent Exponential (α). Thence a whole wealth of distributional relationships between Exponential, Poisson, and indeed Gamma, Geometric, Hypergeometric,
4. A more general result is suggestive about how to generalize to Poisson point patterns: if $A \subset[0, \infty)$ has length measure a then

$$
\mathbb{P}[k \text { incidents in } A]=\mathbb{P}[\text { Poisson }(\alpha a)=k]
$$

5. A significant converse: given a random point pattern such that
$\mathbb{P}[$ No incidents in $A]=\exp (-\alpha a)$
for any A of length measure a, the point pattern marks the incidents of a Poisson counting process of rate α.

APTS-ASP

$L_{4: ~ C o u n t i n g ~ a n d ~ c o m p e n s a t i n g ~}$
$L_{\text {Simplest example: Poisson process }}$

Poisson process directions

There are two directions to go with the Poisson process:

- view as a pattern of points:
- Slivnyak's theorem: condition on t being a transition / incident. Then remaining incidents form transitions of Poisson process of same rate.
- PASTA principle: if a Markov chain has "arrivals" following a Poisson distribution, then in statistical equilibrium Poisson Arrivals See Time Averages.
- How to make points "interact"?
- Generalize to Poisson patterns of geometric objects.
- view as counting process and generalize:
- varying "hazard rate";
relate to martingales?
Here we follow the second direction.

```
~ APTS-ASP
- 4: Counting and compensating
LPoisson process directions
```

Polsson process directions There are two directions to go w- view as a pattem of points:

1. Slivnyak's theorem generalizes directly to Poisson point patterns. The trick is, of course, to make sense of conditioning on an event of probability 0
2. That is to say, at "just before" the arrival time, the probability that the system is in state k is π_{k} the equilibrium probability. Easy consequence of Slivnyak's theorem.
3. Crucial for calculations: the chance of seeing no object of given kind in given region is $\exp (-\mu)$ where μ is mean number of such objects.
4. What is the hazard rate? does it suggest generalizations?

5. Calculation based on $\mathbb{E}\left[N_{t+s}-N_{s} \mid \mathcal{F}_{s}\right]=\alpha t$.
6. Calculation based on $\operatorname{Var}\left[N_{t+s}-N_{s} \mid \mathcal{F}_{s}\right]=\alpha t$.
7. Later we will also consider population processes counting births +1 and deaths -1 .
8. It is possible to make a more general definition which replaces $\int_{0}^{t} \ell(s) \mathrm{d} s$ by a non-decreasing process Λ_{t} - but then we have to require " $\Lambda_{t} \in \mathcal{F}_{t-}$ ".
9. It can then be shown that

- compensators always exist
- and are essentially unique.
necessarily Markov—changing by single jumps of +1 .
Try to subtract something to turn it into a martingale.
Definition
We say $\int_{0}^{t} \ell(s) \mathrm{d} s$ compensates a counting process N if
- the (possibly random) $\ell(s)$ is in \mathcal{F}_{s};
- $N_{t}-\int_{0}^{t} \ell(s) \mathrm{d} s$ determines a martingale.

Suppose X_{1}, \ldots, X_{n} are independent and identically distributed non-negative random variables (lifetimes) with common density f.

- Set $\mathbb{P}\left[X_{i}>t\right]=1-\int_{0}^{t} f(s) \mathrm{d} s=\exp \left(-\int_{0}^{t} h(s) \mathrm{d} s\right)$.
- Counting process $N_{t}=\#\left\{i: X_{i} \leq t\right\}$ increases by +1 jumps in continuous time.
- Observe:
- $N_{t}-\int_{0}^{t} h(s) N_{s} d s$ is a martingale.
- $\left(N_{t}-\int_{0}^{t} h(s) N_{s} \mathrm{~d} s\right)^{2}-\int_{0}^{t} h(s) N_{s} \mathrm{~d} s$ is a martingale.

1. Resolves to showing the following is a martingale:

$$
\mathbb{d}_{\left[X_{i} \leq t\right]}-\int_{0}^{\min \left\{t, X_{i}\right\}} h(u) \mathrm{d} u .
$$

Key calculation: the expectation of the above is

$$
\mathbb{P}\left[X_{i} \leq t\right]-\int_{0}^{t} h(u) \mathbb{P}\left[X_{i}>u\right] \mathrm{d} u,
$$

which vanishes if we substitute in $\mathbb{P}\left[X_{i}>u\right]=\exp \left(-\int_{0}^{u} h(s) d s\right)$.
This of course is computation of an absolute probability.
Test understanding: make changes to get the relevant conditional probability calculation.
2. This follows most directly by noting independence of the
${ }^{{ }_{[}\left[X_{i} \leq t\right]}$ - $\int_{0}^{\min \left\{t, X_{i}\right\}} h(s) \mathrm{d} s$. However it is actually true for a more general reason....

xample pure birith process

 tuande five bibthpocess) faterN- $-\int_{0}^{1}$ wads wamemanate

Example: pure birth process

Example (Pure birth process)

If the pure birth process N makes transitions $N \rightarrow N+1$ at rate λN then

$$
N_{t}-\int_{0}^{t} \lambda N_{s} \mathrm{~d} s \quad \text { is a martingale. }
$$

Here again one can check that the expression of variance type $\left(N_{t}-\int_{0}^{t} \lambda N_{s} \mathrm{~d} s\right)^{2}-\int_{0}^{t} \lambda N_{s} \mathrm{~d} s$ also determines a martingale.

APTS-ASP

$L_{4: ~ C o u n t i n g ~ a n d ~ c o m p e n s a t i n g ~}$
$L_{\text {Variance of compensated counting process }}$

Variance of compensated counting process

The above expression of variance type holds more generally: Theorem
Suppose N is a counting process compensated by $\int \ell(s) \mathrm{d} s$. Then

$$
\left(N_{t}-\int_{0}^{t} \ell(s) \mathrm{d} s\right)^{2}-\int_{0}^{t} \ell(s) \mathrm{d} s \quad \text { is a martingale. }
$$

Rigorous proof, or heuristic limiting argument...

1. The key point of the rigorous proof, which we omit, is that " $\Lambda_{t}=\int_{0}^{t} \ell(s) \mathrm{d} s \in \mathcal{F}_{t-}$ ".
2. But again one can argue plausibly, starting with the comment that the increment over $(t, t+\Delta t)$ has conditional expectation $\int_{t}^{t+\Delta t} \ell(s) \mathrm{d} s$ and takes values 0 or 1 . Hence we can deduce the conditional probability of a +1 -jump as being $\int_{t}^{t+\Delta t} \ell(s) \mathrm{d} s$, and so argue as above.

