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STATISTICAL ASYMPTOTICS

This is a commentary on the APTS module ‘Statistical Asymptotics’. Please
notify the author of errors in these notes (e-mail alastair.young@imperial.ac.uk).
The material of the module is arranged in three chapters, of which the

first, provided here, constitutes background material, and the preliminary
reading for the module. Some of the key statistical ideas of this chapter will
be reviewed as necessary during the module, but the probability material
should be treated as prerequisite. The material in Sections 1.9 and 1.10 is
included to provide a more complete picture, but is non-essential.
The key reference for the module is Young and Smith (2005). A useful

background text, which presents basic ideas and techniques of inference, is
Casella and Berger (1990). Davison (2003) is another excellent reference:
Chapters 4 and 7 represent further very suitable preliminary reading and
Chapter 12 is particularly relevant to the course.
Chapters 1 and 2 follow Barndorff-Nielsen and Cox (1994) quite closely.

The introductory chapters of Cox and Hinkley (1974) are also drawn on.
Chapter 3 is drawn from Young and Smith (2005), and is intended to give
a snapshot of important current ideas in asymptotic inference. Many results
are stated without proof. Some of the derivations are hard, and beyond the
scope of the course.
Another excellent book for the module is Pace and Salvan (1997). The

book by Severini (2000) is also strongly recommended, as being a bit more
accessible than Barndorff-Nielsen and Cox (1994).
Analytic methods used in the course are detailed by Barndorff-Nielsen

and Cox (1989).
The objectives of the module are: (i) to provide an overview of central

asymptotic theory of statistical inference, in particular of likelihood-based
approaches; (ii) to provide an introduction to analytic methods and tools, in
particular approximation techniques that are widely used in the development
of statistical theory and methodology; (iii) to provide exposure to key ideas
in contemporary statistical theory; and (iv) to provide practice in application
of key techniques to particular problems.
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1 Concepts and Principles

1.1 Introduction

The representation of experimental and observational data as outcomes of
random variables provides a structure for the systematic treatment of infer-
ence from data, by which inductive conclusions from the particular to the
general can be drawn. Such a systematic treatment involves first the for-
malisation, in mathematical terms, of several basic concepts about data as
observed values of random variables. The aim of this chapter is to intro-
duce these concepts and provide a formal basis for the methods of inference
discussed in Chapters 2 and 3.

We wish to analyse observations, y1, . . . , yn, collected as an n × 1 vector
y = (y1, . . . , yn)

T . Then:

1. We regard y as the observed value of a random variable Y = (Y1, . . . , Yn)
T

having an (unknown) probability distribution conveniently specified by
a probability density function f(y) = fY (y), with respect to an appro-
priate measure, usually Lebesgue measure on Rn or counting measure.

2. We restrict the unknown density to a suitable family F . We are con-
cerned primarily with the case where the density is of known analyt-
ical form, but involves a finite number of real unknown parameters
θ = (θ1, . . . , θd)T . We specify the region Ωθ ⊂ Rd of possible values
of θ, called the parameter space. To indicate the dependency of the
density on θ we write f(y; θ) and refer to this as the model function.

3. We assume that the objective of the analysis is one or more of:

(a) assessing some aspects of θ, for example the value of a single
component θb, say;

(b) predicting the value of some as yet unobserved random variable
whose distribution depends on θ;

(c) examining the adequacy of the model specified by F and Ωθ.

We will be concerned predominantly with (a). There are three main types
of inference we might be interested in, point estimation, interval estimation
and hypothesis testing. In point estimation, a single value is computed from
the data y, and used as an estimate of the parameter of interest. Inter-
val estimation provides a range of values which have some predetermined
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high probability of including the true, but unknown, value of the parame-
ter. Hypothesis testing sets up specific hypotheses regarding the parameter
of interest and assesses the plausibility of any specified hypothesis by see-
ing whether the data y supports or refutes that hypothesis. It is assumed
that the reader is familiar with basic procedures of inference, which can be
evaluated in terms of formal optimality criteria.

Our objective in these notes is to provide a framework for the relatively
systematic analysis of a wide range of possible F . We do not do this by
aiming to satisfy various formal optimality criteria, but rather by focusing on
fundamental elements of the theory of statistical inference, in particular the
likelihood function and quantities derived from it: a ‘neo-Fisherian’ approach
to inference.

1.2 Special models

Two general classes of models particularly relevant in theory and practice
are exponential families and transformation families.

1.2.1 Exponential families

Suppose that the distribution of Y depends on m unknown parameters, de-
noted by φ = (φ1, . . . , φm)T , to be called natural parameters, through a
density of the form

fY (y;φ) = h(y) exp{s
Tφ−K(φ)}, y ∈ Y , (1.1)

where Y is a set not depending on φ. Here s ≡ s(y) = (s1, . . . , sm)
T , are

called natural statistics. The value of m may be reduced if the components
of φ satisfy a linear constraint, or if the components of s are (with probability
one) linearly dependent. So assume that the representation (1.1) is minimal,
in that m is as small as possible. Provided the natural parameter space Ωφ
consists of all φ such that

∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m) exponential
family.

The exponential form (1.1) is preserved if we apply any fixed nonsingular
linear transformation to s, provided we make the inverse transformation to
φ, leaving sTφ invariant. If 0 ∈ Ωφ, we can without loss of generality take
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K(0) = 0 and then h(y) = fY (y; 0). In other cases we can measure φ from
some suitable origin φ0 ∈ Ωφ, by rewriting (1.1) as

fY (y;φ) = fY (y;φ0) exp[s
T (φ− φ0)− {K(φ)−K(φ0)}].

We refer to fY (y;φ) as the (m,m) exponential family generated from the
baseline fY (y;φ0), by exponential tilting via s. We generate all the members
of the family by tilting a single baseline density. This exponential tilting idea
will be used later, in Chapter 3.

We have from (1.1) that the moment generating function of the random
variable S corresponding to s is

M(S; t, φ) = E{exp(ST t)}

=

∫
h(y) exp{sT (φ+ t)}dy × exp{−K(φ)}

= exp{K(φ+ t)−K(φ)},

from which we obtain

E(Si;φ) =
∂K(φ)

∂φi
,

or
E(S;φ) = ∇K(φ),

where ∇ is the gradient operator (∂/∂φ1, . . . , ∂/∂φm)T . Also,

cov(Si, Sj;φ) =
∂2K(φ)

∂φi∂φj
.

To compute E(Si) etc. it is only necessary to know the function K(φ).

Let s(y) = (t(y), u(y)) be a partition of the vector of natural statistics, where
t has k components and u is m− k dimensional. Consider the corresponding
partition of the natural parameter φ = (τ, ξ). The density of a generic
element of the family can be written as

fY (y; τ, ξ) = exp{τ
T t(y) + ξTu(y)−K(τ, ξ)}h(y).

Two key results hold, which make exponential families particularly attractive,
as they allow inference about selected components of the natural parameter,
in the absence of knowledge about the other components.

First, the family of marginal distributions of U = u(Y ) is an m − k dimen-
sional exponential family,

fU(u; τ, ξ) = exp{ξ
Tu−Kτ (ξ)}hτ (u),
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say.

Secondly, the family of conditional distributions of T = t(Y ) given u(Y ) = u
is a k dimensional exponential family, and the conditional densities are free
of ξ, so that

fT |U=u(t; u, τ) = exp{τ
T t−Ku(τ)}hu(t),

say.

A proof of both of these results is given by Pace and Salvan (1997, p. 190).
The key is to observe that the family of distributions of the natural statistics
is an m dimensional exponential family, with density

fT,U(t, u; τ, ξ) = exp{τ
T t+ ξTu−K(τ, ξ)}p0(t, u),

where p0(t, u) denotes the density of the natural statistics when (τ, ξ) = (0, 0),
assuming without loss of generality that 0 ∈ Ωφ.

In the situation described above, both the natural statistic and the natural
parameter lie in m-dimensional regions. Sometimes, φ may be restricted to
lie in a d-dimensional subspace, d < m. This is most conveniently expressed
by writing φ = φ(θ) where θ is a d-dimensional parameter. We then have

fY (y; θ) = h(y) exp[s
Tφ(θ)−K{φ(θ)}]

where θ ∈ Ωθ ⊂ Rd. We call this system an (m, d) exponential family, noting
that we required that (φ1, . . . , φm) does not belong to a v-dimensional linear
subspace of Rm with v < m: we indicate this by saying that the exponential
family is curved. Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} defines a
curve in the plane, rather than a straight line, as θ varies.

Interest in curved exponential families stems from two features, related to
concepts to be discussed. The maximum likelihood estimator is not a suffi-
cient statistic, so that there is scope for conditioning on an ancillary statistic.
Also, it can be shown that any sufficiently smooth parametric family can be
approximated, locally to the true parameter value, to some suitable order,
by a curved exponential family.

1.2.2 Transformation families

The basic idea behind a transformation family is that of a group of transfor-
mations acting on the sample space, generating a family of distributions all
of the same form, but with different values of the parameters.

Recall that a group G is a mathematical structure having a binary operation
◦ such that
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• if g, g′ ∈ G, then g ◦ g′ ∈ G;

• if g, g′, g′′ ∈ G, then (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′);

• G contains an identity element e such that e ◦ g = g ◦ e = g, for each
g ∈ G; and

• each g ∈ G possesses an inverse g−1 ∈ G such that g◦g−1 = g−1◦g = e.

In the present context, we will be concerned with a group G of transfor-
mations acting on the sample space X of a random variable X, and the
binary operation will simply be composition of functions: we have e(x) = x,
(g1 ◦ g2)(x) = g1(g2(x)).

The group elements typically correspond to elements of a parameter space Ωθ,
so that a transformation may be written as, say, gθ. The family of densities
of gθ(X), for gθ ∈ G, is called a (group) transformation family.

Setting x ≈ x′ iff there is a g ∈ G such that x = g(x′) defines an equivalence
relation, which partitions X into equivalence classes called orbits. These may
be labelled by an index a, say. Two points x and x′ on the same orbit have
the same index, a(x) = a(x′). Each x ∈ X belongs to precisely one orbit,
and might be represented by a (which identifies the orbit) and its position
on the orbit.

1.2.3 Maximal invariant

We say that the statistic t is invariant to the action of the group G if its
value does not depend on whether x or g(x) was observed, for any g ∈ G:
t(x) = t(g(x)). An example is the index a above.

The statistic t is maximal invariant if every other invariant statistic is a
function of it, or equivalently, t(x) = t(x′) implies that x′ = g(x) for some
g ∈ G. A maximal invariant can be thought of (Davison, 2003, Section 5.3)
as a reduced version of the data that represents it as closely as possible while
remaining invariant to the action of G. In some sense, it is what remains of
X once minimal information about the parameter values has been extracted.

1.2.4 Equivariant statistics and a maximal invariant

As described, typically there is a one-to-one correspondence between the
elements of G and the parameter space Ωθ, and then the action of G on X
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requires that Ωθ itself constitutes a group, with binary operation ∗ say: we
must have gθ ◦ gφ = gθ∗φ. The group action on X induces a group action on
Ωθ. If Ḡ denotes this induced group, then associated with each gθ ∈ G there
is a ḡθ ∈ Ḡ, satisfying ḡθ(φ) = θ ∗ φ.

If t is an invariant statistic, the distribution of T = t(X) is the same as that of
t(g(X)), for all g. If, as we assume here, the elements of G are identified with
parameter values, this means that the distribution of T does not depend on
the parameter and is known in principle. T is said to be distribution constant.

