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Higher-order Theory

Motivation

I To improve on the first-order limit results, to obtain
approximations whose asymptotic accuracy is higher by one or
two orders.

I The Fisherian proposition that inferences on the parameter of
interest should be obtained by conditioning on an ancillary
statistic, rather than from the original model.
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Higher-order Theory

Asymptotic expansion

An asymptotic expansion for a function gn(x) at some fixed x is
expressed as

gn(x) = γ0(x)b0,n + γ1(x)b1,n + . . .+ γk(x)bk,n + o(bk,n),

as n →∞, where {br ,n}k
r=0 is a sequence such as

{1, n−1/2, n−1, . . . n−k/2} or {1, n−1, n−2, . . . , n−k}.

In general the sequence must have the property that
br+1,n = o(br ,n) as n →∞, for each r = 0, 1, . . . , k − 1.
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Higher-order Theory

Often the function of interest gn(x) will be the exact density or
distribution function of a statistic based on a sample of size n, and
γ0(x) will be some simple first-order approximation, such as the
normal density or distribution function.

One important feature of asymptotic expansions is that they are
not in general convergent series for gn(x) for any fixed x : taking
successively more terms, letting k →∞ for fixed n, will not
necessarily improve the approximation to gn(x).
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Higher-order Theory

Stochastic asymptotic expansion

For a sequence of random variables {Yn}, a stochastic asymptotic
expansion is expressed as

Yn = X0b0,n + X1b1,n + . . .+ Xkbk,n + op(bk,n),

where {bk,n} is a given set of sequences and {X0,X1, . . .} have
distributions not depending on n.
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Higher-order Theory

Stochastic asymptotic expansions are not as well defined as
asymptotic expansions, as there is usually considerable arbitrariness
in the choice of the coefficient random variables {X0,X1, . . .}.

A simple application of stochastic asymptotic expansion is the
proof of asymptotic normality of the maximum likelihood estimator.
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Higher-order Theory

Tools of asymptotic analysis

I Edgeworth expansions.

I Saddlepoint approximations.

I Laplace’s method.
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Higher-order Theory

Edgeworth expansion

Let Y1,Y2, . . . ,Yn be IID univariate with cumulant generating
function KY (t) and cumulants κr .

Let Sn =
∑n

1 Yi , S∗
n = (Sn − nµ)/

√
nσ where

µ ≡ κ1 = EY1, σ
2 ≡ κ2 = varY1.

Define the rth standardised cumulant by ρr = κr/κ
r/2
2 .
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Higher-order Theory

The Edgeworth expansions for the density of S∗
n is:

fS∗
n
(x) = φ(x)

{
1 +

ρ3

6
√

n
H3(x)

+
1

n

[
ρ4H4(x)

24
+
ρ2
3H6(x)

72

]}
+ O(n−3/2).
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Higher-order Theory

Here φ(x) is the standard normal density and Hr (x) is the rth
degree Hermite polynomial defined by

Hr (x) = (−1)r
d rφ(x)

dx r

/
φ(x)

= (−1)rφ(r)(x)/φ(x), say.

We have H3(x) = x3 − 3x , H4(x) = x4 − 6x2 + 3 and
H6(x) = x6 − 15x4 + 45x2 − 15.
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Higher-order Theory

Comments

The leading term in the expansion is the standard normal density,
as is appropriate from CLT.

The n−1/2 term is an adjustment for skewness, via the
standardised skewness ρ3.

The n−1 term is a simultaneous adjustment for skewness and
kurtosis.
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Higher-order Theory

If the density of Y1 is symmetric, ρ3 = 0 and the normal
approximation is accurate to order n−1, rather than the usual
n−1/2 for ρ3 6= 0.