Counting processes and Poisson processes

The compensator of a counting process can be used to tell whether the counting process is Poisson:
Theorem
Suppose N is a counting process which has compensator α t. Then N is a Poisson process of rate α.
Better still, counting processes with compensators
approximating αt are approximately Poisson of rate α. Here is a nice way to see this:

Theorem
Suppose N is a counting process with compensator
$\Lambda=\int \ell(s) \mathrm{d} s$. Consider the random time change $\tau(t)=\inf \left\{s: \Lambda_{s}=\alpha t\right\}$. Then the time-changed counting process $N_{\tau(t)}$ is Poisson of rate α.
The above gives a good pay-off for this theory.
-Counting processes and Poisson processes
-Counting processes and Poisson processes
 Theoren

 Somen

1. Again there is a plausibility argument: the increment over $(t, t+\Delta t)$ has conditional probability $\alpha \Delta t$, hence is approximately independent of past, hence N_{t} is approximately the sum of many Bernoulli random variables each of the same small mean, hence is approximately approximately Poisson
2. Begs the question, is $N_{\tau(t)}$ a counting process? (Yes, but needs proof.)
3. There is an amazing multivariate generalization of this time-change result, related to Cox's proportional hazards model
4. If the compensator approximates αt then it is immediate that $\tau(t)$ approximates t, and hence good approximation results can be derived!

APTS-ASP	
$L_{4: ~}$ Counting and compensating	99

$\left\llcorner_{\text {Compensation of population processes }}\right.$

Compensation of population processes

The notion of compensation works for much more general processes, such as population processes:

Example (Birth-death-immigration process)
If the birth-death-immigration process X makes transitions $X \rightarrow X+1$ at rate $\lambda X+\alpha$ and $X \rightarrow X-1$ at rate μX then

$$
X_{t}-\int_{0}^{t}\left((\lambda-\mu) X_{s}+\alpha\right) \mathrm{d} s \quad \text { is a martingale. }
$$

\sim APTS-ASP	
- 4: Counting and compensating	
O	Compensation of population processes
\bigcirc	-Compensation of population processes
N	

. Plausibility argument much as before.
2. The plausibility argument fails for the variance case! However it is possible to use a slightly different integral here. In fact

$$
\left(X_{t}-\int_{0}^{t}\left((\lambda-\mu) X_{s}+\alpha\right) \mathrm{d} s\right)^{2}-\int_{0}^{t}\left((\lambda+\mu) X_{s}+\alpha\right) \mathrm{d} s \quad \text { is a martingale. }
$$

This is best understood using ideas of stochastic integrals (of rather simple form), which we will not explore here.
3. This is the heart of the famous "Stroock-Varadhan martingale formulation", which allows one to use martingales to study and to define very general Markov chains.
But the compensator no longer converts
$\left(X_{t}-\int_{0}^{t}\left((\lambda-\mu) X_{s}+\alpha\right) \mathrm{d} s\right)^{2}$ into a martingale.
More generally a continuous-time Markov chain X relates to martingales obtained from $f(X)$ (for given functions f) by compensation using the rates of X.

APTS-ASP	101
$L_{5:}$ Central Limit Theorem	

Central Limit Theorem

"Everybody believes in the exponential law of errors: the experimenters, because they think it can be proved by mathematics; and the mathematicians, because they believe it has been established by observation"

Lippmann, quoted in E. T. Whittaker and G. Robinson,
Normal Frequency Distribution. Ch. 8 in
The Calculus of Observations: A Treatise on Numerical Mathematics, 1967

Classical Central Limit Theorem
Lindeberg's Central Limit Theorem
Rates of convergence
Martingale case

The Central Limit Theorem is one of the jewels of classical probability theory, with a huge literature developing such questions as, how may the assumptions be relaxed? and how at what speed does the convergence actually occur?

APTS-ASP	103
$L_{5:}$ Central Limit Theorem	
$\quad L_{\text {Classical Central Limit Theorem }}$	

The classical Central Limit Theorem

Definition

Random variables Y_{n} are said to converge in distribution to a random variable Z (or its distribution) if
$\mathbb{P}\left[Y_{n} \leq y\right] \rightarrow \mathbb{P}[Z \leq y]$ whenever $\mathbb{P}[Z \leq y]$ is continuous at y.

1. $N(0,1)$ denotes a random variable with standard normal distribution.
2. Common notations: $Y_{n} \xrightarrow{d} Z$ or $Y_{n} \xrightarrow{\mathcal{D}} Z$ or $Y_{n} \Rightarrow Z$.
3. Cleanest proof involves characteristic functions $\mathbb{E}\left[\exp \left(i u Y_{n}\right)\right]$, $\mathbb{E}[\exp (i u Z)]=e^{-u^{2} / 2}$ and hence complex numbers. A Taylor series expansion shows $\mathbb{E}\left[\exp \left(i u X_{n}\right)\right] \approx 1+i u \mu-\frac{u^{2}}{2} \sigma^{2}$; hence $\mathbb{E}\left[\exp \left(i u Y_{n}\right)\right] \approx\left(1-\frac{u^{2}}{2}\right)^{n} \rightarrow e^{-u^{2} / 2}$. Result follows from theory of characteristic function transform.

Theorem

Suppose X_{1}, \ldots, X_{n} are independent and identically
distributed, with finite mean μ and finite variance σ^{2}. Then

$$
Y_{n}=\frac{\left(X_{1}+\ldots+X_{n}\right)-n \mu}{\sqrt{n} \sigma} \rightarrow N(0,1)
$$

It is appropriate to use the CDF (cumulative distribution function) here, because that is the approximation which the CLT describes.
Note there is good agreement

Empirical CDF of 500 draws from mean of 10 independent Student t on 5 df , with limiting normal CDF graphed in red. WARwick

APTS-ASP 107 $L_{5:}$ Central Limit Theorem $\quad L_{\text {Classical Central Limit Theorem }}$	\sim APTS-ASP \sim LS Central Limit Theorem $\dot{\sim}$ LClassical Central Limit Theorem 0 Clestions arising		Questions arising \qquad 1. Do we really peed "dentically distributed? 2. How fast does the convergence happen? Hew ista toes the converemencurpenem
In this section we address the following questions: 1. Do we really need "identically distributed"? 2. How fast does the convergence happen? 3. Do we really need "independent"? In particular we can produce a satisfying answer to items 1 and 3 in terms of martingales.	1. No we don't need exactly "identically distributed", and we can produce a useful answer. 2. Something really rather definite can be said about rate of convergence. 3. No we do not need exactly "independent", and we can produce a useful answer. 4. (Our answer to items 1 and 3 is satisfying though not necessarily as good as possible!)		
WARWICK			
			Undeberg's Central Limit Theorem Here's the strongest result about the non identically distributed case: Theorem suppose X_{1}, \qquad
Lindeberg's Central Limit Theorem			$\gamma_{n}=\frac{x_{1}+\ldots=x_{n}-m_{n}}{5_{n}} \quad \mathbb{P}(0,1) \text {. }$ Proof is by a more careful development of the characteristic function proof of the classical Central Limit Thoorem. function proof of the classical Central Limit Thworem.