A statistic S = s(X) defined on X and taking values in the parameter space
Ωθ is said to be equivariant if s(gθ(x)) = ḡθ(s(x)) for all gθ ∈ G and x ∈ X .
Often S is chosen to be an estimator of θ, and it is then called an equivariant
estimator.

A key operational point is that an equivariant estimator can be used to
construct a maximal invariant.

Consider t(X) = g−1s(X)(X). This is invariant, since

t(gθ(x)) = g−1s(gθ(x))(gθ(x)) = g
−1
ḡθ(s(x))

(gθ(x)) = g
−1
θ∗s(x)(gθ(x))

= g−1s(x){g
−1
θ (gθ(x))} = g

−1
s(x)(x) = t(x).

If t(x) = t(x′), then g−1s(x)(x) = g−1s(x′)(x
′), and it follows that x′ = gs(x′) ◦

g−1s(x)(x), which shows that t(X) is maximal invariant.

The statistical importance of a maximal invariant will be illuminated in
Chapter 3. In a transformation family, a maximal invariant plays the role of
the ancillary statistic in the conditional inference on the parameter of inter-
est indicated by a Fisherian approach. The above direct construction of a
maximal invariant from an equivariant estimator facilitates identification of
an appropriate ancillary statistic in the transformation family context.

1.2.5 An example

An important example is the location-scale model. Let X = η+τε, where
ε has a known density f , and the parameter θ = (η, τ ) ∈ Ωθ = R × R+.
Define a group action by gθ(x) = g(η,τ)(x) = η + τx, so

g(η,τ) ◦ g(μ,σ)(x) = η + τμ+ τσx = g(η+τμ,τσ)(x).

The set of such transformations is closed with identity g(0,1). It is easy to
check that g(η,τ) has inverse g(−η/τ,τ−1). Hence, G = {g(η,τ) : (η, τ ) ∈ R×R+}
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constitutes a group under the composition of functions operation ◦ defined
above.

The action of g(η,τ) on a random sample X = (X1, . . . , Xn) is g(η,τ)(X) =
η + τX, with η ≡ η1n, where 1n denotes the n × 1 vector of 1’s, and X is
written as an n× 1 vector.

The induced group action on Ωθ is given by ḡ(η,τ)((μ, σ)) ≡ (η, τ ) ∗ (μ, σ) =
(η + τμ, τσ).

The sample mean and standard deviation are equivariant, because with
s(X) = (X̄, V 1/2), where V = (n− 1)−1

∑
(Xj − X̄)2, we have

s(g(η,τ)(X)) =

(

η + τX,
{
(n− 1)−1

∑
(η + τXj − (η + τX))

2
}1/2)

=

(

η + τX̄,
{
(n− 1)−1

∑
(η + τXj − η − τX̄)

2
}1/2)

=
(
η + τX̄, τV 1/2

)

= ḡ(η,τ)(s(X)).

A maximal invariant is A = g−1s(X)(X), and the parameter corresponding

to g−1s(X) is (−X̄/V
1/2, V −1/2). Hence a maximal invariant is the vector of

residuals

A = (X − X̄)/V 1/2 =

(
X1 − X̄
V 1/2

, . . . ,
Xn − X̄
V 1/2

)T
,

called the configuration. It is easily checked directly that the distribution of
A does not depend on θ. Any function of A is also invariant. The orbits
are determined by different values a of the statistic A, and X has a unique
representation as X = gs(X)(A) = X̄ + V

1/2A.

1.3 Likelihood

1.3.1 Definitions

We have a parametric model, involving a model function fY (y; θ) for a ran-
dom variable Y and parameter θ ∈ Ωθ. The likelihood function is

LY (θ; y) = L(θ; y) = L(θ) = fY (y; θ).

Usually we work with the log-likelihood

lY (θ; y) = l(θ; y) = l(θ) = log fY (y; θ),
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sometimes studied as a random variable

lY (θ;Y ) = l(θ;Y ) = log fY (Y ; θ).

In likelihood calculations, we can drop factors depending on y only, or ad-
ditive terms depending only on y may be dropped from log-likelihoods.
This idea can be formalised by working with the normed likelihood L̄(θ) =
L(θ)/L(θ̂), where θ̂ is the value of θ maximising L(θ). We define the score
function by

ur(θ; y) =
∂l(θ; y)

∂θr

uY (θ; y) = u(θ; y) = ∇θl(θ; y),

where ∇θ = (∂/∂θ
1, . . . , ∂/∂θd)T .

To study the score function as a random variable (the ‘score statistic’) we
write

uY (θ;Y ) = u(θ;Y ) = U(θ) = U.

These definitions are expressed in terms of arbitrary random variables Y .
Often the components Yj are mutually independent, in which case both the
log-likelihood and the score function are sums of contributions:

l(θ; y) =
n∑

j=1

l(θ; yj),

u(θ; y) =
n∑

j=1

∇θl(θ; yj) =
n∑

j=1

u(θ; yj),

say, and where l(θ; yj) is found from the density of Yj.

Quite generally, even for dependent random variables, if Y(j) = (Y1, . . . , Yj),
we may write

l(θ; y) =
n∑

j=1

lYj |Y(j−1)(θ; yj | y(j−1)),

each term being computed from the conditional density given all the previous
values in the sequence.
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1.3.2 Score function and information

For regular problems for which the order of differentiation with respect to θ
and integration over the sample space can be reversed, we have

E{U(θ); θ} = 0. (1.2)

To verify this, note that a component of the left-hand side is

∫ {
∂ log fY (y; θ)

∂θr

}

fY (y; θ)dy

=

∫
∂fY (y; θ)

∂θr
dy

=
∂

∂θr

∫
fY (y; θ)dy =

∂

∂θr
1 = 0.

Also, when (1.2) holds,

cov{Ur(θ), Us(θ); θ}

= E

{
∂l(θ;Y )

∂θr
∂l(θ;Y )

∂θs
; θ

}

= E

{

−
∂2l(θ;Y )

∂θr∂θs
; θ

}

.

More compactly, the covariance matrix of U is

cov{U(θ); θ} = E{−∇∇T l; θ}.

This matrix is called the expected information matrix for θ, or sometimes the
Fisher information matrix, and will be denoted by i(θ). The Hessian −∇∇T l
is called the observed information matrix, and is denoted by j(θ). Note that
i(θ) = E{j(θ)}.

In the (m,m) exponential family (1.1),

U(φ) = ∇l = S −∇K(φ)

and ∇∇T l = −∇∇TK(φ).

Note that the score u(θ; y) and the information i(θ) depend not only on the
value of the parameter θ, but also on the parameterisation. If we change
from θ to ψ by a smooth one-to-one transformation and calculate the score
and information in terms of ψ, then different values will be obtained.

9



APTS/April 2008 1.3 Likelihood

Write (U (θ), i(θ)) and (U (ψ), i(ψ)) for quantities in the θ- and ψ-parameterisation
respectively. Using the summation convention whereby summation is under-
stood to take place over the range of an index that appears two or more times
in an expression, the chain rule for differentiation gives

U (ψ)a (ψ;Y ) =
∂l{θ(ψ);Y }

∂ψa

= U (θ)r (θ;Y )
∂θr

∂ψa
,

or

U (ψ)(ψ;Y ) =

[
∂θ

∂ψ

]T
U (θ)(θ;Y ),

where ∂θ/∂ψ is the Jacobian of the transformation from θ to ψ, with (r, a)
element ∂θr/∂ψa.

Similarly,

i
(ψ)
ab (ψ) =

∂θr

∂ψa
∂θs

∂ψb
i(θ)rs (θ),

or

i(ψ)(ψ) =

[
∂θ

∂ψ

]T
i(θ)(θ)

[
∂θ

∂ψ

]

.

The notion of parameterisation invariance is a valuable basis for choosing
between different inferential procedures. Invariance requires that the conclu-
sions of a statistical analysis be unchanged by reformulation in terms of ψ,
any reasonably smooth one-to-one function of θ.

Consider, for example, the exponential distribution with density ρe−ρy. It
would for many purposes be reasonable to reformulate in terms of the mean
1/ρ or, say, log ρ. Parameterisation invariance would require, for example,
the same conclusions about ρ to be reached by: (i) direct formulation in terms
of ρ, application of a method of analysis, say estimating ρ; (ii) formulation
in terms of 1/ρ, application of a method of analysis, estimating 1/ρ, then
taking the reciprocal of this estimate.

Invariance under reparameterisation can usefully be formulated much more
generally. Suppose that θ = (ψ, χ), with ψ the parameter of interest and χ a
nuisance parameter. It is reasonable to consider one-to-one transformations
from θ to θ̃ = (ψ̃, χ̃), where ψ̃ is a one-to-one function of ψ and χ̃ is a
function of both ψ and χ. Such transformations are called interest-respecting
reparameterisations.
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1.3.3 Pseudo-likelihoods

Typically we consider a model parameterised by a parameter θ which may be
written as θ = (ψ, λ), where ψ is the parameter of interest and λ is a nuisance
parameter. In order to draw inferences about the parameter of interest, we
must deal with the nuisance parameter.

Ideally, we would like to construct a likelihood function for ψ alone. The
simplest method for doing so is to construct a likelihood function based on a
statistic T such that the distribution of T depends only on ψ. In this case, we
may form a genuine likelihood function for ψ based on the density function
of T ; this is called a marginal likelihood, since it is based on the marginal
distribution of T .

Another approach is available whenever there exists a statistic S such that
the conditional distribution of the data X given S = s depends only on ψ. In
this case, we may form a likelihood function for ψ based on the conditional
density function of X given S = s; this is called a conditional likelihood
function. The drawback of this approach is that we discard the part of
the likelihood function based on the marginal distribution of S, which may
contain information about ψ.

Conditional and marginal likelihoods are particular instances of pseudo-
likelihood functions. The term pseudo-likelihood is used to indicate any
function of the data which depends only on the parameter of interest and
which behaves, in some respects, as if it were a genuine likelihood (so that
the score has zero null expectation, the maximum likelihood estimator has
an asymptotic normal distribution etc.).

Formally, suppose that there exists a statistic T such that the density of the
data X may be written as

fX(x;ψ, λ) = fT (t;ψ)fX|T (x|t;ψ, λ).

Inference can be based on the marginal distribution of T which does not
depend on λ. The marginal likelihood function based on t is given by

L(ψ; t) = fT (t;ψ).

The drawback of this approach is that we lose the information about ψ
contained in the conditional density of X given T . It may, of course, also be
difficult to find such a statistic T .

To define formally a conditional log-likelihood, suppose that there exists a
statistic S such that

fX(x;ψ, λ) = fX|S(x|s;ψ)fS(s;ψ, λ).
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The statistic S is sufficient (see Section 1.4) in the model with ψ held fixed. A
conditional likelihood function for ψ may be based on fX|S(x|s;ψ), which does
not depend on λ. The conditional log-likelihood function may be calculated
as

l(ψ; x | s) = l(θ)− l(θ; s),

where l(θ; s) denotes the log-likelihood function based on the marginal distri-
bution of S and l(θ) is the log-likelihood based on the full data X. Note that
we make two assumptions here about S. The first is that S is not sufficient
in the general model with parameters (ψ, λ), for if it was, the conditional
likelihood would not depend on either ψ or λ. The other is that S, the suf-
ficient statistic when ψ is fixed, is the same for all ψ; S does not depend on
ψ.

Note that factorisations of the kind that we have assumed in the definitions
of conditional and marginal likelihoods arise essentially only in exponential
families and transformation families. Outside these cases more general no-
tions of pseudo-likelihood must be found.