The accuracy of the Edgeworth approximation, which truncates the
expansion, will depend on the value of x . Edgeworth
approximations tend to be poor, and may even be negative, in the
tails of the distribution, as |x | increases.
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Higher-order Theory

Distribution function

Integrating the Edgeworth expansion using the properties of the
Hermite polynomials, gives an expansion for the distribution
function of S∗

n :

FS∗
n
(x) = Φ(x)− φ(x)

{
ρ3

6
√

n
H2(x)

+
ρ4

24n
H3(x) +

ρ2
3

72n
H5(x)

}
+ O(n−3/2).
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Higher-order Theory

Also, if Tn is a sufficiently smooth function of S∗
n , then a formal

Edgeworth expansion can be obtained for the density of Tn.
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Higher-order Theory

Cornish-Fisher expansion

Might wish to determine x , as xα say, so that FS∗
n
(xα) = α, to the

order considered in the Edgeworth approximation to the
distribution function of S∗

n .
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Higher-order Theory

The solution is known as the Cornish-Fisher expansion and the
formula is

xα = zα +
1

6
√

n
(z2
α − 1)ρ3 +

1

24n
(z3
α − 3zα)ρ4

− 1

36n
(2z3

α − 5zα)ρ2
3 + O(n−3/2),

where Φ(zα) = α.
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Higher-order Theory

Derivation∗

The density of a random variable can be obtained by inversion of
its characteristic function.

In particular, the density for X̄ , the mean of a set of IID random
variables X1, . . . ,Xn, can be obtained as

fX̄ (x̄) =
n

2πi

∫ τ+i∞

τ−i∞
exp

[
n{K (φ)− φx̄}

]
dφ,

where K is the cumulant generating function of X , and τ is any
point in the open interval around 0 in which the moment
generating function M exists.
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Higher-order Theory

Edgeworth expansions are obtained by expanding the cumulant
generating function in a Taylor series around 0, exponentiating and
inverting term by term.
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Higher-order Theory

Saddlepoint expansion

The saddlepoint expansion for the density of Sn is

fSn(x) =
1√
2π

1

{nK ′′
Y (φ̂)}1/2

× exp{nKY (φ̂)− φ̂x}{1 + O(n−1)}

where φ̂ ≡ φ̂(x) satisfies nK ′
Y (φ̂) = x .
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Higher-order Theory

The O(n−1) term is actually (3ρ̂4 − 5ρ̂2
3)/(24n), where

ρ̂j ≡ ρ̂j(φ̂) = K
(j)
Y (φ̂)/{K ′′

Y (φ̂)}j/2 is the jth standardised derivative

of the cumulant generating function for Y1 evaluated at φ̂.
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Higher-order Theory

A change of variable gives an expansion for the density of
Ȳn = Sn/n:

fȲn
(s) = (2π)−1/2{n/K ′′

Y (φ̂)}1/2

× exp
{
n[KY (φ̂)− φ̂s]

}(
1 + O(n−1)

)
,

where now K ′
Y (φ̂) = s.
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Higher-order Theory

Comparison with Edgeworth expansion

To use the saddlepoint expansion to approximate fȲn
(s) it is

necessary to know the whole cumulant generating function, not
just the first four cumulants.

Also necessary to solve the equation K ′
Y (φ̂) = s for each value of s.
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Higher-order Theory

The leading term in saddlepoint expansion is not the normal (or
any other) density; in fact it will not usually integrate to 1,
although it can be renormalised to do so.

Saddlepoint expansion is an asymptotic expansion in powers of
n−1, rather than n−1/2 as in the Edgeworth expansion. The main
correction for skewness has been absorbed by the leading term.

It is not as easy to integrate the saddlepoint approximation to
obtain an approximation to the distribution function of Ȳn.
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Higher-order Theory

Accuracy

Saddlepoint approximation is generally very accurate.

