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Introduction

This module will introduce students to two important notions
in stochastic processes — reversibility and martingales —
identifying the basic ideas, outlining the main results and
giving a flavour of some of the important ways in which these
notions are used in statistics.
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Introduction

Introduction

Probability provides one of the major underlying languages of
statistics, and purely probabilistic concepts often cross over into
the statistical world. So statisticians need to acquire some fluency
in the general language of probability . . .
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Introduction

Learning Outcomes

After successfully completing this module an APTS student
will be able to:

ñ describe and calculate with the notion of a reversible
Markov chain, both in discrete and continuous time;

ñ describe the basic properties of discrete-parameter
martingales and check whether the martingale property
holds;

ñ recall and apply some significant concepts from
martingale theory;

ñ explain how to use Foster-Lyapunov criteria to establish
recurrence and speed of convergence to equilibrium for
Markov chains.
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Introduction

Learning Outcomes

These outcomes interact interestingly with various topics in
applied statistics. However the most important aim of this module
is to help students to acquire general awareness of further ideas
from probability as and when that might be useful in their further
research.

APTS-ASP 7

Preliminary material

Expectation and probability

Preliminary material
Expectation and probability

For most APTS students most of this material should be
well-known:

ñ Probability and conditional probability;

ñ Basic expectation and conditional expectation;

ñ discrete versus continuous (sums and integrals);

ñ limits versus expectations.

It is set out here, describing key ideas rather than details, in
order to establish a good common basis for the module.
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Preliminary material

Expectation and probability

Preliminary material

This material uses a two-panel format. Left-hand panels present
the theory, often using itemized lists. Right-hand panels present
commentary and useful exercises (announced by “Test
understanding”). All of the material would be covered by Warwick
undergraduate students specializing in probability and statistics; a
substantial proportion (mostly on Markov chains) is at second-year
undergraduate level. However syllabi are not uniform across UK
universities; if some of this material is not well-known to you then:

• read through it to pick up the general sense and notation;

• supplement by reading (for example) the first five chapters of
Grimmett and Stirzaker (2001);

• feel free to post issues on the APTS Students Facebook wall
(www.facebook.com/group.php?gid=20134789192);
comments are likely to affect presentation of module lectures.
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Expectation and probability

Probability
1. Sample space Ω of possible outcomes;

2. Probability P assigns a number between 0 and 1
inclusive (the probability) to each (sensible) subset A ⊆ Ω
(we say A is an event);

3. Advanced (measure-theoretic) probability takes great care to specify what
sensible means: A has to belong to a pre-determined σ -algebra F , a family
of subsets closed under countable union and complements, often
generated by open sets. We shall avoid these technicalities, though it will
later be convenient to speak of σ -algebras Ft in short-hand for
“information provided by time t”.

4. Rules of probability:
Normalization: P [Ω] = 1;
σ -additivity: if A1, A2 . . . form a disjoint sequence of
events then

P [A1 ∪ A2 ∪ . . .] =
∑

i

P [Ai] .
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Preliminary material

Expectation and probability

Probability

1. Example: Ω = (−∞,∞).
2. We could for example start with P [(a,b)] = ∫ b

a e−u2/2 d u/
√

2π
and then use the rules of probability to determine
probabilities for all manner of sensible subsets of (−∞,∞).

3. In our example a “natural” choice for F is the family of all
sets generated from intervals by indefinitely complicated
countably infinite combinations of countable unions and
complements.

4. Test understanding: use these rules to explain

(a) why P [∅] = 0,

(b) why P [Ac] = 1− P [A] if Ac = Ω \ A, and

(c) why it makes no sense in general to try to extend σ -additivity to

uncountable unions such as (−∞,∞) = ⋃x{x}.
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Expectation and probability

Conditional probability

1. We declare the conditional probability of A given B to be
P [A|B] = P [A∪ B] /P [B], and declare the case when
P [B] = 0 as undefined.

2. Bayes: if B1, B2, . . . is an exhaustive disjoint partition of
Ω then

P [Bi|A] = P [A|Bi]P [Bi]∑
j P
[
A|Bj

]
P
[
Bj

] .

3. Conditional probabilities are clandestine random
variables! Let X be the Bernoulli1 random variable which
indicates2 event B. Consider the conditional probability
of A given information of whether or not B occurs: it is
random, being P [A|B] if X = 1 and P [A|Bc] if X = 0.