1.4 Sufficiency

1.4.1 Definitions

Let the data y correspond to a random variable Y with density fY (y; θ), θ ∈
Ωθ. Let s(y) be a statistic such that if S ≡ s(Y ) denotes the corresponding
random variable, then the conditional density of Y given S = s does not
depend on θ, for all s, so that

fY |S(y | s; θ) = g(y, s) (1.3)

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.

The definition (1.3) does not define S uniquely. We usually take the minimal
S for which (1.3) holds, the minimal sufficient statistic. S is minimal sufficent
if it is sufficient and is a function of every other sufficient statistic.

The determination of S from the definition (1.3) is often difficult. Instead
we use the factorisation theorem: a necessary and sufficient condition that S
is sufficient for θ is that for all y, θ

fY (y; θ) = g(s, θ)h(y),

for some functions g and h. Without loss of generality, g(s, θ) may be taken
as the unconditional density of S for given θ.
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The following result is easily proved and useful for identifying minimal suffi-
cient statistics. A statistic T is minimal sufficient iff

T (x) = T (y)⇔
L(θ1; x)

L(θ2; x)
=
L(θ1; y)

L(θ2; y)
, ∀θ1, θ2 ∈ Ωθ.

1.4.2 Examples

Exponential models Here the natural statistic S is a (minimal) sufficient
statistic. In a curved (m, d) exponential model the dimension m of the suffi-
cient statistic exceeds that of the parameter.

Transformation models Except in special cases, such as the normal distri-
bution, where the model is also an exponential family model, there is no
reduction of dimensionality by sufficiency: the minimal sufficient statistic
has the same dimension as the data vector Y = (Y1, . . . , Yn).

1.5 Conditioning

In connection with methods of statistical inference, probability is used in two
quite distinct ways. The first is to define the stochastic model assumed to
have generated the data. The second is to assess uncertainty in conclusions,
via significance levels, confidence regions, posterior distributions etc. We
enquire how a given method would perform if, hypothetically, it were used
repeatedly on data derived from the model under study. The probabilities
used for the basis of inference are long-run frequencies under hypothetical
repetition. The issue arises of how these long-run frequencies are to be made
relevant to the data under study. The answer lies in conditioning the calcu-
lations so that the long run matches the particular set of data in important
respects.

1.5.1 The Bayesian stance

In a Bayesian approach the issue of conditioning is dealt with automatically.
Recall that the key idea of Bayesian inference is that it is supposed that the
particular value of θ is the realised value of a random variable Θ, generated by
a random mechanism giving a known density πΘ(θ) for Θ, the prior density.
Then Bayes’ Theorem gives the posterior density

πΘ|Y (θ | Y = y) ∝ πΘ(θ)fY |Θ(y | Θ = θ),

where now the model function fY (y; θ) is written as a conditional density
fY |Θ(y | Θ = θ). The insertion of a random element in the generation of

13
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θ allows us to condition on the whole of the data y: relevance to the data
is certainly accomplished. This approach is uncontroversial if a meaningful
prior can be agreed. In many applications, there may be major obstacles to
specification of a meaningful prior and we are forced to adopt a less direct
route to conditioning.

1.5.2 The Fisherian stance

Suppose first that the whole parameter vector θ is of interest. Reduce the
problem by sufficiency. If, with parameter dimension d = 1, there is a one-
dimensional sufficient statistic, we have reduced the problem to that of one
observation from a distribution with one unknown parameter and there is lit-
tle choice but to use probabilities calculated from that distribution. The same
notion occurs if there is a d-dimensional θ of interest and a d-dimensional
sufficient statistic. If the dimension of the (minimal) sufficient statistic ex-
ceeds that of the parameter, there is scope and need for ensuring relevance
to the data under analysis by conditioning.

We therefore aim to

1. partition the minimal sufficient statistic s in the form s = (t, a), so that
dim(t) = dim(θ) and A has a distribution not involving θ;

2. use for inference the conditional distribution of T given A = a.

Conditioning on A = a makes the distribution used for inference involve
(hypothetical) repetitions like the data in some respects.

In the next section we extend this discussion to the case where there are
nuisance parameters.

1.5.3 An example

Suppose that Y1, . . . , Yn are independent and identically uniformly distributed
on (θ−1, θ+1). The (minimal) sufficient statistic is the pair of order statistics
(Y(1), Y(n)), where Y(1) = min{Y1, . . . , Yn} and Y(n) = max{Y1, . . . , Yn}. Sup-
pose we make a (one-to-one) transformation to the mid-range Ȳ = 1

2
(Y(1) +

Y(n)) and the range R = Y(n)− Y(1). The sufficient statistic may equivalently
be expressed as (Ȳ , R). A direct calculation shows that R has a distribu-
tion not depending on θ, so we have the situation where the dimension of
the sufficient statistic exceeds the dimension of θ and the statistic R, being
distribution constant, plays the role of A. Inference should be based on the
conditional distribution of Ȳ , given R = r, which it is easily checked to be
uniform over (θ − 1 + 1

2
r, θ + 1− 1

2
r).

14
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1.6 Ancillarity and the Conditionality Principle

A component a of the minimal sufficient statistic such that the random vari-
able A is distribution constant is said to be ancillary, or sometimes ancillary
in the simple sense.

The Conditionality Principle says that inference about a parameter of interest
θ is to be made conditional on A = a i.e. on the basis of the conditional
distribution of Y given A = a, rather than from the model function fY (y; θ).

An important convention should be flagged here. Later, specifically in Chap-
ter 3, we will use the term ancillary to mean a distribution constant statistic
which, together with the maximum likelihood estimator, constitutes a suffi-
cient statistic.

The Conditionality Principle is discussed most frequently in the context of
transformation models, where the maximal invariant is ancillary.

1.6.1 Nuisance parameters

In our previous discussion, the argument for conditioning on A = a rests
not so much on the distribution of A being known as on its being totally
uninformative about the parameter of interest.

Suppose, more generally, that we can write θ = (ψ, χ), where ψ is of interest.
Suppose that

1. Ωθ = Ωψ × Ωχ, so that ψ and χ are variation independent;

2. the minimal sufficient statistic s = (t, a);

3. the distribution of T given A = a depends only on ψ;

4. one or more of the following conditions holds:

(a) the distribution of A depends only on χ and not on ψ;

(b) the distribution of A depends on (ψ, χ) in such a way that from
observation of A alone no information is available about ψ;

Then the extension of the Fisherian stance of Section 1.5.2 argues that infer-
ence about ψ should be based upon the conditional distribution of T given
A = a, and we would still speak of A as being ancillary. The most straight-
forward extension corresponds to (a). In this case A is said to be a cut and to
be S-ancillary for ψ and S-sufficient for χ. The arguments for conditioning
on A = a when ψ is the parameter of interest are as compelling as in the

15



APTS/April 2008 1.7 Sample space derivatives

case where A has a fixed distribution. Condition (b) is more problematical
to qualify. See the discussion in Barndorff-Nielsen and Cox (1994, pp.38–41)
for detail and examples. The same authors discuss problems associated with
existence and non-uniqueness of ancillary statistics.

1.7 Sample space derivatives

The log-likelihood is, except possibly for a term not depending on the param-
eter, a function of a sufficient statistic s and parameter θ. If the dimensions
of s and θ are equal, the maximum likelihood estimator θ̂ is usually a one-to-
one function of s and then θ̂ is minimal sufficient if and only if s is minimal
sufficient. We can then take the log-likelihood as l(θ; θ̂), it being the same
as if the data consisted solely of θ̂ or s. If s = (t, a) where t has the dimen-
sion of θ and a is ancillary, then we can generally write the log-likelihood as
l(θ; θ̂, a).

Similarly, the observed information can, in the scalar parameter case, be
written as

j(θ; θ̂, a) = −∂2l(θ; θ̂, a)/∂θ2.

In practice, θ being unknown, this would be evaluated at θ = θ̂, as j(θ̂; θ̂, a).

For a vector parameter we use −∇θ∇T
θ l(θ; θ̂, a).

An alternative expression for the observed information uses the notion of
‘sample space derivatives’, obtained by differentiating l(θ; θ̂, a) with respect
to θ̂.

The maximum likelihood equation is

∂l(θ; θ̂, a)

∂θ
|θ=θ̂ = 0,

so that
∂l(t; t, a)

∂θ
= 0,

identically in t. Differentiating this with respect to t, and evaluating at t = θ̂
we have [

∂2l(θ; θ̂, a)

∂θ2
+
∂2l(θ; θ̂, a)

∂θ∂θ̂

]

θ=θ̂

= 0,

so that

j(θ̂; θ̂, a) =

[
∂2l(θ; θ̂, a)

∂θ∂θ̂

]

θ=θ̂
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or, for a vector parameter,

j(θ̂; θ̂, a) = [∇θ∇
T
θ̂
l(θ; θ̂, a)]θ=θ̂.

1.8 Parameter Orthogonality

We work now with a multi-dimensional parameter θ. There are a number of
advantages, which we will study later, if the matrix i(θ) ≡ [irs(θ)] is diagonal.

1.8.1 Definition

Suppose that θ is partitioned into components θ = (θ1, . . . , θd1 ; θd1+1, . . . , θd) =
(θ(1), θ(2)) say, such that irs(θ) = 0 for all r = 1, . . . , d1; s = d1 + 1, . . . , d,
for all θ ∈ Ωθ. The matrix i(θ) is block diagonal and we say that θ(1) is
orthogonal to θ(2).

1.8.2 An immediate consequence

Orthogonality implies that the corresponding components of the score statis-
tic are uncorrelated.

1.8.3 The case d1 = 1

For this case, write θ = (ψ, λ1, . . . , λq), with q = d − 1. If we start with an
arbitrary parameterisation (ψ, χ1, . . . , χq) with ψ given, it is always possible
to find λ1, . . . , λq as functions of (ψ, χ1, . . . , χq) such that ψ is orthogonal to
(λ1, . . . , λq).

Let l∗ and i∗ be the log-likelihood and information matrix in terms of (ψ, χ1, . . . , χq)
and write χr = χr(ψ, λ1, . . . , λq). Then

l(ψ, λ) ≡ l∗{ψ, χ1(ψ, λ), . . . , χq(ψ, λ)}

and use of the chain rule for differentiation gives

∂2l

∂ψ∂λr
=

∂2l∗

∂ψ∂χs
∂χs

∂λr
+

∂2l∗

∂χt∂χs
∂χs

∂λr
∂χt

∂ψ

+
∂l∗

∂χs
∂2χs

∂ψ∂λr
,

where we have used the summation convention over the range 1, . . . , q. Now
take expectations.
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The final term vanishes and orthogonality of ψ and λ then requires

∂χs

∂λt

(

i∗ψs + i
∗
rs

∂χr

∂ψ

)

= 0.

Assuming that the Jacobian of the transformation from (ψ, χ) to (ψ, λ) is
non-zero, this is equivalent to

i∗rs
∂χr

∂ψ
+ i∗ψs = 0. (1.4)

These partial differential equations determine the dependence of λ on ψ and
χ, and are solvable in general. However, the dependence is not determined
uniquely and there remains considerable arbitrariness in the choice of λ.

1.8.4 An example

Let (Y1, Y2) be independent, exponentially distributed with means (χ, ψχ).
Then equation (1.4) becomes

2χ−2
∂χ

∂ψ
= −(ψχ)−1,

the solution of which is χψ1/2 = g(λ), where g(λ) is an arbitrary function of λ.
A convenient choice is g(λ) ≡ λ, so that in the orthogonal parameterisation
the means are λ/ψ1/2 and λψ1/2.

1.8.5 The case d1 > 1

When dim(ψ) > 1 there is no guarantee that a λ may be found so that ψ
and λ are orthogonal.