Here's the strongest result about the non-identically distributed case:

Theorem
Suppose X_{1}, \ldots, X_{n} are independent and not identically distributed, with X_{i} having finite mean μ_{i} and finite variance σ_{i}^{2}. Set $m_{n}=\mu_{1}+\ldots+\mu_{n}$ and $s_{n}^{2}=\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}$. Suppose
further that $\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2} / s_{n}^{2} ; X_{i}^{2}>\varepsilon^{2} s_{n}^{2}\right] \rightarrow 0$ for every $\varepsilon>0$.

APTS-ASP

Empirical CDF of 500 draws from mean of 10 independent Student t on 5 df together with 100 draws of 10 independent Student t on 3 df, with limiting normal CDF graphed in red.

1. The beauty of the Lindeberg condition is that it simply requires none of the individual components to contribute too much to the total variance relative to the intended limit.
Put this way, it is rather easy to remember the final result!
2. However the Lindeberg condition can be tricky to check. The Lyapunov condition is easier, and implies the Lindeberg condition: the sum of the third central moments $r_{n}^{3}=\sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}-\mu_{i}\right|^{3}\right]$ is finite and satisfies $\left(r_{1}+\ldots+r_{n}\right) / s_{n} \rightarrow 0$.

Then

$$
Y_{n}=\frac{X_{1}+\ldots+X_{n}-m_{n}}{s_{n}} \quad \stackrel{\mathcal{D}}{\rightarrow} \quad N(0,1) .
$$

Proof is by a more careful development of the characteristic function proof of the classical Central Limit Theorem.
$L_{5 \text { : Central Limit Theorem }}$
Lindeberg's Central Limit Theorem

Example, distributions not identical (I)

en

\sim	APTS-ASP
\sim	5: Central Limit Theorem
N	LLindeberg's Central Limit Theorem
0	Linder
∞	LExample, distributions not identical (I)

[^0]
Example, distributions not identical (II)

Empirical CDF of 500 draws from mean of 10 independent Student t on 5 df together with 100 draws of 10 independent Student t on 3 df scaled by a factor of 3 , with limiting normalyanick CDF graphed in red.

APTS-ASP $L_{\text {5: }}$ Central Limit Theorem $L_{\text {Rates of convergence }}$
Rates of convergence

Remarkably, we can capture how fast convergence occurs if we are given some extra information about the X_{i}. Reverting to the classical conditions (identically distributed, finite mean and variance), using above notation, suppose
$\rho^{(3)}=\mathbb{E}\left[\left|X_{i}-\mu\right|^{3}\right]<\infty$. Let $F_{n}(x)$ be the distribution function of $\frac{\left(X_{1}+\ldots+X_{n}\right)-n \mu}{\sqrt{n} \sigma}$, and let $\Phi(x)$ be the standard normal distribution function. Then there is a universal constant $C>0$ such that

$$
\left|F_{n}(x)-\Phi(x)\right| \leq \frac{C \rho^{(3)}}{\sigma^{3} \sqrt{n}}
$$

There are many variants and many improvements on this result, whose proof requires much detailed mathematical analysis. For example, what is C? (Latest: we can take $C=0.7655$.) And so forth ...

Theorem

Suppose $X_{0}=0, X_{1}, \ldots$ is a martingale for which $\mathbb{E}\left[X_{n}^{2}\right]$ is finite for each n. Set $s_{n}^{2}=\mathbb{E}\left[X_{n}^{2}\right]$ and suppose $s_{n}^{2} \rightarrow \infty$. The following two conditions taken together imply that X_{n} / s_{n} converges to a standard normal distribution:

$$
\frac{1}{s_{n}^{2}} \sum_{m=0}^{n-1} \mathbb{E}\left[\left|X_{m+1}-X_{m}\right|^{2} \mid \mathcal{F}_{m}\right] \rightarrow 1
$$

$\frac{1}{s_{n}^{2}} \sum_{m=0}^{n-1} \mathbb{E}\left[\left|X_{m+1}-X_{m}\right|^{2} ;\left|X_{m+1}-X_{m}\right|^{2} \geq \varepsilon^{2} s_{n}^{2}\right] \rightarrow 0$ for each $\varepsilon>0$.

1. There are central limit theorems for martingales, typically close in spirit to the Lindeberg theorem. Namely: the total variance needs to be nearly constant, and there must be no relatively large contributions to the variance.
2. In fact $s_{n}^{2} \rightarrow \infty$ is forced by the second (Lindeberg-type) condition
3. Even more is true! the linear interpolation of the X_{n}, suitably rescaled, then converges to a Brownian motion.
4. There are many references, and many variations and generalizations. See for example Brown (1971). (Practical remarks about contrast between theory and practice)

121
: Central Limit Th
$L_{\text {Martingale case }}$
\sim APTS-ASP

- L 5: Central Limit Theorem

Convergence to Brownian motion

Plot of $X_{1} / \sqrt{n}, \ldots, X_{1} / \sqrt{n}$ for $n=10,100,1000,10000$.

Central-limit scaled (simple symmetric) random walk converges to Brownian motion B, characterized by independent increments, $\mathbb{E}\left[B_{t+s}-B_{s}\right]=0$ (so martingale) and $\operatorname{Var}\left[B_{t+s}-B_{s}\right]=t$, continuous paths.

APTS-ASP	123
$L_{6: ~}$ Recurrence	

Recurrence

If paths weren't continuous, then compensated Poisson process would produce another example of this!
In fact any random walk with jumps of zero mean and finite variance also converges to Brownian motion under central-limit scaling.
There are also similar theorems for martingales

We have a theory of recurrence for discrete state space Markov chains. But what if the state space is not discrete? and how can we describe speed of convergence?

APTS-ASP	125
$L_{6:}$ Recurrence	

Motivation from MCMC

Given a probability density $p(x)$ of interest, for example a Bayesian posterior, we could address the question of drawing from $p(x)$ by using for example Gaussian random-walk Metropolis-Hastings.
Thus proposals are normal, mean the current location x, fixed variance-covariance matrix.
Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain X which has transition mechanism which mixes a density with staying at the start-point.
Evidently the chain almost surely never visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply....

APTS-ASP	127

Recurrence

We already know, if X is a Markov chain on a discrete state-space then its transition probabilities converge to a unique limiting equilibrium distribution if:

1. X is irreducible;
2. X is aperiodic;
3. X is positive-recurrent.

How in general can one be quantitative about the speed at which convergence to equilibrium can occur? and what if the state-space is not discrete?

Recurrence and rates of convergence for Markov chains in discrete case (uniform and geometric ergodicity). Making sense of continuous state-space, ϕ-irreducibility, Harris-recurrence. Small sets. Application to important examples.