In distributions that differ from the normal density in terms of
asymmetry, such as the gamma distribution, the saddlepoint
approximation is extremely accurate throughout the range of s.
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Higher-order Theory

Renormalisation

Use as the approximation to fȲn
(s) a renormalised version:

fȲn
(s)

.
= c{n/K ′′

Y (φ̂)}1/2 exp
[
n{KY (φ̂)− φ̂s}

]
where c is determined, usually numerically, so that the right-hand
side integrates to 1.
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Higher-order Theory

If the O(n−1) correction term is constant in s, renormalised
approximation will be exact. For scalar random variables this
happens only in the case of the normal, gamma and inverse
Gaussian distributions.

In general, the n−1 correction term {3ρ̂4(φ̂)− 5ρ̂2
3(φ̂)}/24 varies

only slowly with s and the relative error in the renormalised
approximation is O(n−3/2).
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Higher-order Theory

Distribution function approximation

It is not easy to integrate the saddlepoint approximation to obtain
an approximation to the distribution function of Sn.
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Higher-order Theory

Lugannani-Rice

The result is given by the Lugannani-Rice approximation:

FSn(s) = Φ(rs) + φ(rs)
( 1

rs
− 1

vs

)
+ O(n−1),

where

rs = sgn(φ̂)

√
2n{φ̂K ′

Y (φ̂)− KY (φ̂)}

vs = φ̂

√
nK ′′

Y (φ̂),

and φ̂ ≡ φ̂(s) is the saddlepoint, satisfying nK ′
Y (φ̂) = s.
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Higher-order Theory

An alternative approximation

The expansion can be expressed in the asymptotically equivalent
form

FSn(s) = Φ(r∗s ){1 + O(n−1)},

with

r∗s = rs −
1

rs
log

rs
vs
.
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Higher-order Theory

Derivation of saddlepoint approximation

Usually derived by one of two methods.

First uses the inversion formula and contour integration, choosing
the contour of integration to pass through the saddlepoint of the
integrand ‘on the line of steepest descent’.
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Higher-order Theory

A more statistical derivation

We associate with the density f (y) for Y1 a ‘tilted’ exponential
family density f (y ;λ) defined by

f (y ;λ) = exp{yλ− KY (λ)}f (y)

where KY is the cumulant generating function of Y1, under f (y).
Then the sum Sn = Y1 + · · ·+ Yn has associated density

fSn(s;λ) = exp{sλ− nKY (λ)}fSn(s)

from which

fSn(s) = exp{nKY (λ)− sλ}fSn(s;λ).
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Higher-order Theory

Now use the Edgeworth expansion to obtain an approximation to
the density fSn(s;λ), remembering that cumulants all must refer to
cumulants computed under the tilted density f (y ;λ).

Since λ is arbitrary, it is chosen so that the Edgeworth expansion
for the tilted density is evaluated at its mean, where the n−1/2

term in the expansion is zero. This value λ̂ ≡ λ̂(s) is defined by
nK ′

Y (λ̂) = s and we obtain

fSn(s)
.
= exp{nKY (λ̂)− λ̂s}{2πnK ′′

Y (λ̂)}−1/2.

The factor {2πnK ′′
Y (λ̂)}−1/2 comes from the normal density

evaluated at its mean.

G. Alastair Young Statistical Asymptotics



Higher-order Theory

Now use the Edgeworth expansion to obtain an approximation to
the density fSn(s;λ), remembering that cumulants all must refer to
cumulants computed under the tilted density f (y ;λ).

Since λ is arbitrary, it is chosen so that the Edgeworth expansion
for the tilted density is evaluated at its mean, where the n−1/2

term in the expansion is zero. This value λ̂ ≡ λ̂(s) is defined by
nK ′

Y (λ̂) = s and we obtain

fSn(s)
.
= exp{nKY (λ̂)− λ̂s}{2πnK ′′

Y (λ̂)}−1/2.

The factor {2πnK ′′
Y (λ̂)}−1/2 comes from the normal density

evaluated at its mean.

G. Alastair Young Statistical Asymptotics



Higher-order Theory

Exponential family case

Suppose f (y) is itself in the exponential family,

f (y ; θ) = exp{yθ − c(θ)− h(y)}.