If, for example, there were two components ψ1 and ψ2 for which it was
required to satisfy (1.4), there would in general be no guarantee that the
values of ∂χr/∂ψ1 and ∂χr/∂ψ2 so obtained would satisfy the compatibility
condition

∂2χr

∂ψ1∂ψ2
=

∂2χr

∂ψ2∂ψ1
.

1.8.6 Further remarks

Irrespective of the dimension of ψ, orthogonality can be achieved locally at
θ = θ0 via a linear transformation of parameters with components depending
on i(θ0). More generally, for a fixed value ψ0 of ψ it is possible to determine
λ so that iψλ(ψ0, λ) = 0 identically in λ.

If λ is orthogonal to ψ, then any one-to-one smooth function of ψ is orthog-
onal to any one-to-one smooth function of λ.
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1.9 General principles

The previous sections have introduced a number of fundamental concepts
of statistical inference. In this section we outline the role played by these
concepts in various abstract principles of inference. These principles are
included here largely for the sake of interest. The formal role that they play
in different approaches to statistical inference is sketched in Section 1.10 :
further discussion is given by Cox and Hinkley (1974, pp.48–56).

1.9.1 Sufficiency principle

Suppose that we have a model according to which the data y correspond to
a random variable Y having p.d.f. fY (y; θ) and that S is minimal sufficient
for θ. Then, according to the sufficiency principle, so long as we accept the
adequacy of the model, identical conclusions should be drawn from data y1
and y2 with the same value of S.

1.9.2 Conditionality principle

Suppose that C is an ancillary statistic, either in the simple sense described
at the beginning of Section 1.6, or the extended sense of Section 1.6.1 where
nuisance parameters are present. Then the conditionality principle is that
the conclusion about the parameter of interest is to be drawn as if C were
fixed at its observed value c.

1.9.3 Weak likelihood principle

The weak likelihood principle is that two observations with proportional like-
lihood functions lead to identical conclusions, so if y1 and y2 are such that
for all θ

fY (y1; θ) = h(y1, y2)fY (y2; θ),

then y1 and y2 should lead to identical conclusions, as long as we accept the
adequacy of the model.

This is identical with the sufficiency principle.

1.9.4 Strong likelihood principle

Suppose that two different random systems are contemplated, the first giv-
ing observations y corresponding to a random variable Y and the second
giving observations z on a random variable Z, the corresponding p.d.f.’s be-
ing fY (y; θ) and fZ(z; θ), with the same parameter θ and the same parameter
space Ωθ. The strong likelihood principle is that if y and z give proportional
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likelihood functions, the conclusions drawn from y and z should be identical,
assuming adequacy of both models. If, for all θ ∈ Ωθ,

fY (y; θ) = h(y, z)fZ(z; θ),

identical conclusions about θ should be drawn from y and z.

A simple example concerning Bernoulli trials illustrates this. The log likeli-
hood function corresponding to r successes in n trials is essentially the same
whether (i) only the number of successes in a prespecified number of trials is
recorded or (ii) only the number of trials necessary to achieve a prespecified
number of successes is recorded, or (iii) whether the detailed results of indi-
vidual trials are recorded, with an arbitrary data-dependent stopping rule.
A further example is given in Section 2.7.

The strong likelihood principle may be deduced from the sufficiency principle
plus some form of conditionality principle. Bayesian methods of inference
satisfy the strong likelihood principle. Nearly all others do not.

1.9.5 Repeated sampling principle

This principle, like that in Section 1.9.6, is concerned with interpretation
of conclusions, rather than what aspects of the data and model are rele-
vant. According to the repeated sampling principle, inference procedures
should be interpreted and evaluated in terms of their behaviour in hypothet-
ical repetitions under the same conditions. Measures of uncertainty are to
be interpreted as hypothetical frequencies in long run repetitions and cri-
teria of optimality are to be formulated in terms of sensitive behaviour in
hypothetical repetitions.

1.9.6 Bayesian coherency principle

In the Bayesian approach to inference, all uncertainties are described by
probabilities, so that unknown parameters have probabilities both before the
data are available and after the data have been obtained. It is justified by
the supposition that:

(a) any individual has an attitude to every uncertain event which can be
measured by a probability, called a subjective probability;

(b) all such probabilities for any one individual are comparable;

(c) these subjective probabilities can be measured by choice in hypothetical
betting games.
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The Bayesian coherency principle is that subjective probabilities should be
such as to ensure self-consistent betting behaviour. This implies that sub-
jective probabilities for any one individual should be manipulated by the
ordinary laws of probability, in particular Bayes’ Theorem. The principle
implies that conclusions about unknown parameters in models have to be in
the form of probability statements. This implies all the principles of 1.9.1–
1.9.4, in particular the strong likelihood principle.

1.9.7 Principle of coherent decision making

In problems where an explicit decision is involved, parallel arguments to
Section 1.9.6 show that for any individual each decision and true parameter
value have an associated ‘utility’ such that the optimum decision is found by
maximising expected utility.

1.10 Approaches to Statistical Inference

We have set out four principles (sufficiency, conditionality, weak likelihood,
strong likelihood) which concern the way in which the data should affect the
conclusions. They do not concern the exact form and interpretation of the
conclusions. Interpretation is governed by the other principles. We are then
in a position to describe briefly the main approaches to inference.

There are four broad approaches to statistical inference, via sampling theory,
likelihood theory, Bayesian theory and decision theory.

1.10.1 Sampling theory

In this approach primary emphasis is placed on the repeated sampling prin-
ciple, on ensuring that procedures have an interpretation in terms of frequen-
cies in hypothetical repetitions under the same conditions. An example is
construction of a confidence interval for the mean μ of a normal distribution.
This approach does not satisfy the strong likelihood principle.

1.10.2 Likelihood theory

In this approach the likelihood function itself is used directly as a sum-
mary of information. In particular, ratios of likelihoods or differences in
log-likelihoods give the relative plausibilities of two parameter values, say
θ1 and θ2. This approach clearly satisfies the weak and strong likelihood
principles, and the conditionality principle is implicitly satisfied.
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1.10.3 Bayesian theory

This approach was sketched in Section 1.5.1. Inference about the parameter
of interest θ is derived from the posterior density. If the prior distribu-
tion arises from a physical random mechanism with known properties, the
posterior distribution can be regarded as a hypothetical frequency distribu-
tion, and the principles 1.9.1–1.9.4 are all satisfied. To apply the Bayesian
approach more generally, we may invoke the Bayesian coherency principle.
Then the prior is taken as measuring the investigator’s subjective opinion
about the parameter from evidence other than the data under analysis.

1.10.4 Decision theory

This approach emphasises the action to be taken in the light of data. If
for each parameter value the consequences of each possible action can be
measured by a utility (or loss), then we can evaluate the expected utility
of the possible methods of action. We can then rule out certain methods
of action on the grounds that they lead to uniformly lower expected utility
for all parameter values. A unique optimal action will be defined if a prior
distribution is available, in which case the expected utility, averaged with
respect to the prior distribution, can be maximised over the set of possible
actions. The principle of coherent decision making is explicitly applicable.

1.11 Some Essential Mathematical Material

1.11.1 Background

Consider a random vector Y with a known distribution, and suppose that
the distribution of the statistic f(Y ) is needed, for some real-valued function
f . In most situations, finding the exact distribution of f(Y ) is impossible
or impractical. The approach then is to use as asymptotic approximation
to the distribution of the statistic, which then allows us to approximate
distributional quantities of interest, such as quantiles or moments. Much of
the module (Chapter 3 in particular) is concerned with methods for obtaining
such approximations. An attractive feature of the approximations is that
they take just a few basic and general forms, and therefore provide a quite
general distribution theory. The current section revises the key notions of
probability theory that are essential to an understanding of the nature and
properties of these approximations.
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1.11.2 Some probability results

A sequence of (scalar) random variables {Y1, Y2, . . .} is said to converge in
distribution if there exists a distribution function F such that

lim
n→∞

P (Yn ≤ y) = F (y)

for all y that are continuity points of the limiting distribution F . If F is the

distribution function of the random variable Y , we write Yn
d
−→ Y .

The extension to random vectors is immediate. Let {Y1, Y2, . . .} be a
sequence of random vectors, each of dimension d, and let Y denote a random
vector of dimension d. For each n = 1, 2, . . ., let Fn denote the distribution
function of Yn, and let F denote the distribution function of Y . Then the
sequence Yn converges in distribution to Y as n→∞ if

lim
n→∞

Fn(y) = F (y),

for all y ∈ Rd at which F is continuous.
A sequence of (scalar) random variables {Y1, Y2, . . .} is said to converge

in probability to a random variable Y if, for any ε > 0

lim
n→∞

P (|Yn − Y | > ε) = 0.

We write Yn
p
−→ Y . [Note that for this to make sense, for each n, Y and

Yn must be defined on the same sample space, a requirement that does
not arise in the definition of convergence in distribution.] The extension to
d−dimensional random vectors is again immediate: the sequence of random
vectors Yn converges in probability to Y if, for any ε > 0,

lim
n→∞

P (‖ Yn − Y ‖> ε) = 0,

where ‖ ∙ ‖ denotes Euclidean distance on Rd.

An important relationship is that convergence in probability implies con-
vergence in distribution. An important special case is where the sequence
converges in probability to a constant, c, Yn

p
−→ Y , where P (Y = c) = 1.

Then convergence in probability is equivalent to convergence in distribution.

A stronger yet mode of convergence is almost sure convergence. A sequence
of random vectors {Y1, Y2, . . .} is said to converge almost surely to Y if

P ( lim
n→∞

‖ Yn − Y ‖= 0) = 1.
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We write Yn
a.s
−→ Y .

Finally, a sequence of random vectors {Y1, Y2, . . .} is said to converge to Y
in Lp (or p-th moment) if

lim
n→∞

E(‖ Yn − Y ‖
p) = 0,

where p > 0 is a fixed constant. We write Yn
Lp
−→ Y .

A very useful result is Slutsky’s Theorem which states that if Xn
d
−→ X and

Yn
p
−→ c, where c is a finite constant, then: (i) Xn + Yn

d
−→ X + c, (ii)

XnYn
d
−→ cX, (iii) Xn/Yn

d
−→ X/c, if c 6= 0.

Let X1, . . . , Xn be independent, identically distributed (scalar) random vari-
ables with finite mean μ. The strong law of large numbers (SLLN) says that
the sequence of random variables X̄n = n

−1(X1+ ∙ ∙ ∙+Xn) converges almost
surely to μ if and only if the expectation of |Xi| is finite. The weak law of
large numbers (WLLN) says that if the Xi have finite variance, X̄n

p
−→ μ.

The central limit theorem (CLT) says that, under the condition that the
Xi are of finite variance σ

2, then a suitably standardised version of X̄n,
Zn =

√
n(X̄n − μ)/σ, converges in distribution to a random variable Z hav-

ing the standard normal distribution N(0, 1). We write Zn
d
−→ N(0, 1).

Another useful result is the ‘delta-method’: if Yn has a limiting normal dis-
tribution, then so does g(Yn), where g is any smooth function. Specifically,

if
√
n(Yn − μ)/σ

d
−→ N(0, 1), and g is a differentiable function such that

g′(μ) 6= 0, then √
n(g(Yn)− g(μ))
|g′(μ)|σ

d
−→ N(0, 1).