1. the state space of X cannot be divided into regions some of which are inaccessible from others;
2. the state space of X cannot be broken into periodic cycles
3. the mean time for X to return to its starting point is finite.

Measuring speed of convergence to equilibrium (I)

Total variation distance

- Speed of convergence of a Markov chain X to equilibrium can be measured as discrepancy between two probability measures: $\mathcal{L}\left(X_{t} \mid X_{0}=x\right)$ (distribution of $\left.X_{t}\right)$ and π (equilibrium measure).
- Simple possibility: total variation distance. Let X be state-space, for $A \subseteq X$ maximize discrepancy between $\mathcal{L}\left(X_{t} \mid X_{0}=x\right)(A)=\mathbb{P}\left[X_{t} \in A \mid X_{0}=x\right]$ and $\pi(A):$
$\operatorname{dist} \operatorname{TV}\left(\mathcal{L}\left(X_{t} \mid X_{0}=x\right), \pi\right)=\sup _{A \subseteq X}\left\{\mathbb{P}\left[X_{t} \in A \mid X_{0}=x\right]-\pi(A)\right\}$.
- Alternative expression in case of discrete state-space:
-Speed of convergence
$\stackrel{\infty}{\circ} \quad$-Measuring speed of convergence to equilibrium (I)
Surnos speed of convergence to equilibum (1)

1. $\mathcal{L}\left(X_{t} \mid X_{0}=x\right)(A)$ is probability that X_{t} belongs to A.
2. Test understanding: why is it not necessary to consider $\left|\mathbb{P}\left[X_{t} \in A \mid X_{0}=x\right]-\pi(A)\right|$? (Hint: consider $\mathbb{P}\left[X_{t} \in A^{C} \mid X_{0}=x\right]-\pi\left(A^{C}\right)$.
3. Test understanding: prove this by considering $A=\left\{y: \mathbb{P}\left[X_{t}=y \mid X_{0}=x\right]>\pi_{y}\right\}$.
4. It is not even clear that total variation is best notion: in the case of MCMC one might consider a spectral approach (which we will pick up again when we come to consider cutoff):

$$
\sup _{f: \int|f(x)|^{2} \pi(\mathrm{~d} x)<\infty}\left(\mathbb{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right]-\int f(x) \pi(\mathrm{d} x)\right)^{2} .
$$

5. Nevertheless the concept of total variation isolates a desirable kind of rapid convergence.
$\operatorname{dist}_{T V}\left(\mathcal{L}\left(X_{t} \mid X_{0}=x\right), \pi\right)=\frac{1}{2} \sum_{y \in \mathrm{X}}\left|\mathbb{P}\left[X_{t}=y \mid X_{0}=x\right]-\pi_{y}\right|$.
(Many other possible measures of distance . . .) () WARWick

Uniform ergodicity

Definition

The Markov chain X is uniformly ergodic if its distribution converges to equilibrium in total variation uniformly in the starting point $X_{0}=x$: for some fixed $C>0$ and for fixed $\gamma \in(0,1)$,

$$
\left.\sup _{x \in X} \operatorname{disttv}^{(\mathcal{L}}\left(X_{n} \mid X_{0}=x\right), \pi\right) \leq C y^{n} .
$$

In theoretical terms, for example when carrying out MCMC, this is a very satisfactory property. No account need be taken of the starting point, and accuracy improves in proportion to the length of the simulation.

Wanivick

We make two observations about Markov chain irreducibility:

1. The discrete theory fails to apply directly even to well-behaved chains on non-discrete state-space.
2. Suppose ϕ is a measure on the state-space: then we could ask for the chain to be irreducible on sets of positive ϕ measure.
Definition
The Markov chain X is ϕ-irreducible if for any state x and for any subset B of state-space of positive ϕ-measure $\phi(B)>0$ we find that X has positive chance of reaching B if begun at x.
3. Consider the Gaussian random walk X (jumps have standard normal distribution): if $X_{0}=0$ then we can assert that with probability one X never returns to its starting point.
4. "measure": like a probability measure, but not necessarily of finite total mass. Think of length, area, or volume as examples. Also, counting measure.
5. The Gaussian random walk is Lebesgue-measure-irreducible! (Here Lebesgue measure is just length measure.)

137
urrence
LIrreducibility for general chains

ϕ-irreducibility (II)

1. We call ϕ an irreducibility measure. It is possible to modify ϕ to construct a maximal irreducibility measure ψ; one such that any set B of positive measure under some irreducibility measure for X is of positive measure for ψ.
2. Irreducible chains on countable state-space are c-irreducible where c is counting measure.
3. If a chain has unique equilibrium measure π then π will serve as a maximal irreducibility measure.

Tirreacocthily (I)

 2inu

4. Lebesgue measure is a maximal irreducibility measure for the Gaussian random walk
5. So ϕ-irreducibility simply generalizes the original notion of irreducibility.
6. Note that ϕ can be replaced by any other measure which is
"measure-equivalent" (has the same null-sets). So while π will serve as a maximal irreducibility measure, we can use any alternative measure which has the same sets of measure zero.

APTS-ASP	139
$L_{6:}$ Recurrence	
$\quad L_{\text {Regeneration and small sets }}$	

Regeneration and small sets (I)

$\sim$$\vdots$Nd0	APTS-ASP
	-Re

The discrete-state-space theory works because (a) the Markov chain regenerates each time it visits individual states, and (b) it has a positive chance of visiting specified individual states. So it is natural to consider regeneration when visiting sets.
Definition
A set E of ϕ-positive measure is a small set of lag k for X if there is $\alpha \in(0,1)$ and a probability measure v such that for all $x \in E$ the following minorization condition is satisfied

$$
\mathbb{P}\left[X_{k} \in A \mid X_{0}=x\right] \quad \geq \alpha v(A) \quad \text { for all } A .
$$

APTS-ASP	141
$L_{6:}$ Recurrence	
$L_{\text {Regeneration and small sets }}$	

Regeneration and small sets (II)

Small sets would not be interesting except that:
. all ϕ-irreducible Markov chains X possess small sets;
. consider chains X with continuous transition density kernels. They possess many small sets of lag 1 ;
3. consider chains X with measurable transition density kernels. They need possess no small sets of lag 1, but will possess many sets of lag 2;
4. given just one small set, X can be represented using a chain which has a single recurrent atom.
In a word, small sets discretize Markov chains.

APTS-ASP	143
$\left\llcorner_{6: ~}\right.$ Recurrence	
$\quad\left\llcorner_{\text {Harris-recurrence }}\right.$	

Harris-recurrence

Now it is evident what we should mean by recurrence for non-discrete state spaces. Suppose X is ϕ-irreducible and ϕ is a maximal irreducibility measure.

Definition

X is (ϕ-)recurrent if, for ϕ-almost all starting points x and any subset B with $\phi(B)>0$, when started at x the chain X is almost sure eventually to hit B.