1Taking values only 0 or 1.
2X = 1 exactly when B happens.
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Preliminary material

Expectation and probability

Conditional probability

1. Actually we often use limiting arguments to make sense of
cases when P [B] = 0.

2. Hence all of Bayesian statistics . . .
Test understanding: write out an explanation of why Bayes’ theorem is a
completely obvious consequence of the definitions of probability and
conditional probability.

3. The idea of conditioning is developed in probability theory to
the point where this notion (that conditional probabilities are
random variables) becomes entirely natural not artificial.
Test understanding: establish the law of inclusion and exclusion: if A1, . . . ,
An are potentially overlapping events then

P [A1 ∪ . . .∪ An] = P [A1]+ . . .+ P [An]

−
(
P [A1 ∩ A2]+ . . .+ P

[
Ai ∩ Aj

]
+ . . .+ P [An−1 ∩ An]

)

+ . . .− (−1)n P [A1 ∩ . . .∩ An] .

Hint: represent RHS as expectation of expansion of 1− (1− X1) . . . (1− Xn)
for suitable Bernoulli random variables Xi indicating various Ai .
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Preliminary material

Expectation and probability

Expectation
Statistical intuition about expectation is based on properties:

1. If X ≥ 0 is a non-negative random variable then we can
define its (possibly infinite) expectation E [X].

2. If X = X+ − X− =max{X ,0} −max{−X ,0} is such that
E [X±] are both finite3 then set E [X] = E [X+]− E [X−].

3. Familiar properties of expectation follow from linearity
(E [aX + bY] = aE [X]+ bE [Y]) and monotonicity
(P [X ≥ a] = 1 implies E [X] ≥ a) for constants a, b.

4. Useful notation: for an event A write E [X ;A] = E [X I[A]
]
,

where I[A] is the Bernoulli random variable indicating A.

We can then consider specific constructions:

5. If X has countable range then E [X] =∑x x P [X = x].
6. If X has probability density fX then E [X] = ∫ x fX(x)d x.

3We wish to avoid having to make sense of ∞−∞!

Expectation
Statistical intuition about expectation is based on properties:

1. If X ≥ 0 is a non-negative random variable then we can
define its (possibly infinite) expectation E [X].

2. If X = X+ − X− =max{X ,0} −max{−X ,0} is such that
E [X±] are both finite3 then set E [X] = E [X+]− E [X−].

3. Familiar properties of expectation follow from linearity
(E [aX + bY] = aE [X]+ bE [Y]) and monotonicity
(P [X ≥ a] = 1 implies E [X] ≥ a) for constants a, b.

4. Useful notation: for an event A write E [X ;A] = E [X I[A]
]
,

where I[A] is the Bernoulli random variable indicating A.

We can then consider specific constructions:

5. If X has countable range then E [X] =∑x x P [X = x].
6. If X has probability density fX then E [X] = ∫ x fX(x)d x.

3We wish to avoid having to make sense of ∞−∞!

2
0

0
8

-0
5

-2
9 APTS-ASP

Preliminary material

Expectation and probability

Expectation

1. Full definition of expectation takes 3 steps: obvious
definition for Bernoulli random variables, finite range random
variables by linearity, general case by monotonic limits
Xn ↑ X . The hard work lies in proving this is all consistent . . . .

2. Any decomposition as difference of integrable random
variables will do.

3. Test understanding: using these properties

– deduce E [a] = a for constant a.

– show Markov’s inequality P [X ≥ a] ≤ 1
a E [X] for X ≥ 0, a > 0.

4. So in absolutely continuous case E [X ; A] = ∫A x fX(x)d x and
in discrete case E [X ; X = k] = P [X = k].

5. Countable [=discrete] case: expectation defined exactly when
sum converges absolutely.

6. Density [=(absolutely) continuous] case: expectation defined
exactly when integral converges absolutely.
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Preliminary material

Expectation and probability

Conditional Expectation (I): property-based definition
1. Conventional definitions treat two separate cases

(discrete and absolutely continuous):
ñ E [X|Y = y] =∑x x P [X = x|Y = y],
ñ E [X|Y = y] = ∫ x fX|Y=y(x)d x.

. . . but what if X is mixed discrete/continuous? or worse?
Focus on properties to get unified approach:

2. If E [X] <∞, we say Z = E [X|Y] if:
(a) E [Z] <∞;
(b) Z is a function of Y ;
(c) E [Z ; A] = E [X ; A] for events A defined in terms of Y .