1.11.3 Mann-Wald notation

In asymptotic theory, the so-called Mann-Wald notation is useful, to describe
the order of magnitude of specified quantities. For two sequences of positive
constants (an), (bn), we write an = o(bn) when limn→∞(an/bn) = 0, and
an = O(bn) when lim supn→∞(an/bn) = K < ∞. For sequences of random
variables {Yn}, we write Yn = op(an) if Yn/an

p
−→ 0 as n → ∞ and Yn =

Op(an) when Yn/an is bounded in probability as n → ∞, i.e. given ε > 0
there exist k > 0 and n0 such that, for all n > n0,

Pr(|Yn/an |< k) > 1− ε.

In particular, Yn = c+ op(1) means that Yn
p
−→ c.
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1.11.4 Moments and cumulants

The moment generating function of a scalar random variable X is defined
by MX(t) = E{exp(tX)}, whenever this expectation exists. Note that
MX(0) = 1, and that the moment generating function is defined in some
interval containing 0. If MX(t) exists for t in an open interval around 0, then
all the moments μ′r = EX

r exist, and we have the Taylor expansion

MX(t) = 1 + μ
′
1t+ μ

′
2

t2

2!
+ ∙ ∙ ∙+ μ′r

tr

r!
+O(tr+1),

as t→ 0.

The cumulant generating function KX(t) is defined by KX(t) = log{MX(t)},
defined on the same interval as MX(t). Provided MX(t) exists in an open
interval around 0, the Taylor series expansion

KX(t) = κ1t+ κ2
t2

2!
+ ∙ ∙ ∙+ κr

tr

r!
+O(tr+1),

as t→ 0, defines the rth cumulant κr.

The rth cumulant κr can be expressed in terms of the rth and lower-order mo-
ments by equating coefficients in the expansions of exp{KX(t)} and MX(t).
We have, in particular, κ1 = E(X) = μ′1 and κ2 = var(X) = μ′2 − μ

′2
1 . The

third and fourth cumulants are called the skewness and kurtosis respectively.
For the normal distribution, all cumulants of third and higher order are 0.

Note that, for a, b ∈ R, KaX+b(t) = bt + KX(at), so that if κ̃r is the rth
cumulant of aX + b, then κ̃1 = aκ1 + b, κ̃r = a

rκr, r ≥ 2. Also, if X1, . . . , Xn

are independent and identically distributed random variables with cumulant
generating function KX(t), and Sn = X1 + . . .+Xn, then KSn(t) = nKX(t).

Extension of these notions to multivariate X involves no conceptual compli-
cation: see Pace and Salvan (1997, Chapter 3).

1.11.5 Some reminders

The Taylor expansion for a function f(x) of a single real variable about x = a
is given by

f(x) = f(a)+f (1)(a)(x−a)+
1

2!
f (2)(a)(x−a)2+ . . .+

1

n!
f (n)(a)(x−a)n+Rn,

where

f (l)(a) =
dlf(x)

dxl

∣
∣
∣
∣
x=a

,
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and the remainder Rn is of the form

1

(n+ 1)!
f (n+1)(c)(x− a)n+1,

for some c ∈ [a, x].

The Taylor expansion is generalised to a function of several variables in a
straightforward manner. For example, the expansion of f(x, y) about x = a
and y = b is given by

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!
{fxx(a, b)(x− a)

2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)
2}+ . . . ,

where

fx(a, b) =
∂f

∂x

∣
∣
∣
∣
x=a,y=b

fxy(a, b) =
∂2f

∂x∂y

∣
∣
∣
∣
x=a,y=b

,

and similarly for the other terms.

Some particular expansions therefore are:

log(1 + x) = x− x2/2 + x3/3− x4/4 . . . (|x| < 1)

exp(x) = 1 + x+ x2/2! + x3/3! + x4/4! . . . (x ∈ R)

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2! + . . . (x ∈ R)

f(x+ h) = f(x) + f ′(x)Th+ hTf ′′(x)h/2! + . . . (x ∈ Rp).

The sign function sgn is defined by

sgn(x) =






1, if x > 0
0, if x = 0
−1, if x < 0

Suppose we partition a matrix A so that A =

[
A11 A12
A21 A22

]

, with A−1 cor-

respondingly written A−1 =

[
A11 A12

A21 A22

]

. If A11 and A22 are non-singular,

let
A11.2 = A11 − A12A

−1
22 A21,
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and
A22.1 = A22 − A21A

−1
11 A12.

Then,

A11 = A−111.2, A22 = A−122.1, A12 = −A−111 A12A
22,

A21 = −A−122 A21A
11.

1.11.6 Multivariate normal distribution

Of particular importance is the multivariate normal distribution, which, for
nonsingular Σ, has density

f(y;μ,Σ) =
1

(2π)p/2|Σ|1/2
exp{−1

2
(y − μ)TΣ−1(y − μ)}

for y ∈ Rp, μ ∈ Rp. We write this as Np(μ,Σ). If Y ∼ Np(μ,Σ) then EY = μ,
varY = Σ.
If Y ∼ Np(0,Σ), call QY = Y

TΣ−1Y the covariance form associated with
Y . Then a key result is that QY ∼ χ2p. To see this, note

1. the covariance form is invariant under non-singular transformation of
Y ;

2. Y can be transformed to independent components of unit variance (set
Z = Σ−1/2Y );

3. the chi-squared distribution then follows directly, QY ≡ QZ = Z
TZ.

Now suppose that Y is partitioned into two parts Y T = (Y T
(1), Y

T
(2)) where

Y(j) is pj × 1, p1 + p2 = p. It is immediate that QY(1) ∼ χ2p1 , but in addition

QY(1).Y(2) = QY −QY(1) ∼ χ2p2

independently of QY(1) . Apply a transformation to Y so that the first p1
components are Y(1) and the last p2 components, Y

′
(2) say, are independent

of Y(1). Then, by the invariance of the covariance form under non-singular
transformation of Y ,

QY = QY(1) +QY ′
(2)
,

so that QY ′
(2)
≡ QY(1).Y(2) . The stated properties of QY ′

(2)
clearly hold.
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2 Large Sample Theory

2.1 Motivation

In many situations, statistical inference depends on being able to approxi-
mate, using asymptotic theory, to densities or distribution functions. Exact
answers are rarely available. The approximations used are based on results
of probability theory, as revised in Section 1.11.2.

Further, potentially useful results worth highlighting are as follows.

[Continuous mapping theorem] Suppose the sequence X1, X2, . . . of random

d−dimensional vectors is such that Xn
d
−→ X and g is a continuous function.

Then g(Xn)
d
−→ g(X).

[Multivariate CLT] Let X1, . . . , Xn be independent, identically distributed
random d−dimensional vectors with var (X1) = Σ a finite matrix. Then

1
√
n

n∑

i=1

(Xi − EX1)
d
−→ Nd(0,Σ).

[Multivariate delta-method] Let X1, X2, . . . , Y be random d−dimensional

vectors satisfying an(Xn − c)
d
−→ Y , where c ∈ Rd and {an} is a sequence of

positive numbers with an → ∞ as n → ∞. If g is a function from Rd to R
which is differentiable at c, then if Y is Nd(0,Σ), we have

an[g(Xn)− g(c)]
d
−→ N(0, [∇g(c)]TΣ[∇g(c)]),

where ∇g(x) denotes the d−vector of partial derivatives of g at x.

Details of these results and generalizations are described by Barndorff-Nielsen
and Cox (1989, Chapter 2).

Theory based on limit results of this kind is combined in ‘statistical asymp-
totics’ with asymptotic techniques from analysis and development of asymp-
totic expansions. Often a first-order approximation as may, say, arise from
application of the CLT, can be improved by incorporating higher-order terms
in an asymptotic expansion. Chapter 2 will be concerned with first-order the-
ory of statistical quantities based on the likelihood function, while Chapter 3
will examine higher-order approximations that refine first-order results. Note
that theory underlying approximation techniques is valid as some quantity,
typically the sample size n [or more generally some ‘amount of information’],
goes to infinity, but the approximations obtained can be very accurate even
for extremely small sample sizes.
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In this chapter we discuss first-order asymptotic theory in regular paramet-
ric models. We will focus on models with independent component random
variables. For details of more general cases see Barndorff-Nielsen and Cox
(1994, Chapter 3). A key result is that in the independent component case
the score function is, by the central limit theorem, asymptotically normal.

2.2 No nuisance parameter case

Recall the definitions of the score function and expected and observed infor-
mation of Sections 1.3.1 and 1.3.2.

Denote by lr the rth component of U(θ), lrs the (r, s)th component of ∇θ∇T
θ l,

and denote the (r, s)th component of the inverse of the matrix [lrs] by l
rs.

The maximum likelihood estimate for given observations y is, for regular
problems, defined as the solution, assumed unique, of the ‘likelihood equa-
tion’

u(θ̂; y) = 0.

Consider testing the null hypothesis H0 : θ = θ0, where θ0 is an arbitrary,
specified, point in Ωθ. We can test H0 in many ways equivalent to first-order,
i.e. using statistics that typically differ by Op(n

−1/2). Three such statistics
are:

1. the likelihood ratio statistic

w(θ0) = 2{l(θ̂)− l(θ0)}, (2.1)

2. the score statistic

wU(θ0) = U
T (θ0)i

−1(θ0)U(θ0), (2.2)

3. the Wald statistic

wp(θ0) = (θ̂ − θ0)
T i(θ0)(θ̂ − θ0). (2.3)

In (2.3) the suffix p warns that a particular parameterisation is involved.

For a scalar θ, (2.1) may be replaced by

r(θ0) = sgn(θ̂ − θ0)
√
w(θ0), (2.4)

the directed likelihood or ‘signed root likelihood ratio statistic’. Also (2.2)
and (2.3) may be replaced by

rU(θ0) = U(θ0)/
√
i(θ0) (2.5)
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and
rp(θ0) = (θ̂ − θ0)

√
i(θ0) (2.6)

respectively.

In a first-order asymptotic theory, the statistics (2.1)–(2.3) have, asymptot-
ically, the chi-squared distribution with dθ = dim(Ωθ) degrees of freedom.
The signed versions (2.4)–(2.6) have an N(0, 1) distribution.

Confidence regions at level 1− α are formed approximately as, for example,

{θ : w(θ) ≤ χ2dθ,α},

where χ2dθ,α is the upper α point of the relevant chi-squared distribution.

Note that in (2.5)
√
i(θ0) is the exact standard deviation of U(θ0), while in

(2.6) 1/
√
i(θ0) is the approximate standard deviation of θ̂ when θ = θ0.

In asymptotic calculations, because U(θ0) and i(θ0) refer to the total vector
Y of dimension n, then as n→∞ and subject to some general conditions:

U(θ0) ≡
√
nŪ(θ0) = Op(n

1/2),

i(θ0) ≡ nī(θ0) = O(n),

θ̂ − θ0 = Op(n
−1/2),

where ī(θ0) is the average information per observation and Ū(θ0) is a nor-
malised score function. If the observations are IID, ī is the information for a
single observation.

Note that, as n→∞, we have in probability that, provided i(θ) is continuous
at θ = θ0,

j(θ̂)/n → ī(θ0),

j(θ0)/n → ī(θ0).

Therefore, in the definitions of the various statistics, i(θ0) can be replaced
by i(θ̂), j(θ̂), j(θ0) etc. etc., in the sense that, if θ = θ0, the various modified
statistics differ typically by Op(n

−1/2), so that their limiting distributions are
the same under H0.

2.3 Distribution theory for 2.2

Here we outline the asymptotic distribution theory that justifies the proce-
dures of Section 2.2.
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A serious issue concerns the asymptotic existence, uniqueness and consistency
of the maximum likelihood estimate. There are no very satisfactory general
theorems on such questions. A general result on the existence of a solution of
the maximum likelihood equation asymptotically close to the true parameter
value is possible, but is less than is required. We assume that θ̂ is well defined
and consistent.