Definition
X is Harris-recurrent if we can drop " ϕ-almost" in the above.

1. In effect this reduces the theory of convergence to equilibrium to a chapte in the theory of renewal processes, with renewals occurring each time the chain visits a specified state.
2. In effect, if we sub-sample X every k time-steps then, every time it visits E there is a chance α that X forgets its entire past and starts again, using probability measure v.
Consider the Gaussian random walk described above. Any bounded set is small of lag 1 .

3. In general α can be very small-reducing practical impact, but still helping theoretically.

neration and smal seses (i)

.
∇
4. This is a very old result: see Nummelin (1984) for a recent treatment.
5. Exercise: try seeing why this is obviously true!
6. Kendall and Montana (2002): so measurable transition density kernels lead to chains which possess latent discretizations.
7. "Split-chain construction" (Athreya and Ney 1978; Nummelin 1978).

8. So the irreducibility measure is used to focus attention on sets rather than points
9. And in fact we don't even then need ϕ to be maximal

145
$\left\llcorner_{\text {Examples }}\right.$
\sim APTS-ASP
$\begin{array}{ll}\text { O } & \text { L Examples } \\ \text { O } & \text { L Examples of } \phi \text {-irreducibility } \\ 0 & \\ 0 & \end{array}$

1. Convolutions of measurable densities are continuous!

2. Many examples of Metropolis-Hastings samplers.
3. Test understanding: find a small set for the Vervaat perpetuity example

- Random walks with continuous jump densities. And in fact measurable jump densities suffice.
- Chains with continuous or even measurable transition
densities with exception that chain may stay put.
- Vervaat perpetuities:

$$
X_{n+1}=U_{n+1}^{\alpha}\left(X_{n}+1\right)
$$

where U_{1}, U_{2}, \ldots are independent $\operatorname{Uniform}(0,1)$.

- Volatility models:

$$
\begin{array}{lr}
X_{n+1}= & X_{n}+\sigma_{n} Z_{n+1} \\
\sigma_{n+1}= & f\left(\sigma_{n}, U_{n+1}\right)
\end{array}
$$

for suitable f, and independent Gaussian Z_{n+1}, U_{n+1}. WARwick

\qquad	$\begin{aligned} & \sim \\ & \underset{N}{\prime} \\ & \dot{0} \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$	APTS-ASP —7: Foster-Lyapunov criteria _Foster-Lyapunov criteria	Foster-Lyapunov criteria Renowi ind rigention Phetre incariat:
"Even for the physicist the description in plain language will be the criterion of the degree of understanding that has been reached." Werner Heisenberg, Physics and philosophy: The revolution in modern science, 1958 Renewal and regeneration Positive recurrence Geometric ergodicity Examples		Geometric and uniform ergodicity make sense for general Markov chains: how to find out whether they hold? and how to find out whether equilibrium distributions exist? We want simple criteria, and we can capture these using the language of martingales.	
WARWICK			
Renewal and regeneration			

Suppose C is a small set for ϕ-recurrent X, with lag 1:

$$
\mathbb{P}\left[X_{1} \in A \mid X_{0}=x \in C\right] \quad \geq \alpha v(A)
$$

Identify regeneration events: X regenerates at $x \in C$ with probability α and then makes transition with distribution v; otherwise it makes transition with distribution $\frac{p(x, \cdot)-\alpha \nu(\cdot)}{1-\alpha}$. The regeneration events occur as a renewal sequence. Set $p_{k}=\mathbb{P}[$ next regeneration at time $k \mid$ regeneration at time 0$]$.

If the renewal sequence is non-defective if $\sum_{k} p_{k}=1$ and positive-recurrent if $\sum_{k} k p_{k}<\infty$ then there exists a stationary version. This is the key to equilibrium theory whether for discrete or continuous state-space.

1. If lag is $k>1$ then sub-sample every k steps!
2. This is a coupling construction, linked to the split-chain construation (Athreya and Ney 1978; Nummelin 1978) and the Murdoch and Green (1998) approach to CFTP.
3. This is just the appropriate compensating distribution

$$
\frac{p(x, \cdot)-\alpha v(\cdot)}{p(x, X)-\alpha v(X)}=\frac{p(x, \cdot)-\alpha v(\cdot)}{1-\alpha}
$$

4. So there will always be a next regeneration.
5. So mean time to next regeneration is finite
6. Richard Tweedie at WRASS 1998: "continuous is no harder than discrete!"

APTS-ASP	151
$L_{7:}$ Foster-Lyapunov criteria	
$\quad L_{\text {Positive recurrence }}$	

Positive recurrence

The Foster-Lyapunov criterion for positive recurrence of a ϕ-irreducible Markov chain X on a state-space X :
Theorem (Foster-Lyapunov criterion for positive recurrence)
Given $\Lambda: \mathcal{X} \rightarrow[0, \infty)$, positive constants a, b, c, and a small set $C=\{x: \Lambda(x) \leq c\} \subseteq \mathcal{X}$ with

$$
\mathbb{E}\left[\Lambda\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \leq \Lambda\left(X_{n}\right)-a+b \square_{\left[X_{n} \in C\right]} ;
$$

then $\mathbb{E}\left[T_{A} \mid X_{0}=x\right]<\infty$ for any A with $\phi(A)>0$, where $T_{A}=\inf \left\{n \geq 0: X_{n} \in A\right\}$ is the time when X first hits A, and moreover X has an equilibrium distribution.

1. In words, we can find a non-negative $\Lambda(X)$ such that $\Lambda\left(X_{n}\right)$ - an determines a supermartingale until $\Lambda(X)$ becomes small enough for X to belong to a small set!
2. We can re-scale Λ so that $a=1$.
3. In fact if the criterion holds if can then be shown, any sub-level set of Λ is small.
4. It is evident from the verbal description that reflected simple asymmetric random walk (negatively biased) is an example for which the criterion applies.

Sketch of proof

Proof.

1. $Y_{n}=\Lambda\left(X_{n}\right)+a n$ is non-negative supermartingale up to time $T=\inf \left\{m \geq 0: X_{m} \in C\right\}>n$:
$\mathbb{E}\left[Y_{\min \{n+1, T\}} \mid \mathcal{F}_{n}, T>n\right] \leq\left(\Lambda\left(X_{n}\right)-a\right)+a(n+1)=Y_{n}$.
Hence $Y_{\min \{n, T\}}$ converges.
2. So $\mathbb{P}[T<\infty]=1$ (for otherwise $\Lambda(X)>c$ and $\left.Y_{n}>c+a n\right)$. Moreover $\mathbb{E}\left[Y_{T} \mid X_{0}\right] \leq \Lambda\left(X_{0}\right)$.
3. Now use finiteness of b to show $\mathbb{E}\left[T^{*} \mid X_{0}\right]<\infty$, where T^{*} first regeneration in C.
4. ϕ-irreducibility: positive chance of hitting A before first regeneration in C. Hence $\mathbb{E}\left[T_{A} \mid X_{0}\right]<\infty$.