This defines E [X|Y] uniquely, up to events of prob 0.
3. We can now define E [X|Y1,Y2, . . .] simply by using “is a

function of Y1,Y2, . . .” and “defined in terms of Y1,Y2, . . .”,
etc. Indeed we often write E [X|G], where (σ -algebra) G
represents information conveyed by a specified set
of random variables and events.
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Preliminary material

Expectation and probability

Conditional Expectation (I): property-based definition

Conditional expectation needs careful definition to capture all
cases. But focus on properties to build intuitive understanding.

1. Notice that conditional expectation is also properly viewed as
a random variable.

2. – “E [Z] <∞” is needed to get a good definition of any
kind of expectation;

– We could express “Z is a function of Y ” etc more formally
using measure theory if we had to;

– We need (b) to rule out Z = X , for example.
Test understanding: verify that the discrete definition of conditional
expectation satisfies the three properties (a), (b), (c). Hint: use A running
through events A = [Y = y] for y in the range of Y .

3. Test understanding: suppose X1, X2, . . . , Xn are independent and

identically distributed, with finite absolute mean E [|Xi|] <∞. Use

symmetry and linearity to show E [X1|X1 + . . .+ Xn] = 1
n (X1 + . . .+ Xn).
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Preliminary material

Expectation and probability

Conditional Expectation (II): some other properties

Many facts about conditional expectation follow easily from
this property-based approach. For example:

1. Linearity: E [aX + bY |Z] = aE [X|Z]+ bE [Y |Z];
2. “Tower”: E [E [X|Y ,Z] |Y] = E [X|Y];
3. “Taking out what is known”: E [f (Y)X|Y] = f (Y)E [X|Y];

and variations involving more than one or two
conditioning random variables . . . .
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Preliminary material

Expectation and probability

Conditional Expectation (II): some other properties

Test understanding: explain how these follow from the
property-based definition. Hints:

1. Use E [aX + bY ; A] = aE [X ; A]+ bE [Y ; A].
2. Take a deep breath and use property (c) of conditional

expectation twice. Suppose A is defined in terms of Y . Then
E [E [E [X|Y ,Z] |Y] ; A] = E [E [X|Y ,Z] ; A] and
E [E [X|Y ,Z] ; A] = E [X ; A].

3. Just consider when f has finite range, and use the (finite) sum
E [E [f (Y)X|Y] ; A] =∑t E [E [f (Y)X|Y] ; A∩ [f (Y) = t]]. But
then use E [E [f (Y)X|Y] ; A∩ [f (Y) = t]] =
E [E [tX|Y] ; A∩ [f (Y) = t]] = E [t E [X|Y] ; A∩ [f (Y) = t]] =
E [f (Y)E [X|Y] ;A∩ [f (Y) = t]].
General case now follows by approximation arguments.
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Preliminary material

Expectation and probability

Conditional Expectation (III): Jensen’s inequality
This is powerful and yet rather easy.

Theorem
Let φ be a convex function (“curves upwards”, φ′′ ≥ 0 if
smooth). Suppose the random variable X is such that
E [|X|] <∞ and E [|φ(X)|] <∞. Then

φ(E [X]) ≤ E [φ(X)] ,

and the same is true for conditional expectations:

φ(E [X|G]) ≤ E [φ(X)|G]

for some conditioning information G.

Clue to proof: any convex function can be represented as
supremum of all affine functions ax + b lying below it.
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Preliminary material

Expectation and probability

Conditional Expectation (III): Jensen’s inequality

Consider the simple convex function φ(x) = x2. We deduce, if X
has finite second moment then

(E [X|G])2 ≤ E
[
X2|G

]
.

Here’s a picture to illustrate the clue to the proof of Jensen’s
inequality in case φ(x) = x4:
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Preliminary material

Expectation and probability

Limits versus expectations
1. Often the crux of a piece of mathematics is whether one

can exchange limiting operations such as lim
∑↔∑

lim.
Here are a few very useful results on this, expressed in
the language of expectations.

2. Monotone Convergence Theorem: If P [Xn ↑ Y] = 1 and
E [X1] > −∞ then limn E [Xn] = E [limn Xn] = E [Y].

3. Dominated Convergence Theorem: If P [Xn → Y] = 1 and
|Xn| ≤ Z where E [Z] <∞ then
limn E [Xn] = E [limn Xn] = E [Y] .

4. Fubini’s Theorem: If E [|f (X ,Y)|] <∞, X , Y are
independent, g(y) = E [f (X , y)], h(x) = E [f (x,Y)] then
E [g(Y)] = E [f (X ,Y)] = E [h(X)].

5. Fatou’s lemma: If P [Xn → Y] = 1 and Xn ≥ 0 for all n
then E [Y] ≤ limn infm≥n E [Xm].
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Preliminary material

Expectation and probability

Limits versus expectations

1. As we formulate this in expectation language, our results
apply equally to sums and integrals.

2. Note that the Xn must form an increasing sequence. We need
E [X1] > −∞. Test understanding: consider case of
Xn = −1/(nU) for a fixed Uniform(0,1) random variable.

3. Note that convergence need not be monotonic here or in
following. Test understanding: explain why it would be
enough to have finite upper and lower bounds α ≤ Xn ≤ β.

4. Fubini exchanges expectations rather than an expectation
and a limit.

5. Try Fatou if all else fails. Note that something like Xn ≥ 0 is
essential (a constant lower bound would suffice, though).
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Preliminary material

Markov chains

Preliminary material
Markov chains

ñ Discrete-time countable-state-space basics:
ñ Markov property, transition matrices;
ñ irreducibility and aperiodicity;
ñ transience and recurrence;
ñ equilibrium equations and convergence to equilibrium.

ñ Discrete-time countable-state-space: why ‘limit of sum
need not always equal sum of limit’.

ñ Continuous-time countable-state-space: rates and
Q-matrices.

ñ Definition and basic properties of Poisson counting
process.
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Preliminary material

Markov chains
Preliminary material

If some of this material is not well-known to you, then invest some
time in looking over (for example) chapter 6 of Grimmett and
Stirzaker (2001).

Instead of “countable-state-space” Markov chains, we’ll use the
shorter phrase “discrete Markov chains”.
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Preliminary material

Markov chains

Basic properties for discrete time and space case
1. Markov chain X = {X0,X1,X2, . . .}: X at time t is in state

Xt = x. View states x as integers.
2. X must have Markov property:

pxy = p(x, y) = P [Xt+1 = y|Xt = x,Xt−1, . . .] must depend
only on x, y, not on rest of past. (Our chains will be
time-homogeneous, meaning no t dependence either.)

3. Chain behaviour is specified by (a) initial state X0 (could
be random) and (b) table of transition probabilities pxy .

4. Important matrix structure: if pxy are arranged in matrix
P then (i, j)th entry of Pn = P · . . . · P (n times) is

p(n)ij = P [Xn = j|X0 = i].
Equivalent: Chapman-Kolmogorov equations

p(n+m)
ij =

∑

k

p(n)ik p(m)kj
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Preliminary material

Markov chains
Basic properties for discrete time and space case

1. More general countable discrete state-spaces can always be
indexed by integers

2. The example of “Markov’s other chain” below shows we need
to insist on the possibility of conditioning by further past
Xt−1, . . . in this definition.
Note

∑
y pxy = 1 by “law of total probability”.

3. Example: some word transition probabilities arising in the
“random English” example given immediately below:

P["round"|"all"]=0.50 P["contact"|"all"]=0.50 P["hearing"|"ocean,"]=1.00
P["first,"|"go"]=1.00 P["As"|"up."]=1.00 P["Every"|"day."]=1.00
P["woman"|"young"]=0.33 P["prince."|"young"]=0.33
P["man"|"young"]=0.33 P["on"|"enjoined"]=1.00 . . .

4. Test understanding: show how the Chapman-Kolmogorov equations follow

from considerations of conditional probability and the Markov property.
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Preliminary material

Markov chains

Example: Models for language following Markov

How to generate “random English” as a Markov chain:

1. Take a large book in electronic form, for example
Tolstoy’s “War and Peace” (English translation).

2. Use it to build a table of digram frequencies (digram =
pair of consecutive letters).

3. Convert frequencies into conditional probabilities of one
letter following another, and use these to form a Markov
chain to generate “random English”.

It is an amusing if substantial exercise to use this as a prior
for Bayesian decoding of simple substitution codes:

www.warwick.ac.uk/go/sconnor/poster.pdf.
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Preliminary material

Markov chains
Example: Models for language following Markov

1. The World-Web Web has made this part much easier: try
Project Gutenberg (www.gutenberg.org/etext/2600).

2. Skill is required in deciding which letters to use: should one
use all, or some, punctuation? certainly need to use spaces.

3. Trigrams would be more impressive. Indeed, one needs to
work at the level of words to simulate something like English.
Here is example output based on a children’s fable:

It was able to the end of great daring but which when Rapunzel
was a guardian has enjoined on a time, after a faked morning
departure more directly; over its days in a stratagem, which
supported her hair into the risk of endless figures on supplanted
sorrow. The prince’s directive, to clamber down would come up
easily, and perceived a grudge against humans for a convincing
simulation of a nearby robotic despot. But then a computer
typing in a convincing simulation of the traditional manner.
However they settled in quality, and the prince thought for
Rapunzel made its ward’s face, that as she then a mere girl.
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Preliminary material

Markov chains

(Counter)example: Markov’s other chain
Conditional probability can be subtle. Consider:

1. Independent Bernoulli X0, X2, X4, . . . such that
P [X2n = ±1] = 1

2 ;

2. Define X2n+1 = X2nX2n+2 for n = 0,1, . . .; these also form
an independent identically distributed sequence.

3. P [Xn+1 = ±1|Xn] = 1
2 for any n ≥ 1.

4. Chapman-Kolmogorov equations hold for any
0 ≤ k ≤ n+ k:

P [Xn+k = ±1|X0] =
∑

y=±1

P [Xn+k = ±1|Xk = y]P [Xk = y|X0] .

5. Nevertheless, P [X2 = ±1|X1 = 1,X0 = u] depends on
u = ±1, so Markov property fails for X .
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Preliminary material

Markov chains
(Counter)example: Markov’s other chain

Example taken from Grimmett and Stirzaker (2001).

Note that the entirety of random variables X0,X1,X2, . . . are most
certainly not independent!
Test understanding by checking these calculations.

It is usual in stochastic modelling to start by specifying that a
given random process X = {X0,X1,X2, . . .} is Markov, so this kind
of issue is not often encountered in practice. However it is as well
to be aware of it: conditioning is a subtle concept and should be
treated with respect!
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Preliminary material

Markov chains

Irreducibility and aperiodicity

1. A discrete Markov chain is irreducible if for all i and j it
has a positive chance of visiting j at some positive time,
if it is started at i.

2. It is aperiodic if one cannot divide state-space into
non-empty subsets such that the chain progresses
through the subsets in a periodic way. Simple symmetric
walk (jumps ±1) is not aperiodic.

3. If the chain is not irreducible, then we can compute the
chance of it getting from one state to another using first
passage equations: if

fij = P [Xn = j for some positive n|X0 = i]

then solve linear equations for the fij.

Irreducibility and aperiodicity
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Preliminary material

Markov chains
Irreducibility and aperiodicity

1. Consider the word game: change “good” to “evil” through
other English words by altering just one letter at a time.
Illustrative question (compare Gardner 1996): does your
vocabulary of 4-letter English words form an irreducible
Markov chain under moves which attempt random changes of
letters? You can find an algorithmic approach to this question
in Knuth (1993).

2. Equivalent definition: an irreducible chain X is aperiodic if its
“independent double” {(X0,Y0), (X1,Y1), . . .} (for Y an
independent copy of X ) is irreducible.

3. Because of the connection with matrices noted above, this
can be cast in terms of rather basic linear algebra.
First passage equations are still helpful in analyzing
irreducible chains: for example the chance of visiting j before
k is the same as computing fij for the modified chain which
stops on hitting k.
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Preliminary material

Markov chains

Example: Markov tennis
How does probability of win by B depend on p = P [B wins point]?

Example: Markov tennis
How does probability of win by B depend on p = P [B wins point]?
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Preliminary material

Markov chains
Example: Markov tennis

Use first passage equations, then solve linear equations for the fij,
noting in particular

f Game to A,Game to B = 0 , f Game to B,Game to B = 1 .

I obtain
f Love-All,Game to B = p4(15−34p+28p2−8p3)

1−2p+2p2 ,

graphed against p below:
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Preliminary material

Markov chains

Transience and recurrence

1. Is it possible for a Markov chain X never to return to a
starting state i ? If so then that state is said to be
transient.

2. Otherwise the state is said to be recurrent.

3. Moreover if the return time T has finite mean then the
state is said to be positive-recurrent.

4. Recurrent states which are not positive-recurrent are
called null-recurrent.

5. States of an irreducible Markov chain are all recurrent if
one is, all positive-recurrent if one is.
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Preliminary material

Markov chains
Transience and recurrence

1. Example: asymmetric simple random walk (jumps ±1): see
Cox and Miller (1965) for a pretty explanation using strong
law of large numbers.

2. Example: symmetric simple random walk (jumps ±1).
3. As we will see, there exist infinite positive-recurrent chains

(eg, “discrete AR(1)”).
4. Why “null”, “positive”? Terminology is motivated by the

limiting behaviour of probability of being found in that state
at large time. (Asymptotically zero if null-recurrent or
transient: tends to 1/E [T ] if aperiodic positive-recurrent.)

5. This is based on the criterion for recurrence of state i:∑
n p(n)ii = ∞, which in turn arises from an application of

generating functions. The criterion amounts to asserting, the
chain is sure to return to a state i exactly when the mean
number of returns is infinite.



APTS-ASP 37

Preliminary material

Markov chains

Equilibrium of Markov chains

1. If X is irreducible and positive-recurrent then it has a
unique equilibrium distribution π : if X0 is random with
distribution given by P [X0 = i] = πi then P [Xt = i] = πi

for any t.

2. Moreover the equilibrium distribution viewed as a row
vector solves the equilibrium equations:

π · P = π , or πj =
∑

i

πipij .

3. If in addition X is aperiodic then the equilibrium
distribution is also the limiting distribution:

P [Xn = i] → πi as n→∞ .
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Preliminary material

Markov chains
Equilibrium of Markov chains

1. In general the chain continues moving, but the marginal
probabilities at time t do not change.

2. Test understanding: Show that the 2-state Markov chain with

transition probability matrix
[

0.1 0.9
0.8 0.2

]
has equilibrium

distribution π = (0.470588 . . . ,0.529412 . . .). Note that you
need to use the fact that π1 +π2 = 1: this is always an
important extra fact to use in determining a Markov chain’s
equilibrium distribution!

3. This limiting result is of great importance in MCMC.
If aperiodicity fails then it is always possible to sub-sample to
convert to the aperiodic case on a subset of state-space.
Note 4 of previous segment shows possibility of computing
mean recurrence time using matrix arithmetic.
NB: πi can also be interpreted as “mean time in state i”.
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Preliminary material

Markov chains

Sums of limits and limits of sums
1. Finite state-space discrete Markov chains have a useful

simplifying property: they are always positive-recurrent
if they are irreducible.

2. This can be proved by using a result, that for
null-recurrent or transient states j we find p(n)ij → 0 as
n→∞, for all other states i. Hence a contradiction:

∑

j

lim
n→∞p(n)ij = lim

n→∞
∑

j

p(n)ij

and the right-hand sum equals 1 from “law of total
probability”, while left-hand sum equals

∑
0 = 0 by

null-recurrence.
3. This argument fails for infinite state-space as it is

incorrect arbitrarily to exchange infinite limiting
operations: lim

∑
≠
∑

lim in general.
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Preliminary material

Markov chains
Sums of limits and limits of sums

1. Some argue that all Markov chains met in practice are finite,
since we work on finite computers with finite floating point
arithmetic. Do you find this argument convincing or not?

2. The result used here puts the “null” in null-recurrence.
3. We have earlier summarized the principal theorems which

deliver checkable conditions as to when one can make this
exchange.

Note that the simple random walk (irreducible but
null-recurrent or transient) is the simplest practical example
of why one must not carelessly exchange infinite limiting
operations!
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Preliminary material

Markov chains

Continuous-time countable state-space Markov chains
(a rough guide)

1. Definition of continuous-time (countable) discrete
state-space (time-homogeneous) Markov chain
X = {Xt : t ≥ 0}: for s, t > 0

pt(x, y) = P [Xs+t = y|Xs = x,Xu for various u ≤ s]

depends only on x, y, t, not on rest of past.

2. Organize pt(x, y) into matrices
P(t) = {pt(x, y) : states x, y}; as in discrete case
P(t) · P(s) = P(t + s) and P(0) is identity matrix.

3. (Try to) compute time derivative: Q = (d/dt)P(t)|t=0 is

matrix of transition rates q(x, y).
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Preliminary material

Markov chains
Continuous-time countable state-space Markov
chains

This is a very rough guide: I pondered for a while whether to add
this to prerequisites, since most of what I want to talk about will
be in discrete time. I decided to add it in the end because
sometimes the easiest examples in Markov chains are in
continuous-time. The important point to grasp is that if we know
the transition rates q(x, y) then we can write down differential
equations to define the transition probabilities and so the chain.
We don’t necessarily try to solve the equations . . . .

1. For short, write pt(x, y) = P [Xs+t = y|Xs = x,Fs] where Fs

represents all possible information about the past at time s.
2. From here on I omit many “under sufficient regularity”

statements. Norris (1998) gives a careful treatment.
3. The row-sums of P(t) all equal 1 (“law of total probability”).

Hence the row sums of Q ought to be 0 with non-positive

diagonal entries q(x, x) = −q(x) measuring rate of leaving x.
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Preliminary material

Markov chains

Continuous-time countable state-space Markov chains
(a rough guide continued)

For suitably regular continuous-time countable state-space
Markov chains, we can use the Q-matrix Q to simulate the

chain as follows:

1. rate of leaving state x is q(x) =∑y≠x q(x, y) (since row
sums of Q should be zero). Time till departure is

Exponential(q(x));
2. on departure from x, go straight to state y ≠ x with

probability q(x, y)/q(x).

Continuous-time countable state-space Markov chains
(a rough guide continued)
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Preliminary material

Markov chains
Continuous-time countable state-space Markov
chains

1. Why an exponential distribution? Because an effect of the
Markov property is to require the holding time until the first
transition to have a memory-less property—which
characterizes Exponential distributions.
Here it is relevant to note that “minimum of independent Exponential

random variables is Exponential”.

2. This also follows rather directly from the Markov property.
Note that this shows two strong limitations of
continuous-time Markov chains as stochastic models: the
Exponential distribution of holding times may be unrealistic;
and the state to which a transition is made does not depend
on actual length of holding time. Of course, people have
worked on generalizations (keyword: semi-Markov
processes).
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Preliminary material

Markov chains

Continuous-time countable state-space Markov chains
(a rough guide continued)

1. Compute the s-derivative of P(s) · P(t) = P(s+ t). This
yields the famous “Kolmogorov backwards equations”:

Q · P(t) = P(t)′ .

The other way round yields the “Kolmogorov forwards
equations”:

P(t) ·Q = P(t)′ .

2. If statistical equilibrium holds then the transition
probabilities should converge to limiting values as
t →∞: applying this to the forwards equation we expect
the equilibrium distribution π to solve

π ·Q = 0 .
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Preliminary material

Markov chains
Continuous-time countable state-space Markov
chains

1. Test understanding: use calculus to derive

∑
z

ps(x, z)pt(z, y) = ps+t(x, y) gives
∑
z

q(x, z)pt(z, y) = ∂
∂t

pt(x, y) ,

∑
z

pt(x, z)ps(z, y) = pt+s(x, y) gives
∑
z

pt(x, z)q(z, y) = ∂
∂t

pt(x, y) .

Note the shameless exchange of differentiation and
summation over potentially infinite state-space . . . .

2. Test understanding: applying this idea to the backwards
equation gets us nothing, as a consequence of the vanishing
of row sums of Q.

In extended form π ·Q = 0 yields the important equilibrium
equations ∑

z

π(z)q(z, y) = 0 .
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Preliminary material

Markov chains

Example: the Poisson process

We use the above theory to define chains by specifying the
non-zero rates. Consider the case when X counts the number
of people arriving at random at constant rate:

1. Stipulate that the number Xt of people in system at time
t forms a Markov chain.

2. Transition rates: people arrive one-at-a-time at constant
rate, so q(x, x + 1) = λ.

One can solve the Kolmogorov differential equations in this
case:

P [Xt = n|X0 = 0] = (λt)n

n!
e−λt .
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Preliminary material

Markov chains
Example: the Poisson process

For most Markov chains one makes progress without solving the
differential equations.
The interplay between the simulation method above and the
distributional information here is exactly the interplay between
viewing the Poisson process as a counting process (“Poisson
counts”) and a sequence of inter-arrival times (“Exponential gaps”).
The classic relationships between Exponential, Poisson, Gamma
and Geometric distributions are all embedded in this one process.

Two significant extra facts are
superposition: independent sum of Poisson processes is Poisson:

thinning: if arrivals are censored i.i.d. at random then result is Poisson.



APTS-ASP 49

Preliminary material

Markov chains

Example: the M/M/1 queue

Consider a queue in which people arrive and are served (in
order) at constant rates by a single server.

1. Stipulate that the number Xt of people in system at time
t forms a Markov chain.

2. Transition rates (I): people arrive one-at-a-time at
constant rate, so q(x, x + 1) = λ.

3. Transition rates (II): people are served in order at
constant rate, so q(x, x − 1) = µ if x > 0.

One can solve the equilibrium equations to deduce: the
equilibrium distribution of X exists and is Geometric if and
only if λ < µ.
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Preliminary material

Markov chains
Example: the M/M/1 queue

Don’t try to solve the equilibrium equations at home (unless you
enjoy that sort of thing). In this case it is do-able, but during the
module we’ll discuss a much quicker way to find the equilibrium
distribution in favourable cases.
Here is the equilibrium distribution in more explicit form: in
equilibrium

P [X = x] = ρx

1− ρ for x = 0,1, . . . , .

where ρ = λ/µ ∈ (0,1) (the traffic intensity).
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Some useful texts

Some useful texts (I)

At increasing levels of mathematical sophistication:

1. Häggström (2002) “Finite Markov chains and algorithmic
applications”.

2. Grimmett and Stirzaker (2001) “Probability and random
processes”.

3. Norris (1998) “Markov chains”.

4. Williams (1991) “Probability with martingales”.

Some useful texts (I)
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Some useful texts

Some useful texts (I)

1. Delightful introduction to finite state-space discrete-time
Markov chains, from point of view of computer algorithms.

2. Standard undergraduate text on mathematical probability.
This is the book I advise my students to buy, because it
contains so much material.