Then since KY (t) = c(θ + t)− c(θ), it follows that
λ̂ ≡ λ̂(s) = θ̂ − θ, where θ̂ is the MLE based on s = y1 + · · ·+ yn.
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Higher-order Theory

The approximation is

fSn(s; θ)
.
= exp

[
n{c(θ̂)− c(θ)} − (θ̂ − θ)s

]
× {2πnc ′′(θ̂)}−1/2,

which can be expressed as

c exp{l(θ)− l(θ̂)}|j(θ̂)|−1/2

where l(θ) is the log-likelihood function based on (y1, . . . , yn), or s,
and j(θ̂) is the observed information.
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Higher-order Theory

Since θ̂ = θ̂(s) is a one-to-one function of s, with Jacobian |j(θ̂)|,
we can obtain an approximation to the density of θ̂

fθ̂(θ̂; θ)
.
= c exp{l(θ)− l(θ̂)}|j(θ̂)|1/2.

G. Alastair Young Statistical Asymptotics



Higher-order Theory

Laplace approximation of integrals

To evaluate the integral

gn =

∫ b

a
e−ng(y)dy .

The main contribution, for large n, will come from values of y near
the minimum of g(y), which may occur at a or b, or in the interior
of the interval (a, b).
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Higher-order Theory

Assume that g(y) is minimised at ỹ ∈ (a, b) and that g ′(ỹ) = 0,
g ′′(ỹ) > 0.

We can write

gn =

∫ b

a
e−n{g(ỹ)+

1
2 (ỹ−y)2g ′′(ỹ)+··· }dy

.
= e−ng(ỹ)

∫ b

a
e−

n
2
(ỹ−y)2g ′′(ỹ)dy

.
= e−ng(ỹ)

√
2π

ng ′′(ỹ)

∫ ∞

−∞
φ

(
y − ỹ ;

1

ng ′′(ỹ)

)
dy

where φ(y − µ;σ2) is the density of N(µ, σ2).
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Higher-order Theory
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Higher-order Theory

Since φ integrates to one,

gn
.
= e−ng(ỹ)

√
2π

ng ′′(ỹ)
.
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Higher-order Theory

A more detailed analysis gives

gn = e−ng(ỹ)

√
2π

ng ′′(ỹ)

{
1 +

5ρ̃2
3 − 3ρ̃4

24n
+ O(n−2)

}
,

where

ρ̃3 = g (3)(ỹ)/{g ′′(ỹ)}3/2,

ρ̃4 = g (4)(ỹ)/{g ′′(ỹ)}2.
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Higher-order Theory

A similar analysis gives∫ b

a
h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)

√
2π

ng ′′(ỹ)
{1 + O(n−1)}.
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Higher-order Theory

A further refinement of the method gives∫ b

a
e−n{g(y)− 1

n
log h(y)}dy

=

∫ b

a
e−nqn(y)dy , say,

= e−ng(y∗)h(y∗)

√
2π

nq′′n(y∗)

× {1 + (5ρ∗23 − 3ρ∗4)/(24n) + O(n−2)},

where
q′n(y

∗) = 0, ρ∗j = q
(j)
n (y∗)/{q′′n(y∗)}j/2.
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Higher-order Theory

The p∗ formula

Recall the convention that the minimal sufficient statistic can be
re-expressed, by a one-to-one smooth transformation, as (θ̂, a)
where a is an exact or approximate ancillary.

We can write the log-likelihood l(θ; y) as l(θ; θ̂, a).

Under a transformation model, the maximal invariant statistic
serves as the ancillary.

Under (m,m) exponential models the MLE is minimal sufficient
and no ancillary is called for.
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Under a transformation model, the maximal invariant statistic
serves as the ancillary.