	WARWICK
APTS-ASP	155

$L_{\text {7: }}$ Foster-Lyapunov criteria

$\left\llcorner_{\text {Positive recurrence }}\right.$

A converse ...

Suppose on the other hand that $\mathbb{E}\left[T \mid X_{0}\right]<\infty$ for all starting points X_{0}, where C is some small set and T is the first time for X to return to C. The Foster-Lyapunov criterion for positive recurrence follows for $\Lambda(x)=\mathbb{E}\left[T \mid X_{0}=x\right]$ if $\mathbb{E}\left[T \mid X_{0}\right]$ is bounded on C.

1. There is a stationary version of the renewal process of successive regenerations on C.
2. One can construct a "bridge" of X conditioned to regenerate on C at time 0 , and then to regenerate again on C at time n.
3. Hence one can sew these together to form a stationary version of X, which therefore has the property that X_{t} has the equilibrium distribution for all time t.

	A converse Suppose on the other hand that $E\left[T X_{0}\right]<$ or for all starting points X_{p}, where C is some small set and T is the first t for X to return to C. The Foster Lyapunor criterian for positive recurrence follows for $M\|x\|=E\left[T \mid X_{3}=x\right]$ if $\mathrm{I}\left[I \mid x_{0}\right]$ is bounded on C

1. ϕ-irreducibility then follows automatically.
2. Indeed, (supposing lag 1 for simplicity)

$$
\mathbb{E}\left[\Lambda\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \leq \Lambda\left(X_{n}\right)-1+b \square_{\left[X_{n} \in C\right]},
$$

where b is the mean value of $\mathbb{E}\left[Y_{T} \mid x\right]$ if x is chosen using the regeneration probability measure for C.
3. Moreover if the renewal process of successive regenerations on C is aperiodic then a coupling argument shows general X will converge to equilibrium.
4. If the renewal process of successive regenerations on C is not aperiodic then one can sub-sample..
5. Showing that X has an equilibrium is then a matter of probabilistic constructions using the renewal process of successive regenerations on C.

APTS-ASP	157
$\left\llcorner_{7:}\right.$ Foster-Lyapunov criteria	
$\quad L_{\text {Geometric ergodicity }}$	

Geometric ergodicity

The Foster-Lyapunov criterion for geometric ergodicity of a ϕ-irreducible Markov chain X on a state-space X :
Theorem (Foster-Lyapunov criterion for geometric ergodicity)
Given $\Lambda: \mathcal{X} \rightarrow[1, \infty)$, positive constants $\gamma \in(0,1), b, c \geq 1$, and a small set $C=\{x: \Lambda(x) \leq c\} \subseteq X$ with

$$
\mathbb{E}\left[\Lambda\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right] \leq \gamma \Lambda\left(X_{n}\right)+b \mathbb{a}_{\left[X_{n} \in C\right]} ;
$$

then $\mathbb{E}\left[\gamma^{-T_{A}} \mid X_{0}=x\right]<\infty$ for any A with $\phi(A)>0$, where $T_{A}=\inf \left\{n \geq 0: X_{n} \in A\right\}$ is the time when X first hits A, and moreover (under suitable periodicity conditions) X is geometrically ergodic.

WARUM'

APTS-ASP

$L_{\text {7: }}$ Foster-Lyapunov criteria
$\square_{\text {Geometric ergodicity }}$

Sketch of proof

Proof.

1. $Y_{n}=\Lambda\left(X_{n}\right) / \gamma^{n}$ defines non-negative supermartingale up to time T when X first hits C :
$\mathbb{E}\left[Y_{\min \{n+1, T\}} \mid \mathcal{F}_{n}, T>n\right] \leq \gamma \times \Lambda\left(X_{n}\right) / \gamma^{n+1}=Y_{n}$.
Hence $Y_{\min \{n, T\}}$ converges.
2. $\mathbb{P}[T<\infty]=1$, for otherwise $\Lambda(X)>c$ and so $Y_{n}>c / \gamma^{n}$ does not converge. Moreover $\mathbb{E}\left[\gamma^{-T}\right] \leq \Lambda\left(X_{0}\right)$.
3. Finiteness of b shows $\mathbb{E}\left[\gamma^{-T^{*}} \mid X_{0}\right]<\infty$, where T^{*} is time of regeneration in C.
4. From ϕ-irreducibility there is positive chance of hitting A before regeneration in C. Hence $\mathbb{E}\left[\gamma^{-T_{A}} \mid X_{0}\right]<\infty$.
5. We can rescale Λ so that $b=1$
6. The criterion for positive-recurrence is implied by this criterion
7. We can enlarge C and alter b so that the criterion holds simultaneously for all $\mathbb{E}\left[\Lambda\left(X_{n+m}\right) \mid \mathcal{F}_{n}\right]$.
. In words, we can find a $\Lambda(X) \geq 1$ such that $\Lambda\left(X_{n}\right) / \gamma^{n}$ determines a supermartingale until $\Lambda(X)$ becomes small enough for X to belong to a small set!

\sim APTS-ASP	
-	
-Geometric ergodicity	
\bigcirc	LGeometric ergodicity
ㅇ	

a

1. Geometric ergodicity follows by a coupling argument which I do not specify here.
2. The constant γ here provides an upper bound on the constant γ used in the definition of geometric ergodicity. However it is not necessarily a very good bound!

Two converses

1. This was used in Kendall 2004 to provide perfect simulation in principle. The Markov inequality can be used to convert the condition on $\Lambda(X)$ into the existence of a Markov chain on $[0, \infty)$ whose exponential dominates $\Lambda(X)$.
The chain in question turns out to be a kind of queue (in fact, $D / M / 1$). For $y \geq e^{-1}$ the queue will not be recurrent; however one can sub-sample X to convert the situation into one in which the dominating queue will be positive-recurrent.
follows for $\Lambda(x)=\mathbb{E}\left[\gamma^{-T} \mid X_{0}=x\right]$ if $\mathbb{E}\left[\gamma^{-T} \mid X_{0}\right]$ is bounded on C
Uniform ergodicity follows if the Λ function is bounded above.

But more is true. Strikingly,
2. For Harris-recurrent Markov chains the existence of a geometric Foster-Lyapunov condition is equivalent to the property of geometric ergodicity.

"I have this theory of convergence, that good things always happen with bad things." Cameron Crowe, Say Anything film, 1989

In what way does a Markov chain converge to equilibrium? Is it a gentle exponential process? Or might most of the convergence happen relatively quickly?
Once again we focus on reversible Markov chains, as these make computations simpler.

The cutoff phenomenon
Cutoff and eigenvalues
Two metrics
A special case

169
$\stackrel{\sim}{\sim} \stackrel{\text { APTS-ASP }}{\sim}$
-The cutoff phenomenon

Convergence: cutoff or geometric decay?