A key result is that in considerable generality U is asymptotically normal with
zero mean and variance i(θ). For IID components this is a trivial consequence
of the additive form of U and the CLT, together with the assumed finiteness
of var (U). Very generally, the asymptotic distribution is a consequence of
a martingale property of the score vector. For details see Barndorff-Nielsen
and Cox (1994, pp. 85–86).

Suppose that U(θ) = U(θ;Y ) = [lr(θ)] has been shown to be asymptotically
Nd(0, i(θ)), formally

U(θ)/
√
nī(θ)

d
−→ Nd

(
0, Id

)
, (2.7)

with Id the d × d identity matrix, and with
√
interpreted as the matrix

square root. We review what this implies about θ̂. Now adopt the summation
convention and expand the score lr(θ) in a Taylor series around θ, writing

lr(θ) = Ur(θ) =
√
nl̄r(θ) =

√
nŪr(θ),

lrs(θ) = nl̄rs(θ) = −jrs(θ) = −nj̄rs(θ),

δ̄r =
√
n(θ̂r − θr), lrst(θ) = nl̄rst(θ),

i(θ) = nī(θ), etc.

Then, lr(θ̂) = 0, so

√
nl̄r(θ) + nl̄rs(θ)δ̄

s/
√
n

+ 1
2
nl̄rst(θ)δ̄

sδ̄t/n+ ∙ ∙ ∙ = 0,

so that to a first-order approximation, ignoring the third term, we have

δ̄r = −l̄rs(θ)l̄s(θ) +Op(n
−1/2)

= j̄rs(θ)l̄s(θ) +Op(n
−1/2).

Now jrs/irs
p
−→ 1, so

δ̄r = īrs(θ)l̄s(θ) +Op(n
−1/2),
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a linear function of asymptotically normal variables of zero mean. It follows
from (2.7) that [δ̄r] is asymptotically normal with zero mean and covariance
matrix [̄irs]. We have

√
nī(θ)(θ̂ − θ)

d
−→ Nd

(
0, Id

)
. (2.8)

Note that the normality relations (2.7) and (2.8) are asymptotically param-
eterisation invariant. This means, in particular, that to show normality for
arbitrary parameterisations it is enough to do so for one parameterisation.
The consequence is simplification of theoretical derivations in many circum-
stances.

The asymptotic χ2 distribution of w = w(θ) = 2{l(θ̂)− l(θ)} follows directly
from the above. By direct expansion in θ around θ̂ we have, writing ĵ ≡
j(θ̂) = [ĵrs],

w(θ) = ĵrs(θ̂ − θ)
r(θ̂ − θ)s + op(1)

or equivalently
w(θ) = irslrls + op(1),

so w(θ)
d
−→ χ2d. The asymptotic χ

2 distribution of the Wald and score
statistics follows similarly.

When the dimension of θ is d = 1, we have that the signed root likelihood
ratio statistic

r = sgn(θ̂ − θ)
√
w(θ)

satisfies
r = ĵ−1/2U + op(1)

so that r
d
−→ N(0, 1). Also, i(θ̂)1/2(θ̂ − θ) is asymptotically N(0, 1), so that

an approximate 100(1 − α)% confidence interval for θ is

θ̂ ∓ i(θ̂)−1/2Φ−1(1− α/2),

in terms of the N(0, 1) distribution function Φ.

2.4 Multiparameter problems: profile likelihood

Consider again the multiparameter problem in which θ = (θ1, . . . , θd) ∈ Ωθ,
an open subset of Rd.

Typically, interest lies in inference for a subparameter or parameter function
ψ = ψ(θ). The profile likelihood Lp(ψ) for ψ is defined by

Lp(ψ) = sup
{θ:ψ(θ)=ψ}

L(θ),
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the supremum of L(θ) over all θ that are consistent with the given value of
ψ.

The log profile likelihood is lp = logLp. It may be written as lnp if it is to
be stressed that it is based on a sample of size n.

Often ψ is a component of a given partition θ = (ψ, χ) of θ into sub-vectors
ψ and χ of dimension dψ = d − dχ and dχ respectively, and we may then
write

Lp(ψ) = L(ψ, χ̂ψ),

where χ̂ψ denotes the maximum likelihood estimate of χ for a given value of
ψ. We assume this is the case from now on.

The profile likelihood Lp(ψ) can, to a considerable extent, be thought of and
used as if it were a genuine likelihood. In particular, the maximum profile
likelihood estimate of ψ equals ψ̂, the first dψ components of θ̂. Further, the

profile log-likelihood ratio statistic 2{lp(ψ̂)− lp(ψ0)} equals the log-likelihood
ratio statistic for H0 : ψ = ψ0,

2{lp(ψ̂)− lp(ψ0)} ≡ 2{l(ψ̂, χ̂)− l(ψ0, χ̂0)} ≡ w(ψ0),

where l ≡ ln is the log-likelihood and we have written χ̂0 for χ̂ψ0 . The
asymptotic null distribution of the profile log-likelihood ratio statistic is χ2dψ :
this follows from general distribution theory considered later.

The inverse of the observed profile information equals the ψ component of
the full observed inverse information evaluated at (ψ, χ̂ψ),

j−1p (ψ) = j
ψψ(ψ, χ̂ψ),

where jp denotes observed profile information, minus the matrix of second-
order derivatives of lp, and j

ψψ is the ψψ-block of the inverse of the full
observed information j.

For scalar ψ, this result follows on differentiating lp(ψ) = l(ψ, χ̂ψ) twice with
respect to ψ. Let lψ and lχ denote the partial derivatives of l(ψ, χ) with
respect to ψ, χ respectively. The profile score is lψ(ψ, χ̂ψ), on using the
chain rule to differentiate lp(ψ) with respect to ψ, noting that lχ(ψ, χ̂ψ) = 0.
The second derivative is, following the notation, lψψ(ψ, χ̂ψ)+lψχ(ψ, χ̂ψ)

∂
∂ψ
χ̂ψ.

Now use the result that

∂χ̂ψ/∂ψ = −jψχ(ψ, χ̂ψ)j
−1
χχ (ψ, χ̂ψ).

This latter formula follows by differentiating the likelihood equation lχ(ψ, χ̂ψ) =
0 with respect to ψ. This gives

lχψ(ψ, χ̂ψ) + lχχ(ψ, χ̂ψ)
∂

∂ψ
χ̂ψ = 0,
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from which
∂

∂ψ
χ̂ψ = −(lχχ(ψ, χ̂ψ))

−1lχψ(ψ, χ̂ψ).

It follows that
jp(ψ) = −(lψψ − lψχ(lχχ)

−1lχψ),

where all the derivatives are evaluated at (ψ, χ̂ψ). Then, using the formulae
for the inverse of a partitioned matrix, as given in Section 1.11.5, the result
is proved. The vector case follows similarly.

When ψ is scalar, this implies that the curvature of the profile log-likelihood
is directly related to the precision of ψ̂. We have seen that a key property
of the log-likelihood l(θ) when there are no nuisance parameters is that the
observed information j(θ̂) can be as an estimate of the inverse asymptotic
covariance matrix of θ̂ (which is actually i(θ)). The above result shows that
the corresponding function computed from the profile log-likelihood,

jp(ψ̂) = −[∇ψ∇
T
ψ lp(ψ)]ψ=ψ̂

determines an estimate of the inverse asymptotic covariance matrix for ψ̂.

2.5 Multiparameter problems: further statistics

For testing H0 : ψ = ψ0, in the presence of a nuisance parameter χ, the forms
of the score statistic and the Wald statistic corresponding to the profile log-
likelihood ratio statistic w(ψ0) are obtained by partitioning the maximum
likelihood estimate, the score vector, the information matrix and its inverse:

U(θ) =

(
Uψ(ψ, χ)
Uχ(ψ, χ)

)

,

i(θ) =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]

,

i−1(θ) =

[
iψψ(ψ, χ) iψχ(ψ, χ)
iχψ(ψ, χ) iχχ(ψ, χ)

]

.

We know that ψ̂ is asymptotically normally distributed with mean ψ0 and
covariance matrix iψψ(ψ0, χ0), which can be replaced by i

ψψ(ψ0, χ̂0), yielding
a version of the Wald test statistic for this nuisance parameter case:

wp(ψ0) = (ψ̂ − ψ0)
T [iψψ(ψ0, χ̂0)]

−1(ψ̂ − ψ0).
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Cox and Hinkley (1974, pp. 323–324) give a detailed derivation of a version
of the score statistic for testing H0 : ψ = ψ0:

wu(ψ0) = Uψ(ψ0, χ̂0)
T iψψ(ψ0, χ̂0)Uψ(ψ0, χ̂0).

This test has the advantage that the maximum likelihood estimator only has
to be obtained under H0, and is derived from the asymptotic normality of U .

Both wp(ψ0) and wu(ψ0) have asymptotically a chi-squared distribution with
dψ degrees of freedom, as will be shown in Section 2.7, by showing their
first-order equivalence to w(ψ0).

2.6 Effects of parameter orthogonality

Assume that it is possible to make the parameter of interest ψ and the nui-
sance parameter, now denoted by λ, orthogonal. This is always possible if ψ
is one-dimensional. Any transformation from, say, (ψ, χ) to (ψ, λ) necessary
to achieve this leaves the profile log-likelihood invariant.

Now the matrices i(ψ, λ) and i−1(ψ, λ) are block diagonal. Therefore, ψ̂ and
λ̂ are asymptotically independent and the asymptotic variance of ψ̂ where λ
is unknown is the same as that where λ is known. A related property is that
λ̂ψ, the MLE of λ for specified ψ, varies only slowly in ψ in the neighbourhood

of ψ̂, and that there is a corresponding slow variation of ψ̂λ with λ. More
precisely, if ψ− ψ̂ = Op(n

−1/2), then λ̂ψ− λ̂ = Op(n
−1). For a nonorthogonal

nuisance parameter χ, we would have χ̂ψ − χ̂ = Op(n
−1/2).

We sketch a proof of this result for the case where both the parameter of
interest and the nuisance parameter are scalar. If ψ−ψ̂ = Op(n

−1/2), χ−χ̂ =
Op(n

−1/2), we have

l(ψ, χ) = l(ψ̂, χ̂)

−1
2

{
ĵψψ(ψ − ψ̂)2 + 2ĵψχ(ψ − ψ̂)(χ− χ̂) + ĵχχ(χ− χ̂)2

}
+Op(n

−1/2).

It then follows that

χ̂ψ − χ̂ =
−ĵψχ
ĵχχ

(ψ − ψ̂) +Op(n
−1)

=
−iψχ
iχχ
(ψ − ψ̂) +Op(n

−1).

Then, because ψ − ψ̂ = Op(n
−1/2), χ̂ψ − χ̂ = Op(n

−1/2) unless iψχ = 0, the
orthogonal case, when the difference is Op(n

−1).
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Note also that, so far as asymptotic theory is concerned, we can have χ̂ψ = χ̂
independently of ψ only if χ and ψ are orthogonal. In this special case we can
write lp(ψ) = l(ψ, χ̂). In the general orthogonal case, lp(ψ) = l(ψ, χ̂)+ op(1),
so that a first-order theory could use l∗p(ψ) = l(ψ, χ̂) instead of lp(ψ) =
l(ψ, χ̂ψ).

2.7 Distribution theory in nuisance parameter case

First-order asymptotic distribution theory when nuisance parameters are
present follows from basic properties of the multivariate normal distribution
given in Section 1.11.6.

The log-likelihood ratio statistic w(ψ0) can be written as

w(ψ0) = 2
{
l(ψ̂, χ̂)− l(ψ0, χ)

}
− 2
{
l(ψ0, χ̂0)− l(ψ0, χ)

}
,

as the difference of two statistics for testing hypotheses without nuisance
parameters.

Taylor expansion about (ψ0, χ), where χ is the true value of the nuisance
parameter, gives, to first-order (i.e. ignoring terms of order op(1)),

w(ψ0) =

[
ψ̂ − ψ0
χ̂− χ

]T
i(ψ0, χ)

[
ψ̂ − ψ0
χ̂− χ

]

−(χ̂0 − χ)
T iχχ(ψ0, χ)(χ̂0 − χ). (2.9)

Note that the linearised form of the maximum likelihood estimating equations
is [

iψψ iψχ
iχψ iχχ

] [
ψ̂ − ψ0
χ̂− χ

]

=

[
Uψ
Uχ

]

,

so [
ψ̂ − ψ0
χ̂− χ

]

=

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]

.

Also χ̂0−χ = i−1χχUχ, to first-order. Then, we see from (2.9) that to first-order

w(ψ0) = [U
T
ψU

T
χ ]

[
iψψ iψχ

iχψ iχχ

] [
Uψ
Uχ

]

− UT
χ i
−1
χχUχ. (2.10)

From (2.10), in the notation of Section 1.11.6,

w(ψ0) ∼ QU −QUχ = QUψ .Uχ ,

and is thus asymptotically χ2dψ .
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The Wald statistic wp(ψ0) is based directly on the covariance form of ψ̂−ψ0,
and so can be seen immediately to be asymptotically χ2dψ . Note that to
first-order we have

wp(ψ0) = [i
ψψUψ + i

ψχUχ]
T (iψψ)−1[iψψUψ + i

ψχUχ]. (2.11)

Correspondingly, we can express the statistic wU(ψ0) in terms of the score
vector U . To first-order we have

wU(ψ0) = (Uψ − iψχi
−1
χχUχ)

T iψψ(Uψ − iψχi
−1
χχUχ). (2.12)

This follows since, to first-order,

Uψ(ψ0, χ̂0) = Uψ +
∂Uψ

∂χ
(χ̂0 − χ)

= Uψ − iψχi
−1
χχUχ.

The equivalence of the three statistics, and therefore the asymptotic distri-
bution of wU(ψ0), follows on showing, using results for partitioned matrices
given in Section 1.11.4, that the three quantities (2.10), (2.11) and (2.12) are
identical.

As an illustration, write

[
Uψ
Uχ

]

=

[
U1
U2

]

,

[
iψψ iψχ
iχψ iχχ

]

=

[
i11 i12
i21 i22

]

for ease of notation.

Multiplying out (2.10) gives

w(ψ0) = U
T
1 i
11U1 + U

T
2 i
21U1 + U

T
1 i
12U1 + U

T
2 [i
22 − i−122 ]U2. (2.13)

Multiplying out (2.11) gives

wp(ψ0) = U
T
1 i
11U1 + U

T
1 i
12U2 + U

T
2 i
21U1 + U

T
2 i
21(i11)−1i12U2, (2.14)

since (i11 − i12i
−1
22 i21)

−1 = i11. Equivalence of (2.13) and (2.14) follows on
noting that

i21(i11)−1i12 = i−122 i21i
−1
11 i12i

22 = i−122 [i22 − (i
22)−1]i22 = i22 − i−122 .
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2.8 An example: possible censoring

Suppose that we observe a realization z of Z = (Z1, ..., Zn), where the Zi
are independent, identically distributed exponential random variables, with
parameter θ, so that the likelihood is

f(z; θ) = θn exp{−θ
n∑

j=1

zj}. (2.15)

Now suppose that the observations are censored at c > 0, so that instead of
z we actually observe y, where

yj = zjI(zj ≤ c) + cI(zj > c), j = 1, ..., n.

The yj are realizations of independently distributed random variables Yj
which have density θ exp(−θx) if x < c, and equal c with probability P (Zj >
c) = e−θc. Thus in this censored case, the likelihood is

g(y; θ) = θr exp{−θ
n∑

j=1

yj}, (2.16)

where r =
∑n

j=1 I(zj ≤ c) is the random number of uncensored observations.

If we draw a sample in which none of the observations is actually actually
greater than c, no censoring occurs and we have zj = yj, r = n and

g(y; θ) = f(z; θ).

The (strong) likelihood principle asserts that we should make the same in-
ferences about θ in the two cases. That is, if censoring is possible but does
not occur, inference should be the same as when censoring is impossible.

Under (2.16) the Fisher information in a single observation is

ī(θ) ≡ i(θ)/n = E{r/(nθ2)} =
1− e−θc

θ2
.

The likelihood is maximized at θ̂ = r/(nȳ). The observed information is
j̄(θ̂) ≡ j(θ̂)/n = nȳ2/r. Therefore, under (2.16) an approximate 100(1−α)%
confidence interval for θ based on ī(θ̂) is

r

nȳ
∓

1

n1/2(nȳ/r)[1− exp{−cr/(nȳ)}]1/2
Φ−1(1− α/2). (2.17)
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Under (2.15) the likelihood is maximized by θ̂ = 1/z̄. The expected and
observed Fisher information are equal and ī(θ̂) ≡ j̄(θ̂) = 1/θ̂2 = z̄2. An
approximate 100(1 − α)% confidence interval for θ is

1

z̄
∓
1

n1/2z̄
Φ−1(1− α/2). (2.18)

When no censoring occurs (2.17) reduces to

1

z̄
∓

1

n1/2z̄{1− exp(−c/z̄)}1/2
Φ−1(1− α/2), (2.19)

which is wider than (2.18), so that the use of (2.19) conflicts with the likeli-
hood principle.

The difference between (2.18) and (2.19) is that the asymptotic variances
based on the expected Fisher information reflect the dependence on the sam-
pling scheme. If we use the observed information j̄(θ̂) = r/(nθ̂2) in the
censored case, we find that an approximate 100(1 − α)% confidence interval
for θ is

r

nȳ
∓
r1/2

nȳ
Φ−1(1− α/2),

which reduces to (2.18) when censoring does not actually occur. Use of
observed information in a confidence interval obeys the likelihood principle
because the maximum likelihood estimate and the observed information are
identical for any two models with proportional likelihoods.
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3 Higher-order Theory

The refinements to the asymptotic theory of Chapter 2 to be discussed here
have two main origins. One motivation is to improve on the first-order limit
results of Chapter 2, so as to obtain approximations whose asymptotic accu-
racy is higher by one or two orders. The other is the Fisherian proposition
that inferences on the parameter of interest should be obtained by condition-
ing on an ancillary statistic, rather than from the original model.

3.1 Asymptotic expansions

Various technical tools are of importance in the development of statistical
theory. Key methods, which we describe in subsequent sections, used to
obtain higher-order approximations to densities and distribution functions
are Edgeworth expansion, saddlepoint approximation and Laplace’s method.
Here we consider first two important general ideas, those of asymptotic ex-
pansion, and stochastic asymptotic expansion.

Asymptotic expansions typically arise in the following way. We are inter-
ested in a sequence of functions {fn(x)}, indexed by n, and write

fn(x) = γ0(x)b0,n + γ1(x)b1,n + γ2(x)b2,n + . . .+ γk(x)bk,n + o(bk,n),

as n → ∞, where {br,n}kr=0 is a sequence, such as {1, n
−1/2, n−1, . . . , n−k/2}

or {1, n−1, n−2, . . . , n−k}. An essential condition is that br+1,n = o(br,n) as
n→∞, for each r = 0, 1, . . . , k − 1.

Often the function of interest fn(x) will be the exact density or distribution
function of a statistic based on a sample of size n at a fixed x, and γ0(x)
will be some simple first-order approximation, such as the normal density
or distribution function. One important feature of asymptotic expansions
is that they are not in general convergent series for fn(x) for any fixed x:
taking successively more terms, letting k →∞ for fixed n, will not necessarily
improve the approximation to fn(x).

We will concentrate here on asymptotic expansions for densities, but describe
some of the key formulae in distribution function estimation.

For a sequence of random variables {Yn}, a stochastic asymptotic expan-
sion is expressed as

Yn = X0b0,n +X1b1,n + . . .+Xkbk,n + op(bk,n),
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where {bk,n} is a given set of sequences and {X0, X1, . . .} are random variables
having distributions not depending on n.

There are several examples of the use of stochastic asymptotic expansions
in the literature, but they are not as well defined as asymptotic expansions,
as there is usually considerable arbitrariness in the choice of the coefficient
random variables {X0, X1, . . .}, and it is often convenient to use instead of
X0, X1, . . . random variables for which only the asymptotic distribution is free
of n. A simple application of stochastic asymptotic expansion is the proof of
asymptotic normality of the maximum likelihood estimator, as sketched in
Chapter 2: we have

√
i(θ)(θ̂ − θ) =

{
U(θ)
√
i(θ)

}

+Op(n
−1/2),

in terms of the score U(θ) and Fisher information i(θ). The quantity U(θ)/
√
i(θ)

plays the role of X0. By the CLT we can write

U(θ)
√
i(θ)
= X0 +Op(n

−1/2),

where X0 is N(0, 1).

3.2 Edgeworth expansion

In this Section and in Section 3.3 we assume, for simplicity, the case of uni-
variate random variables. Extensions to the multivariate case are straight-
forward and are summarised, for example, by Severini (2000, Chapter 2).

Let X1, X2, . . . , Xn be independent, identically distributed random variables
with cumulant generating function KX(t) and cumulants κr. Let Sn =∑n
1 Xi, S

∗
n = (Sn − nμ)/

√
nσ where μ ≡ κ1 = EX1, σ2 ≡ κ2 = varX1.

Define the rth standardised cumulant by ρr = κr/κ
r/2
2 .

The Edgeworth expansion for the density of the standardised sample mean
S∗n can be expressed as:

fS∗n(x) = φ(x)

{

1 +
ρ3

6
√
n
H3(x)

+
1

n

[
ρ4H4(x)

24
+
ρ23H6(x)

72

]}

+O(n−3/2). (3.1)

41



APTS/April 2008 3.2 Edgeworth expansion

Here φ(x) is the standard normal density and Hr(x) is the rth degree Hermite
polynomial defined by

Hr(x) = (−1)r
drφ(x)

dxr

/

φ(x)

= (−1)rφ(r)(x)/φ(x), say.

We have H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3 and H6(x) = x6 − 15x4 +
45x2 − 15. The asymptotic expansion (3.1) holds uniformly for x ∈ R.

The leading term in the Edgeworth expansion is the standard normal density,
as is appropriate from CLT. The remaining terms may be considered as higher
order correction terms. The n−1/2 term is an adjustment for the main effect
of the skewness of the true density, via the standardised skewness ρ3, and
the n−1 term is a simultaneous adjustment for skewness and kurtosis. If
the density of X1 is symmetric, ρ3 = 0 and a normal approximation to the
density of S∗n is accurate to order n

−1, rather than the usual n−1/2 for ρ3 6= 0.
The accuracy of the Edgeworth approximation, say

fS∗n(x)
.
= φ(x)

{

1 +
ρ3

6
√
n
H3(x) +

1

n

[
ρ4H4(x)

24
+
ρ23H6(x)

72

]}

,

will depend on the value of x. In particular, Edgeworth approximations tend
to be poor, and may even be negative, in the tails of the distribution, as |x|
increases.