Under (m,m) exponential models the MLE is minimal sufficient
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Higher-order Theory

Example: Location Model

Have Y1, . . . ,Yn independent random variables with

Yj = θ + εj , j = 1, . . . , n,

where ε1, . . . , εn are independent, each having the known density
function exp{g(·)}.

The log-likelihood is given by

l(θ) =
∑

g(yj − θ).
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Higher-order Theory

Let a = (a1, . . . , an), where aj = yj − θ̂: a is ancillary.

Write Yj = aj + θ̂, so that the log- likelihood is

l(θ; θ̂, a) =
∑

g(aj + θ̂ − θ).
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Higher-order Theory

A Further Example

Let Y1, . . . ,Yn be an independent sample from a full (m,m)
exponential density

exp{yT θ − k(θ) + D(y)}.

The log-likelihood is

l(θ) =
∑

yT
j θ − nk(θ).
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Since θ̂ satisfies the likelihood equation∑
yj − nk ′(θ̂) = 0,

the log-likelihood may be written

l(θ; θ̂) = nk ′(θ̂)T θ − nk(θ).
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Higher-order Theory

Outside exponential families and transformation models it is
usually necessary to work with approximate ancillaries.

Useful approximate ancillaries can often be constructed from
signed log-likelihood ratios or from score statistics.

Consider scalar θ.
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Higher-order Theory

The Efron-Hinkley ancillary

Let i and j be the expected and observed information and let
lθ = ∂l

∂θ , lθθ = ∂2l
∂θ2 etc.

Use the notation ν2,1 = E (lθθlθ; θ), ν2,2 = E (lθθlθθ; θ),
ν2 = E (lθθ; θ).
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Define

γ = i−1(ν2,2 − ν2
2 − i−1ν2

2,1)
1/2,

and use circumflex to denote evaluation at θ̂.

Then the Efron–Hinkley ancillary is defined by

a = (̂i γ̂)−1(̂j − î).
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Define

γ = i−1(ν2,2 − ν2
2 − i−1ν2

2,1)
1/2,

and use circumflex to denote evaluation at θ̂.

Then the Efron–Hinkley ancillary is defined by

a = (̂i γ̂)−1(̂j − î).
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Higher-order Theory

The formula

The conditional density function f (θ̂; θ | a) for the MLE θ̂ given an
ancillary statistic a is, in wide generality, exactly or approximately
equal to

p∗(θ̂; θ | a) = c(θ, a)|j(θ̂)|1/2 exp{l(θ)− l(θ̂)},

i.e.
f (θ̂; θ | a) .

= p∗(θ̂; θ | a).

Here, c(θ, a) is a normalising constant, determined so that the
integral of p∗ with respect to θ̂, for fixed a, equals 1.
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Higher-order Theory

Discussion

The formula gives the exact conditional distribution of the MLE for
a considerable range of models. It is the case for virtually all
transformation models, for which c(θ, a) is independent of θ.

Among models for which formula is exact is the inverse Gaussian
distribution (not a transformation model). Under many of these
models the normalising constant c equals (2π)−d/2 exactly,
d = dim(θ).

In general, c = c(θ, a) = (2π)−d/2c̄ , where c̄ = 1 + O(n−1).
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Higher-order Theory

Outside the realm of exactness cases, formula is quite generally
accurate to relative error of order O(n−3/2):

f (θ̂; θ | a) = p∗(θ̂; θ | a)
(
1 + O(n−3/2)

)
.

The p∗ formula is equivalent to the saddlepoint approximation in
exponential families, with θ the natural parameter.
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Higher-order Theory

Distribution function approximation

Integration of the p∗ formula to obtain an approximation to the
distribution function of the MLE is intricate. Suppose we wish to
evaluate Pr(θ̂ ≤ t; θ | a).
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Higher-order Theory

Notation

Write

rt ≡ rt(θ) = sgn(t − θ)
√

2(l(t; t, a)− l(θ; t, a)),

and let

vt ≡ vt(θ) = j(t; t, a)−1/2{l;θ̂(t; t, a)− l;θ̂(θ; t, a)},

in terms of the sample space derivative l;θ̂ defined by

l;θ̂(θ; θ̂, a) =
∂

∂θ̂
l(θ; θ̂, a),

and with j the observed information.
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Higher-order Theory

The formula

Then

P(θ̂ ≤ t; θ | a) = Φ{r∗t (θ)}{1 + O(n−3/2)},

where r∗t (θ) = rt(θ) + rt(θ)
−1 log{vt(θ)/rt(θ)}.