What we have so far said about convergence to equilibrium will have left the misleading impression that the distance from equilibrium for a Markov chain is characterized by a gentle and rather geometric decay.
It is true that this is typically the case after an extremely long
time, and it can be the case over all time. However it is entirely possible for "most" of the convergence to happen quite suddenly at a specific threshold.
The theory for this is developing fast, but many questions remain open. In this section we describe a specific easy example.
\simeq APTS-ASP

- LThe cutoff phenomenon

Convergence: cutoff or geometric decay?

Random walk wrapped around a circle exhibits a gentle and rather geometric decay. Famously (Bayer and Diaconis 1992) the riffle shuffle does not! (For a pack of 52 cards, 7 shuffles suffices for essentially all practical purposes.)

APTS-ASP
 $\left\llcorner_{8 \text { : Cutoff }}\right.$

$\left\llcorner_{\text {Cutoff }}\right.$ and eigenvalues

Cutoff (I): Markov chains and matrices

We need to understand something about eigenvalues for Markov chains.
Fix attention on a finite state space X, with reversible aperiodic Markov chain of transition kernel $p_{X, y}$ and equilibrium distribution π.
The vector space of functions on X can be give a weighted Euclidean norm:

$$
\|f\|_{\pi}^{2}=\sum_{x \in X}|f(x)|^{2} \pi(x)
$$

and hence an inner product $\langle f, g\rangle_{\pi}$.
View transition kernel as linear operator $\operatorname{Pf}(x)=\sum_{y} p_{x, y} f(y)$:
by reversibility this is $\langle\cdot, \cdot\rangle_{\pi}$ symmetric.

Finite-state-space reversible Markov chains and (weighted) euclidean spaces
1.

$$
\langle f, g\rangle_{\pi}=\sum_{y} f(y) g(y) \pi(y)
$$

2. Test understanding: use detailed balance to show

$$
\langle f, P g\rangle_{\pi}=\sum_{x} f(x) \sum_{y} p_{x, y} f(y) \pi(x)=\langle P f, g\rangle_{\pi}
$$

3. Adam Willis (MMORSE student at Warwick, 2004-2008) recently wrote an excellent Integrated Masters project on this subject.
4. The vector space of functions on a finite state space is finite-dimensional!

APTS-ASP	173
$\left\llcorner_{8:}\right.$ Cutoff	
$\quad L_{\text {Cutoff and eigenvalues }}$	

Cutoff (II): eigenvalues and eigenfunctions

So P can be viewed as a symmetric matrix and thus has a full set of eigenvalues $-1 \leq \lambda_{k} \leq \ldots \leq \lambda_{1} \leq 1$ (if X has k elements) and corresponding normalized eigenfunctions V_{1}, \ldots, V_{k}.
Because of symmetry of P we may take the V_{i} to be an orthonormal basis, so

$$
\sum|f(y)|^{2} \pi(y)=\sum_{i=1}^{k}\left\langle f, v_{i}\right\rangle_{\pi}^{2}
$$

The law of total probability implies $\lambda_{1}=1$ and $V_{1} \equiv 1$, and irreducibility implies $\lambda_{2}<\lambda_{1}$.
Aperiodicity implies -1 $<\lambda_{k}$.

\sim	APTS-ASP
\sim	8: Cutoff
\vdots	¿Cutoff and eigenvalues
0	Cutoff (II): eigenvalues and eigenfunctions

If F : : igenenatues and elgentunctions

 Nind \sum_{2} \pm

1. Normalized: $\left\|V_{i}\right\|_{\pi}^{2}=1$; eigen property: $P V_{i}=\lambda_{i} V_{i}$.
2. In fact all eigenvalues cannot exceed 1 in absolute value, by an inequality argument. Two eigenvalues equal to 1 would allow us to split state space into 2 components which violated irreducibility.
3. In passing, there is a useful analysis of rate of convergence of expectations of functions of Markov chains based on this spectral analysis. Good when you know a priori what you want to estimate...

APTS-ASP

$L_{8: ~ C u t o f f ~}$
$\left\llcorner_{\text {Two metrics }}\right.$

Cutoff (III): metrics

We need to relate total variation distance to the weighted
Euclidean distance. Recall
$\left.\operatorname{dist}_{\mathrm{TV}}\left(P_{x}^{(n)}, \pi\right)\right)=\frac{1}{2} \sum_{y}\left|P_{x}^{(n)}(y)-\pi(y)\right|=\frac{1}{2} \sum_{y}\left|\frac{P_{x}^{(n)}(y)}{\pi(y)}-1\right| \pi(y)$.
But this relates to weighted Euclidean distance by using
Cauchy-Schwartz inequality and $\sum_{y} \pi(y)=1$:
$\left.2 \operatorname{dist}_{\mathrm{TV}}\left(P_{x}^{(n)}, \pi\right)\right) \leq \sqrt{\left\|\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}-1\right\|_{\pi}^{2}} \sqrt{\sum_{y} \pi(y)}=\sqrt{\left\|\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}-1\right\|_{\pi}^{2}}$.
Now expand using orthonormal eigenfunctions and $V_{1} \equiv 1$:
$\left\|\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}-1\right\|_{\pi}^{2}=\sum_{i=2}^{k}\left\langle\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}, V_{i}\right\rangle_{\pi}^{2}=\sum_{i=2}^{k}\left(P_{x}^{n} V_{i}\right)^{2}=\sum_{i=2}^{k} \lambda_{i}^{2 n} V_{i}(x)^{2}$.

 Lent

1. The key here is the Cauchy-Schwartz inequality,

$$
(\mathbb{E}[X Y])^{2} \leq \mathbb{E}\left[X^{2}\right] \mathbb{E}\left[Y^{2}\right] .
$$

Applied probabilists and statisticians may be more comfortable with this if they recognize that it is proved in the same way as the statement that correlations are always bounded between ± 1.
2. Miss $i=1$ since $V_{1} \equiv 1$, so

$$
\left\langle\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}-1, V_{1}\right\rangle_{\pi}=\sum_{y} P_{x}^{(n)}(y)-\left\langle V_{1}, V_{1}\right\rangle_{\pi}=1-1=0
$$

Miss -1 in other terms by orthogonality, since for $i>1$

$$
\left\langle-1, V_{i}\right\rangle_{\pi}=-\left\langle V_{1}, V_{i}\right\rangle_{\pi}=0 .
$$

177
べ - 8: Cutoff

Cutoff (IV): upper bound in special case

LCutoff (IV): upper bound in special case
Hot iv: upper bound in specal case

Gibbs' sampler for zero-interaction Ising model
Model for Gibb's sampler. Consider $N \times N$ array of ± 1. At
each step choose entry at random, flip sign.
As above, identify $\binom{N^{2}}{r}$ eigenfunctions of eigenvalue $1-\frac{2 r}{N^{2}}$,
for $0 \leq r \leq N^{2}$. Set $n=\frac{N^{2}}{4}\left(\log \left(N^{2}\right)+\theta\right)$.