3. Markov chains at a more graduate level of sophistication,
revealing what I have concealed, namely the full gory story
about Q-matrices.

4. Excellent graduate test for theory of martingales:
mathematically demanding.
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Some useful texts

Some useful texts (II): free on the web

1. Doyle and Snell (1984) “Random walks and electric
networks” available on web at
http://arxiv.org/abs/math/0001057.

2. Kindermann and Snell (1980) “Markov random fields and
their applications” available on web at
http://www.ams.org/online_bks/conm1/.

3. Meyn and Tweedie (1993) “Markov chains and stochastic
stability” available on web at
http://probability.ca/MT/.

4. Aldous and Fill (2001) “Reversible Markov Chains and
Random Walks on Graphs” only available on web at
http://www.stat.berkeley.edu/~aldous/RWG/book.html.
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Some useful texts

Some useful texts (II): free on the web

1. Lays out (in simple and accessible terms) an important
approach to Markov chains using relationship to resistance in
electrical networks.

2. Sublimely accessible treatment of Markov random fields
(Markov property, but in space not time).

3. The place to go if you need to get informed about theoretical
results on rates of convergence for Markov chains (eg,
because you are doing MCMC).

4. The best unfinished book on Markov chains known to me.
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Some useful texts

Some useful texts (III): going deeper

1. Kingman (1993) “Poisson processes”.

2. Kelly (1979) “Reversibility and stochastic networks”.

3. Steele (2004) “The Cauchy-Schwarz master class”.

4. Aldous (1989) “Probability approximations via the
Poisson clumping heuristic” see
www.stat.berkeley.edu/~aldous/Research/research80.

html.

5. Øksendal (2003) “Stochastic differential equations”.

6. Stoyan, Kendall, and Mecke (1995) “Stochastic geometry
and its applications”.
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Some useful texts

Some useful texts (III): going deeper

Here are a few of the many texts which go much further

1. Very good introduction to the wide circle of ideas
surrounding the Poisson process.

2. We’ll cover reversibility briefly in the lectures, but this shows
just how powerful the technique is.

3. The book to read if you decide you need to know more about
(mathematical) inequality.

4. A book full of what ought to be true; hence good for
stimulating research problems and also for ways of
computing heuristic answers.

5. An accessible introduction to Brownian motion and stochastic
calculus, which we do not cover at all.

6. Discusses a range of techniques used to handle probability in
geometric contexts.
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Some useful texts

Aldous, D. J. (1989).
Probability approximations via the Poisson clumping heuristic, Volume 77 of

Applied Mathematical Sciences.
New York: Springer-Verlag.

Aldous, D. J. and J. A. Fill (2001).
Reversible Markov Chains and Random Walks on Graphs.
Unpublished.

Cox, D. R. and H. D. Miller (1965).
The theory of stochastic processes.
New York: John Wiley & Sons Inc.

Doyle, P. G. and J. L. Snell (1984).
Random walks and electric networks, Volume 22 of Carus Mathematical

Monographs.
Washington, DC: Mathematical Association of America.

Gardner, M. (1996).
Word ladders: Lewis Carroll’s doublets.
The Mathematical Gazette 80(487), 195–198.
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Some useful texts

Grimmett, G. R. and D. R. Stirzaker (2001).
Probability and random processes (Third ed.).
New York: Oxford University Press.

Häggström, O. (2002).
Finite Markov chains and algorithmic applications, Volume 52 of London

Mathematical Society Student Texts.
Cambridge: Cambridge University Press.

Kelly, F. P. (1979).
Reversibility and stochastic networks.
Chichester: John Wiley & Sons Ltd.
Wiley Series in Probability and Mathematical Statistics.

Kindermann, R. and J. L. Snell (1980).
Markov random fields and their applications, Volume 1 of Contemporary

Mathematics.
Providence, R.I.: American Mathematical Society.

Kingman, J. F. C. (1993).
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