The random variable r∗(θ) corresponding to r∗t (θ) [replace fixed t
by random θ̂] is an adjusted form of the signed root likelihood ratio
statistic, N(0, 1) to (relative) error O(n−3/2), conditional on
ancillary a.
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Higher-order Theory

Conditional inference in exponential families

Suppose that Y1, . . . ,Yn are independent, identically distributed
from the exponential family density

f (y ;ψ, λ) = exp{ψτ1(y) + λτ2(y)− d(ψ, λ)− Q(y)},

where we will suppose for simplicity that the parameter of interest
ψ and the nuisance parameter λ are both scalar.

The natural statistics are T = n−1
∑
τ1(yi ) and S = n−1

∑
τ2(yi ).

From the general properties of exponential families, the conditional
distribution of T given S = s depends only on ψ, so that inference
about ψ may be derived from a conditional likelihood, given s.
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Higher-order Theory

The log-likelihood based on the full data y1, . . . , yn is

nψt + nλs − nd(ψ, λ),

ignoring terms not involving ψ and λ, and a conditional
log-likelihood function is the full log-likelihood minus the
log-likelihood function based on the marginal distribution of S .

We consider an approximation to the marginal distribution of S ,
based on a saddlepoint approximation to the density of S ,
evaluated at its observed value s.
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Higher-order Theory

The cumulant generating function of τ2(Yi ) is given by

K (z) = d(ψ, λ+ z)− d(ψ, λ).

The saddlepoint equation is therefore given by

dλ(ψ, λ+ ẑ) = s.
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Higher-order Theory

With s the observed value of S , the likelihood equation for the
model with ψ held fixed is

ns − ndλ(ψ, λ̂ψ) = 0,

so that λ+ ẑ = λ̂ψ, where λ̂ψ denotes the maximum likelihood
estimator of λ for fixed ψ.
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Higher-order Theory

Applying the saddlepoint approximation, ignoring constants, we
approximate the marginal likelihood function based on S as

|dλλ(ψ, λ̂ψ)|−1/2 exp{n[d(ψ, λ̂ψ)− d(ψ, λ)]− (λ̂ψ − λ)s};

the resulting approximation to the conditional log-likelihood
function is given by

nψt + nλ̂T
ψ s − nd(ψ, λ̂ψ) +

1

2
log |dλλ(ψ, λ̂ψ)|

≡ l(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|.
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Higher-order Theory

The score function

Given an ancillary a, the MLE θ̂ and the score vector U = ∇l , with
components lr , will in general be in one-to-one correspondence for
a region of values of θ̂ around the true parameter value θ, and this
region will carry all the probability mass, except for an
asymptotically negligible amount.

Obtain a density approximation for U by multiplying density
approximation for θ̂ by Jacobian of (one-to-one) transformation.
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Higher-order Theory

Details

The Jacobian of the transformation from θ̂ to the vector of
derivatives lr = lr (θ; θ̂, a) is the matrix l; of mixed second-order log
model derivatives

lr ;s = lr ;s(θ; θ̂, a) =
∂

∂θr

∂

∂θ̂s
l(θ; θ̂, a).
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Higher-order Theory

Then an approximation of high accuracy to the conditional
distribution of the score vector given a is provided by

p(u; θ | a) .
= p∗(u; θ | a),

where
p∗(u; θ | a) = c(θ, a)|̂j |1/2|l ; |−1e l−l̂ .
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Higher-order Theory

Bartlett correction

The first-order approximation to the distribution of the likelihood
ratio statistic w(ψ) is

Prθ{w(ψ) ≤ ω◦} = P{χ2
q ≤ ω◦}{1 + O(n−1)},

where q = dψ, θ = (ψ, λ), say.
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Higher-order Theory

In the case of IID sampling, it can be shown that

Eθw(ψ) = q{1 + b(θ)/n + O(n−2)},

and so Eθw
′(ψ) = q{1 + O(n−2)}, where w ′ = w/{1 + b(θ)/n}.

The adjustment procedure of replacing w by w ′, is known as
Bartlett correction.
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Higher-order Theory

Discussion

Bartlett correction yields remarkably good results under continuous
models.

Division by {1 + b(θ)/n} adjusts not only the mean but
simultaneously all the cumulants—and hence the whole
distribution—of w towards those of χ2

q. It can be shown that

Pθ{w ′(ψ) ≤ ω◦} = P{χ2
q ≤ ω◦}{1 + O(n−2)}.

In practice b(θ) will be replaced by b(ψ, λ̂ψ). The above result still
holds, even to O(n−2).
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Higher-order Theory

The effect of the Bartlett correction is due to the special character
of the likelihood ratio statistic, and the same device applied to, for
instance, the score test does not have a similar effect.

Also, under discrete models this type of adjustment does not
generally lead to an improved χ2 approximation.
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Higher-order Theory

Modified profile likelihood

The profile likelihood Lp(ψ) for a parameter of interest ψ can
largely be thought of as if it were a genuine likelihood.

This amounts to behaving as if the nuisance parameter over which
the maximisation has been carried out were known. Inference on ψ
based on treating Lp(ψ) as a proper likelihood may therefore be
grossly misleading if the data contain insufficient information
about χ, or if there are many nuisance parameters.

Modify.
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Higher-order Theory

Definition

The modified profile likelihood L̃p(ψ) for a parameter of interest ψ,
with nuisance parameter χ, is defined by

L̃p(ψ) = M(ψ)Lp(ψ),

where M is a modifying factor

M(ψ) =

∣∣∣∣ ∂χ̂∂χ̂ψ
∣∣∣∣ |̂jψ|−1/2.
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Higher-order Theory

Here ∂χ̂/∂χ̂ψ is the matrix of partial derivatives of χ̂ with respect

to χ̂ψ, where χ̂ is considered as a function of (ψ̂, χ̂ψ, a) and
ĵψ = jχχ(ψ, χ̂ψ), the observed information on χ assuming ψ is
known.
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Higher-order Theory

Comments

The modified profile likelihood L̃p is, like Lp, parameterisation
invariant.

An alternative expression for the modifying factor M is

M(ψ) = |lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a)|−1 × |jχχ(ψ, χ̂ψ; ψ̂, χ̂, a)|1/2.
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Higher-order Theory

This follows from the likelihood equation for χ̂ψ:

lχ(ψ, χ̂ψ; ψ̂, χ̂, a) = 0.

Differentiation with respect to χ̂ yields

lχχ(ψ, χ̂ψ; ψ̂, χ̂, a)
∂χ̂ψ
∂χ̂

+ lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a) = 0.
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Higher-order Theory

Justification

Asymptotically, L̃p and Lp are equivalent to first-order.

The reason for using L̃p rather than Lp is that the former arises as
a higher-order approximation to a marginal likelihood for ψ when
such a marginal likelihood function is available, and to a
conditional likelihood for ψ when this is available.
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Higher-order Theory

Details

Suppose that the density f (ψ̂, χ̂;ψ, χ | a) factorises, either as

f (ψ̂, χ̂;ψ, χ | a) = f (ψ̂;ψ | a)f (χ̂;ψ, χ | ψ̂, a)

or as
f (ψ̂, χ̂;ψ, χ | a) = f (χ̂;ψ, χ | a)f (ψ̂;ψ | χ̂, a).
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Higher-order Theory

In the first case modified profile likelihood can be obtained as an
approximation (using the p∗-formula) to the marginal likelihood for
ψ based on ψ̂ and conditional on a, i.e. to the likelihood for ψ
determined by f (ψ̂;ψ | a).