1. Eigenfunctions are just products $X_{i_{1}} \ldots X_{i_{k}}$ of spin variables $X_{r}= \pm 1$.
2. Note, $1-x \leq e^{-x}$ always.
3. Do the sums. In particular, note $P X_{1}=\frac{1}{N^{2}}\left(-X_{1}\right)+\left(1-\frac{1}{N^{2}}\right) X_{1}=\left(1-\frac{2}{N^{2}}\right) X_{1}$,

$$
\begin{aligned}
\left\|\frac{P_{x}^{(n)}(\cdot)}{\pi(\cdot)}-1\right\|_{\pi}^{2} & =\sum_{r=1}^{N^{2}}\binom{N^{2}}{r}\left(1-\frac{2 r}{N^{2}}\right)^{2 n} \\
& \leq \sum_{r=1}^{N^{2}}\binom{N^{2}}{r} \exp \left(-\frac{2 r}{N^{2}}\left(\frac{N^{2}}{2}\left(\log \left(N^{2}\right)+\theta\right)\right)\right) \\
& =\sum_{r=1}^{N^{2}}\binom{N^{2}}{r}\left(N^{2}\right)^{-r} e^{-r \theta} \leq \sum_{r=1}^{N^{2}} \frac{1}{r!} e^{-r \theta} \leq \exp \left(e^{-\theta}\right)-1
\end{aligned}
$$

Since $n=\frac{N^{2}}{4}\left(\log \left(N^{2}\right)+\theta\right)$, the cutoff occurs at around $\frac{N^{2}}{4} \log \left(N^{2}\right)$ and lasts of order $\frac{N^{2}}{4}$.
However to make sure this works, we also need a lower bound on $\left.\operatorname{dist}_{\mathrm{TV}}\left(P_{x}^{(n)}, \pi\right)\right)$. Achieve this by comparing means and variances of $Z \sum_{i=1}^{N^{2}} X_{i}$, where X_{i} is spin at site i. Simple estimates confirm that there is still substantial total variation distance at $\frac{N^{2}}{4} \log \left(N^{2}\right)$, so this is a real cutoff.
Moral: effective convergence can be much faster than one realizes, and occur over a fairly well defined period of time.

179
(V): lower bound in special case
$-$
refined!
Use Markov's inequality to convert mean and variance comparisons into inequalities.
(Further practical remarks ...)

\qquad

[^1]
Abstract

\sim APTS-ASP	
	8: Cutoff
O La special case	
$\stackrel{\infty}{\circ}$	-Cutoff (V): lower bound in special case
웅	

In general, expect cutoff when there are large numbers of "second" eigenvalues. Should one expect cutoff for the case of an Ising model with weak interaction? Probably....

The famous Peres conjecture says cutoff is to be expected for a chain with transitive symmetry if $\left(1-\lambda_{2}\right) \tau \rightarrow \infty$, where λ_{2} is the second largest eigenvalue (so $1-\lambda_{2}$ is the "spectral gap"), and τ is the (deterministic) time at which the total variation distance to equilibrium becomes smaller than $\frac{1}{2}$. However there is a counterexample to Peres' conjecture as expressed above, (communication from Connor, PhD thesis 2007, which is communication of Diaconis, of work of which Diaconis knows...). So the conjecture needs to be

\section*{Calculations for other cases can be much harder.} in general, expect cutoff when there are large numbers of second eigenvalues

APTS-ASP	181
$L_{8:}$ Cutoff	18
$L_{\text {A special case }}$	

Aldous, D. J. (1989).
Probability approximations via the Poisson clumping heuristic, Volume 77 of Applied Mathematical Sciences.
New York: Springer-Verlag.
Aldous, D. J. and J. A. Fill (2001).
Reversible Markov Chains and Random Walks on Graphs.
Unpublished.
Athreya, K. B. and P. Ney (1978).
A new approach to the limit theory of recurrent Markov chains.
Trans. Amer. Math. Soc. 245, 493-501.
Bayer, D. and P. Diaconis (1992).
Trailing the dovetail shuffle to its lair.
Ann. Appl. Probab. 2(2), 294-313.
Breiman, L. (1992).
Probability, Volume 7 of Classics in Applied Mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Corrected reprint of the 1968 original.

APTS-ASP
$\left\llcorner_{8:}\right.$ Cutoff
$\left\llcorner_{\text {A special case }}\right.$

Nummelin, E. (1978).
A splitting technique for Harris recurrent Markov chains.
Z. Wahrsch. Verw. Gebiete 43(4), 309-31 8.

Nummelin, E. (1984).
General irreducible Markov chains and nonnegative operators, Volume 83 of Cambridge Tracts in Mathematics.
Cambridge: Cambridge University Press.
Øksendal, B. (2003)
Stochastic differential equations (Sixth ed.).
Universitext. Berlin: Springer-Verlag
An introduction with applications.
Steele, J. M. (2004).
The Cauchy-Schwarz master class.
MAA Problem Books Series. Washington, DC: Mathematical Association of America.
An introduction to the art of mathematical inequalities.

Photographs used in text

- Police phone box en.wikipedia.org/wiki/Image: Earls_Court_Police_Box.jpg
- The standing martingale
en.wikipedia.org/wiki/Image:Hunterhorse.jpg
- Boat Race: en.wikipedia.org/wiki/Image:

Boat_Race_Finish_2008_-_Oxford_winners.jpg

- Impact site of fragment G of Comet Shoemaker-Levy 9 on Jupiter
en.wikipedia.org/wiki/Image:
Impact_site_of_fragment_G.gif
- The cardplayers en.wikipedia.org/wiki/Image:Paul_C\�\%

A9zanne\%2C_Les_joueurs_de_carte_\%281892-95\%29.jpg

- Chinese abacus en.wikipedia.org/wiki/Image: Boulier1.JPG
- Error function
en.wikipedia.org/wiki/Image:Error_Function.svg
- Boomerang en.wikipedia.org/wiki/Image: Boomerang.jpg
- Alexander Lyapunov en. wikipedia.org/wiki/Image:

Alexander_Ljapunow_jung.jpg

- Riffle shuffle (photo by Johnny Blood)
en.wikipedia.org/wiki/Image:Riffle_shuffle.jpg WARWic
toyan, D., W. S. Kendall, and J. Mecke (1995)
Stochastic geometry and its applications (Second ed.).
Chichester: John Wiley \& Sons
(First edition in 1987 joint with Akademie Verlag, Berlin).
Williams, D. (1991).
Probability with martingales.
Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.
-

[^0]: Here the distributions are not all the same.
 There is still reasonably good agreement!

[^1]:

