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First-Order Asymptotic Theory

Motivation

Statistical inference requires approximation, using asymptotic
theory, to densities or distribution functions.

Exact answers are rarely available.

Approximations based on results of probability theory.
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First-Order Asymptotic Theory

Statistical asymptotics

Theory based on limit results combined in ‘statistical asymptotics’
with asymptotic techniques from analysis and development of
asymptotic expansions.

Often a first-order approximation can be improved by incorporating
higher-order terms in an asymptotic expansion.

Theory underlying approximation techniques is valid as some
quantity, typically the sample size n [or more generally some
‘amount of information’], goes to infinity, but the approximations
obtained can be very accurate even for extremely small sample
sizes.
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First-Order Asymptotic Theory

No nuisance parameter case

Denote by lr the rth component of U(θ), by lrs the (r , s)th
component of ∇θ∇T

θ l . Let [lrs ]
−1 = [l rs ].

The maximum likelihood estimate for given observations y is, for
regular problems, defined as the solution, assumed unique, of the
likelihood equation

u(θ̂; y) = 0.
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First-Order Asymptotic Theory

Test statistics

To test the null hypothesis H0 : θ = θ0, where θ0 is an arbitrary,
specified, point in Ωθ.

Three statistics that typically differ by Op(n
−1/2) are:

(1) the likelihood ratio statistic

w(θ0) = 2{l(θ̂)− l(θ0)},

(2) the score statistic

wU(θ0) = UT (θ0)i
−1(θ0)U(θ0),

(3) the Wald statistic

wp(θ0) = (θ̂ − θ0)
T i(θ0)(θ̂ − θ0).
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First-Order Asymptotic Theory

Scalar case

For a scalar θ, (1) may be replaced by

r(θ0) = sgn(θ̂ − θ0)
√

w(θ0),

the signed root likelihood ratio statistic.

Also (2) and (3) may be replaced by

rU(θ0) = U(θ0)/
√

i(θ0)

and
rp(θ0) = (θ̂ − θ0)

√
i(θ0)

respectively.
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First-Order Asymptotic Theory

Distributions

In a first-order asymptotic theory, the statistics (1)–(3) have,
asymptotically, the chi-squared distribution with dθ = dim(Ωθ)
degrees of freedom. The ‘signed root’ versions have an N(0, 1)
distribution.

Confidence regions at level 1− α are formed approximately as, for
example,

{θ : w(θ) ≤ χ2
dθ,α

},

where χ2
dθ,α

is the upper α point of the relevant chi-squared
distribution.
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First-Order Asymptotic Theory

Orders

Since U(θ0) and i(θ0) refer to the total vector Y of dimension n,
then as n →∞:

U(θ0) ≡
√

nŪ(θ0) = Op(n
1/2),

i(θ0) ≡ nī(θ0) = O(n),

θ̂ − θ0 = Op(n
−1/2),

where ī(θ0) is the average information per observation and Ū(θ0)
is a normalised score function. If the observations are IID, ī is the
information for a single observation.
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First-Order Asymptotic Theory

Estimation of information

As n →∞, we have in probability that, provided i(θ) is continuous
at θ = θ0,

j(θ̂)/n → ī(θ0),

j(θ0)/n → ī(θ0).

Therefore, in the definitions of the various statistics, i(θ0) can be
replaced by i(θ̂), j(θ̂), j(θ0) etc. etc.
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j(θ0)/n → ī(θ0).
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First-Order Asymptotic Theory

If θ = θ0, the various modified statistics differ typically by
Op(n

−1/2), so that their asymptotic distributions are the same
under H0.
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First-Order Asymptotic Theory

Distribution theory

A serious issue concerns the asymptotic existence, uniqueness and
consistency of the maximum likelihood estimate. There are no very
satisfactory general theorems on such questions.

We assume that θ̂ is well defined and consistent.
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First-Order Asymptotic Theory

In considerable generality U is asymptotically normal with zero
mean and variance i(θ).

Suppose that U(θ) = U(θ;Y ) = [lr (θ)] has been shown to be
asymptotically Nd(0, i(θ)),

{nī(θ)}−1/2U(θ)
d−→ Nd

(
0, Id

)
,

Id is identity matrix, ‘1/2′ indicates matrix square root.
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First-Order Asymptotic Theory

An aside: summation convention

Whenever an index occurs both as a subscript and as a superscript
in an expression, summation over possible values of that index is to
be assumed.
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First-Order Asymptotic Theory

Distribution of θ̂

Expand the score lr (θ) in a Taylor series around θ, writing

lr (θ) = Ur (θ) =
√

nl̄r (θ) =
√

nŪr (θ),

lrs(θ) = nl̄rs(θ) = −jrs(θ) = −nj̄rs(θ),

δ̄r =
√

n(θ̂r − θr ), lrst(θ) = nl̄rst(θ),

i(θ) = nī(θ), etc.
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First-Order Asymptotic Theory

Then, lr (θ̂) = 0, so

√
nl̄r (θ) + nl̄rs(θ)δ̄

s/
√

n

+ 1
2nl̄rst(θ)δ̄

s δ̄t/n + · · · = 0.
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First-Order Asymptotic Theory

To a first-order approximation, ignoring the third term, we have

δ̄r = −l̄ rs(θ)̄ls(θ) + Op(n
−1/2)

= j̄ rs(θ)̄ls(θ) + Op(n
−1/2).

Now j rs/i rs
p−→ 1, so

δ̄r = ī rs(θ)̄ls(θ) + Op(n
−1/2),

a linear function of asymptotically normal variables of zero mean.
It follows that [δ̄r ] is asymptotically normal with zero mean and
covariance matrix [̄i rs ]. We have

{nī(θ)}1/2(θ̂ − θ)
d−→ Nd

(
0, Id

)
.
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First-Order Asymptotic Theory

Other quantities

By direct expansion in θ around θ̂ we have, writing ĵrs = jrs(θ̂),

w(θ) = ĵrs(θ̂ − θ)r (θ̂ − θ)s + op(1)

or equivalently
w(θ) = i rs lr ls + op(1),

so w(θ)
d−→ χ2

d .

The asymptotic χ2 distribution of the Wald and score statistics
follows similarly.
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First-Order Asymptotic Theory

Signed root statistic

When the dimension of θ is d = 1, we have that the signed root
likelihood ratio statistic

r = sgn(θ̂ − θ)
√

w(θ)

satisfies
r = ĵ−1/2U + op(1)

so that r
d−→ N(0, 1).
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First-Order Asymptotic Theory

A Confidence Interval

For scalar θ, we have i(θ̂)1/2(θ̂ − θ) asymptotically N(0, 1), so an
approximate 100(1− α)% confidence interval for θ is

θ̂ ∓ i(θ̂)−1/2Φ−1(1− α/2).
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First-Order Asymptotic Theory

Profile likelihood

Consider the multiparameter problem in which
θ = (θ1, . . . , θd) ∈ Ωθ, an open subset of Rd .

Interest lies in inference for a subparameter or parameter function
ψ = ψ(θ).

The profile likelihood Lp(ψ) for ψ is

Lp(ψ) = sup
θ:ψ(θ)=ψ

L(θ),

the supremum of L(θ) over all θ that are consistent with the given
value of ψ.

The profile log-likelihood is lp = log Lp.
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First-Order Asymptotic Theory

The usual case

Usually ψ is a component of a given partition θ = (ψ, χ) of θ into
sub-vectors ψ and χ of dimension dψ = d − dχ and dχ respectively.

Then
Lp(ψ) = L(ψ, χ̂ψ),

where χ̂ψ denotes the maximum likelihood estimate of χ for a
given value of ψ.
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First-Order Asymptotic Theory

Properties of profile likelihood

The maximum profile likelihood estimate of ψ equals ψ̂.

The profile log-likelihood ratio statistic 2{lp(ψ̂)− lp(ψ0)} equals
the log-likelihood ratio statistic for H0 : ψ = ψ0,

2{lp(ψ̂)− lp(ψ0)} ≡ 2{l(ψ̂, χ̂)− l(ψ0, χ̂0)} ≡ w(ψ0),

where l is the log-likelihood and χ̂0 ≡ χ̂ψ0 .

The asymptotic null distribution of the profile log-likelihood ratio
statistic is χ2

dψ
.
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First-Order Asymptotic Theory

Multiparameter problems: further statistics

To test H0 : ψ = ψ0, in the presence of nuisance parameter χ.

Partition the maximum likelihood estimate, the score vector, the
information matrix and its inverse:

U(θ) =

(
Uψ(ψ, χ)
Uχ(ψ, χ)

)
,

i(θ) =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]
,

i−1(θ) =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]
.
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First-Order Asymptotic Theory

Wald statistic

We have ψ̂ asymptotically normally distributed with mean ψ0 and
covariance matrix iψψ(ψ0, χ0), which can be replaced by
iψψ(ψ0, χ̂0).

So a version of the Wald test statistic for the nuisance parameter
case is:

wp(ψ0) = (ψ̂ − ψ0)
T [iψψ(ψ0, χ̂0)]

−1(ψ̂ − ψ0).
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First-Order Asymptotic Theory

Score statistic

A version of the score statistic for testing H0 : ψ = ψ0 is:

wu(ψ0) = Uψ(ψ0, χ̂0)
T iψψ(ψ0, χ̂0)Uψ(ψ0, χ̂0).

This test has the advantage that MLE has to be obtained only
under H0, and is derived from the asymptotic normality of U.
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First-Order Asymptotic Theory

Asymptotic distributions

Both wp(ψ0) and wu(ψ0) have asymptotically a chi-squared
distribution with dψ degrees of freedom.
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First-Order Asymptotic Theory

Effects of parameter orthogonality

Assume that it is possible to make the parameter of interest ψ and
the nuisance parameter, now denoted by λ, orthogonal.

Any transformation from, say, (ψ, χ) to (ψ, λ) necessary to achieve
this leaves the profile log-likelihood unchanged.
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First-Order Asymptotic Theory

The matrices i(ψ, λ) and i−1(ψ, λ) are block diagonal. Therefore,
ψ̂ and λ̂ are asymptotically independent.

Also, λ̂ψ, the MLE of λ for specified ψ, varies only slowly in ψ in

the neighbourhood of ψ̂, and there is a corresponding slow
variation of ψ̂λ with λ: if ψ − ψ̂ = Op(n

−1/2), then
λ̂ψ − λ̂ = Op(n

−1).

For a nonorthogonal nuisance parameter χ, we would have
χ̂ψ − χ̂ = Op(n

−1/2).
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First-Order Asymptotic Theory

Sketch Proof, Scalar Case

If ψ − ψ̂ = Op(n
−1/2), χ− χ̂ = Op(n

−1/2), we have

l(ψ, χ) = l(ψ̂, χ̂)− 1
2

{
ĵψψ(ψ − ψ̂)2

+2ĵψχ(ψ − ψ̂)(χ− χ̂) + ĵχχ(χ− χ̂)2
}

+ Op(n
−1/2).
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First-Order Asymptotic Theory

It then follows that

χ̂ψ − χ̂ =
−ĵψχ

ĵχχ
(ψ − ψ̂) + Op(n

−1)

=
−iψχ
iχχ

(ψ − ψ̂) + Op(n
−1).

Then, because ψ − ψ̂ = Op(n
−1/2), χ̂ψ − χ̂ = Op(n

−1/2) unless
iψχ = 0, the orthogonal case, when the difference is Op(n

−1).
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Further remarks

So far as asymptotic theory is concerned, we can have χ̂ψ = χ̂
independently of ψ only if χ and ψ are orthogonal. In this special
case we can write lp(ψ) = l(ψ, χ̂).

In the general orthogonal case, lp(ψ) = l(ψ, χ̂) + op(1), so that a
first-order theory could use l∗p(ψ) = l(ψ, χ̂) instead of
lp(ψ) = l(ψ, χ̂ψ).
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First-Order Asymptotic Theory

Distribution theory

The log-likelihood ratio statistic w(ψ0) can be written as

w(ψ0) = 2
{
l(ψ̂, χ̂)− l(ψ0, χ)

}
− 2

{
l(ψ0, χ̂0)− l(ψ0, χ)

}
,

as the difference of two statistics for testing hypotheses without
nuisance parameters.

G. Alastair Young Statistical Asymptotics



First-Order Asymptotic Theory

Taylor expansion about (ψ0, χ), where χ is the true value of the
nuisance parameter, gives, to first-order (i.e. ignoring terms of
order op(1)),

w(ψ0) =

[
ψ̂ − ψ0

χ̂− χ

]T

i(ψ0, χ)

[
ψ̂ − ψ0

χ̂− χ

]
−(χ̂0 − χ)T iχχ(ψ0, χ)(χ̂0 − χ).
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First-Order Asymptotic Theory

The linearised form of the MLE equations is[
iψψ iψχ
iχψ iχχ

] [
ψ̂ − ψ0

χ̂− χ

]
=

[
Uψ
Uχ

]
,

so [
ψ̂ − ψ0

χ̂− χ

]
=

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
.
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First-Order Asymptotic Theory

Also χ̂0 − χ = i−1
χχUχ, to first-order. Then, to first-order,

w(ψ0) = [UT
ψ UT

χ ]

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]
− UT

χ i−1
χχUχ.

Then,
w(ψ0) ∼ QU − QUχ = QUψ .Uχ ,

a difference of two quadratic forms, and is thus asymptotically
χ2

dψ
, by properties of multivariate normal distribution.
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First-Order Asymptotic Theory

The Wald statistic wp(ψ0) is based directly on a quadratic form of
ψ̂ − ψ0, and so can be seen immediately to be asymptotically χ2

dψ
,

from properties of the multivariate normal distribution.

Note that to first-order we have

wp(ψ0) = [iψψUψ + iψχUχ]
T (iψψ)−1[iψψUψ + iψχUχ].
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First-Order Asymptotic Theory

We can express the statistic wU(ψ0) in terms of the score vector
U. To first-order we have

wU(ψ0) = (Uψ − iψχi
−1
χχUχ)

T iψψ(Uψ − iψχi
−1
χχUχ).

This follows since, to first-order,

Uψ(ψ0, χ̂0) = Uψ +
∂Uψ
∂χ

(χ̂0 − χ)

= Uψ − iψχi
−1
χχUχ.
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First-Order Asymptotic Theory

The equivalence of the three statistics, and therefore the
asymptotic distribution of wU(ψ0), follows on showing that the
three first order quantities are identical.
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