In the second case it is obtained as an approximation to the
conditional likelihood for ψ given χ̂ and a.
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Higher-order Theory

Further comments

Note that if χ̂ψ does not depend on ψ,

χ̂ψ = χ̂,

then
L̃p(ψ) = |̂jψ|−1/2Lp(ψ).

In the case that ψ and χ are orthogonal, which is a weaker
assumption, both hold to order O(n−1).
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Higher-order Theory

Bayesian asymptotics

The key result is that the posterior distribution is asymptotically
normal. Write

πn(θ | y) = f (y ; θ)π(θ)/

∫
f (y ; θ)π(θ)dθ

for the posterior density. Denote by θ̂ the MLE.
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Higher-order Theory

Proof

For θ in a neighbourhood of θ̂ we have, by Taylor expansion,

log

{
f (y ; θ)

f (y ; θ̂)

}
.
= −1

2(θ − θ̂)T j(θ̂)(θ − θ̂).

Provided the likelihood dominates the prior, we can approximate
π(θ) in a neighbourhood of θ̂ by π(θ̂).

Then we have

f (y ; θ)π(θ)
.
= f (y ; θ̂)π(θ̂) exp{−1

2(θ − θ̂)T j(θ̂)(θ − θ̂)}.
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Higher-order Theory

Then, to first order,

πn(θ | y) ∼ N
(
θ̂, j−1(θ̂)

)
.
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Higher-order Theory

Another approximation

When the likelihood does not dominate the prior, expand about
the posterior mode θ̂π, which maximises f (y ; θ)π(θ).

Then
πn(θ | y) ∼ N

(
θ̂π, j

−1
π (θ̂π)

)
,

where jπ is minus the matrix of second derivatives of f (y ; θ)π(θ).
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Higher-order Theory

A more accurate approximation

We have

πn(θ | y) = f (y ; θ)π(θ)/

∫
f (y ; θ)π(θ)dθ

.
=

c exp{l(θ; y)}π(θ)

exp{l(θ̂; y)}|j(θ̂)|−1/2π(θ̂)
,

by Laplace approximation of the denominator.

We can rewrite as

πn(θ | y)
.
= c |j(θ̂)|1/2 exp{l(θ)− l(θ̂)} × {π(θ)/π(θ̂)}.
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Higher-order Theory

Posterior expectations

To approximate to the posterior expectation of a function g(θ) of
interest,

E{g(θ) | y} =

∫
g(θ)enl̄n(θ)π(θ)dθ∫

enl̄n(θ)π(θ)dθ
,

where l̄n = n−1
∑n

i=1 log f (yi ; θ) is the average log-likelihood
function.

Rewrite the integrals as

E{g(θ) | y} =

∫
en{̄ln(θ)+q(θ)/n}dθ∫
en{̄ln(θ)+p(θ)/n}dθ

and use the modified version of the Laplace approximation.
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Higher-order Theory

Applying this to the numerator and denominator gives

E{g(θ) | y} .
=

enl̄n(θ∗)+q(θ∗)

enl̄n(θ̃)+p(θ̃)

× {−nl̄ ′′n (θ̃)− p′′(θ̃)}1/2

{−nl̄ ′′n (θ∗)− q′′(θ∗)}1/2

{1 + O(n−1)}
{1 + O(n−1)}

where θ∗ maximises nl̄n(θ) + log g(θ) + log π(θ) and θ̃ maximises
nl̄n(θ) + log π(θ).

Detailed analysis shows that the relative error is, in fact, O(n−2).
If the integrals are approximated in their unmodified form the
result is not as accurate.
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