Integrating the Edgeworth expansion (3.1) term by term (which requires a
non-trivial justification), using the properties of the Hermite polynomials, we
obtain an expansion for the distribution function of S∗n:

FS∗n(x) = Φ(x)− φ(x)

{
ρ3

6
√
n
H2(x)

+
ρ4

24n
H3(x) +

ρ23
72n

H5(x)

}

+O(n−3/2).

Also, if Tn is a sufficiently smooth function of S
∗
n, then a formal Edgeworth

expansion can be obtained for the density of Tn. Further details and refer-
ences are given by Severini (2000, Chapter 2).

When studying the coverage probability of confidence intervals, for example,
it is often convenient to be able to determine x as xα say, so that FS∗n(xα) = α,
to the order considered in the Edgeworth approximation to the distribution
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function of S∗n. The solution is known as the Cornish-Fisher expansion and
the formula is

xα = zα +
1

6
√
n
(z2α − 1)ρ3 +

1

24n
(z3α − 3zα)ρ4

−
1

36n
(2z3α − 5zα)ρ

2
3 +O(n

−3/2),

where Φ(zα) = α.

The derivation of the Edgeworth expansion stems from the result that the
density of a random variable can be obtained by inversion of its characteristic
function. A form of this inversion result useful for our discussion here is that
the density for X̄, the mean of a set of independent, identically distributed
random variables X1, . . . , Xn, can be obtained as

fX̄(x̄) =
n

2πi

∫ τ+i∞

τ−i∞
exp
[
n{K(φ)− φx̄}

]
dφ, (3.2)

where K is the cumulant generating function of X, and τ is any point in
the open interval around 0 in which the moment generating function M
exists. For details, see Feller (1971, Chapter 16). In essence, the Edgeworth
expansion (3.1) is obtained by expanding the cumulant generating function in
a Taylor series around 0, exponentiating and inverting term by term. Details
are given in Barndorff-Nielsen and Cox (1989, Chapter 4).

3.3 Saddlepoint expansion

The saddlepoint expansion for the density of Sn is

fSn(s) =
1
√
2π

1

{nK ′′X(φ̂)}1/2
× exp{nKX(φ̂)− φ̂s}{1 +O(n

−1)} (3.3)

where φ̂ ≡ φ̂(s) satisfies nK ′X(φ̂) = s.

A detailed analysis shows that the O(n−1) term is actually (3ρ̂4−5ρ̂23)/(24n),
where ρ̂j ≡ ρ̂j(φ̂) = K

(j)
X (φ̂)/{K

′′
X(φ̂)}

j/2 is the jth standardised derivative of

the cumulant generating function for X1 evaluated at φ̂. A simple change of
variable in (3.3) gives a saddlepoint expansion for the density of X̄n = Sn/n:

fX̄n(x) = (2π)
−1/2{n/K ′′X(φ̂)}

1/2× exp
{
n[KX(φ̂)− φ̂x]

}(
1+O(n−1)

)
, (3.4)

where K ′X(φ̂) = x.
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The saddlepoint expansion is quite different in form from the Edgeworth
expansion. In order to use the former to approximate fX̄n(x) either with the
leading term, or the leading term plus n−1 correction, it is necessary to know
the whole cumulant generating function, not just the first four cumulants. It
is also necessary to solve the equation K ′X(φ̂) = x for each value of x. The
leading term in (3.4) is not the normal (or any other) density; in fact it will
not usually integrate to 1, although it can be renormalised to do so. The
saddlepoint expansion is an asymptotic expansion in powers of n−1, rather
than n−1/2 as in the Edgeworth expansion. This suggests that the main
correction for skewness has been absorbed by the leading term, which is in
fact the case.

Observe that, crucially, the saddlepoint expansion is stated with a relative
error, while the Edgeworth expansion is stated with an absolute error.

The approximation obtained from the leading term of (3.4), ignoring the
O(n−1) correction term, is generally very accurate. In particular, the sad-
dlepoint approximation tends to be much more accurate than an Edgeworth
approximation in the tails of the distribution. In distributions that differ from
the normal density in terms of asymmetry, such as the gamma distribution,
the saddlepoint approximation is extremely accurate throughout the range
of x. It is customary to use as an approximation to fX̄n(x) a renormalised
version of (3.4):

fX̄n(x)
.
= c{n/K ′′X(φ̂)}

1/2 exp
[
n{KX(φ̂)− φ̂x}

]
(3.5)

where c is determined, usually numerically, so that the right-hand side of
(3.5) integrates to 1. If the O(n−1) correction term is constant in x, (3.5)
will be exact. For scalar random variables this happens only in the case
of the normal, gamma and inverse Gaussian distributions. In general, the
n−1 correction term {3ρ̂4(φ̂)− 5ρ̂23(φ̂)}/24 varies only slowly with x and the
relative error in the renormalised approximation (3.5) is O(n−3/2).

The saddlepoint approximation is usually derived by one of two methods.
The first (Daniels, 1954) uses the inversion formula (3.2) and contour inte-
gration, choosing the contour of integration to pass through the saddlepoint
of the integrand on the line of steepest descent. We sketch instead a more
statistical derivation, as described by Barndorff-Nielsen and Cox (1979) .

We associate with the density f(x) for X1 an exponential family density
f(x;φ) defined by

f(x;φ) = exp{xφ−KX(φ)}f(x)
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where KX is the cumulant generating function of X1, under f(x). Then it
is straightforward to check that the sum Sn = X1 + ∙ ∙ ∙+Xn has associated
density

fSn(s;φ) = exp{sφ− nKX(φ)}fSn(s)

from which
fSn(s) = exp{nKX(φ)− sφ}fSn(s;φ). (3.6)

Now use the Edgeworth expansion to obtain an approximation to the density
fSn(s;φ), remembering that cumulants all must refer to cumulants computed
under the tilted density f(x;φ). Since φ is arbitrary, it is chosen so that the
Edgeworth expansion for the tilted density is evaluated at its mean, where
the n−1/2 term in the expansion is zero. This value is defined by nK ′X(φ̂) = s
and (3.6) becomes

fSn(s)
.
= exp{nKX(φ̂)− φ̂s}{2πnK

′′
X(φ̂)}

−1/2, (3.7)

which is the approximation deriving from (3.3). The factor {2πnK ′′X(φ̂)}
−1/2

comes from the normal density evaluated at its mean.

A case of special interest is when f(x) is itself in the exponential family,
f(x; θ) = exp{xθ − c(θ) − h(x)}. Then since KX(t) = c(θ + t) − c(θ), it
follows that φ̂ = θ̂− θ, where θ̂ is the MLE based on s = x1+ ∙ ∙ ∙+xn. Then
(3.7) is

fSn(s; θ)
.
= exp

[
n{c(θ̂)− c(θ)} − (θ̂ − θ)s

]
{2πnc′′(θ̂)}−1/2,

which can be expressed as

c exp{l(θ)− l(θ̂)}|j(θ̂)|−1/2 (3.8)

where l(θ) is the log-likelihood function based on (x1, . . . , xn), or s, and j(θ̂)
is the observed Fisher information. Since θ̂ = θ̂(s) is a one-to-one function
of s, with Jacobian |j(θ̂)|, (3.8) can be used to obtain an approximation to
the density of θ̂

fθ̂(θ̂; θ)
.
= c exp{l(θ)− l(θ̂)}|j(θ̂)|1/2. (3.9)

This latter approximation is a particular example of the p∗-formula, consid-
ered in Section 3.5.

It is not easy to integrate the right-hand side of the saddlepoint approxima-
tion (3.3) to obtain an approximation to the distribution function of Sn: see
Lugannani and Rice (1980). The Lugannani-Rice approximation is

FSn(s) = Φ(rs) + φ(rs)
( 1
rs
−
1

vs

)
+O(n−1),
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where

rs = sgn(φ̂)

√
2n{φ̂K ′X(φ̂)−KX(φ̂)}

vs = φ̂

√
nK ′′X(φ̂),

and φ̂ ≡ φ̂(s) is the saddlepoint, satisfying nK ′X(φ̂) = s. The expansion can
be expressed in the asymptotically equivalent form

FSn(s) = Φ(r
∗
s){1 +O(n

−1)},

with

r∗s = rs −
1

rs
log

rs

vs
.

3.4 Laplace approximation of integrals

Suppose g : R → R is a smooth function, and that we wish to evaluate the
integral

gn =

∫ b

a

e−ng(y)dy.

The main contribution to the integral, for large n, will come from values of
y near the minimum of g(y), which may occur at a or b, or in the interior
of the interval (a, b). Assume that g(y) is minimised at ỹ ∈ (a, b) and that
g′(ỹ) = 0, g′′(ỹ) > 0. The other cases may be treated in a similar manner.
For a useful summary of Laplace approximation see Barndorff-Nielsen and
Cox (1989, Chapter 3).

Then, using Taylor expansion, we can write

gn =

∫ b

a

e−n{g(ỹ)+
1
2
(ỹ−y)2g′′(ỹ)+∙∙∙ }dy

.
= e−ng(ỹ)

∫ b

a

e−
n
2
(ỹ−y)2g′′(ỹ)dy

.
= e−ng(ỹ)

√
2π

ng′′(ỹ)

∫ ∞

−∞
φ

(

y − ỹ;
1

ng′′(ỹ)

)

dy

where φ(y − μ; σ2) is the density of N(μ, σ2). Since φ integrates to one,

gn
.
= e−ng(ỹ)

√
2π

ng′′(ỹ)
. (3.10)
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A more detailed analysis gives

gn = e
−ng(ỹ)

√
2π

ng′′(ỹ)

{

1 +
5ρ̃23 − 3ρ̃4
24n

+O(n−2)

}

, (3.11)

where

ρ̃3 = g(3)(ỹ)/{g′′(ỹ)}3/2,

ρ̃4 = g(4)(ỹ)/{g′′(ỹ)}2.

A similar analysis gives

∫ b

a

h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)

√
2π

ng′′(ỹ)
{1 +O(n−1)}. (3.12)

A further refinement of the method, which allows g(y) to depend weakly on
n, gives

∫ b

a

e−n{g(y)−
1
n
log h(y)}dy

=

∫ b

a

e−nqn(y)dy, say,

= e−ng(y
∗)h(y∗)

√
2π

nq′′n(y
∗)
{1 + (5ρ∗23 − 3ρ

∗
4)/(24n) +O(n

−2)},(3.13)

where
q′n(y

∗) = 0, ρ∗j = q
(j)
n (y

∗)/{q′′n(y
∗)}j/2.

The multi-dimensional version of (3.12) is

gn =

∫

D

h(y)e−ng(y)dy = h(ỹ)e−ng(ỹ)
(2π)m/2
√
n|g′′(ỹ)|

{1 +O(n−1)},

where it is assumed that g(y) takes its minimum in the interior of the region
D ⊂ Rm, where the gradient is zero and the Hessian g′′(ỹ) is positive definite.

The Laplace approximations are particularly useful in Bayesian inference:
see Section 3.9.
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3.5 The p∗ formula

3.5.1 Introduction

Recall the convention introduced in Chapter 1 that the minimal sufficient
statistic based in data x can be re-expressed, by a one-to-one smooth trans-
formation, as (θ̂, a) where a is ancillary, so that we can write the log-likelihood
l(θ; x) as l(θ; θ̂, a). Similarly, we can write the observed information j(θ) ≡
j(θ; x) = j(θ; θ̂, a).

Under a transformation model, the maximal invariant statistic serves as the
ancillary. In a full (m,m) exponential model the MLE is minimal sufficient
and no ancillary is called for.

Example 3.1 We consider first the location model, which is the simplest
example of a transformation model, the general theory of which was described
in Chapter 1. We have X1, . . . , Xn independent random variables with

Xj = θ + εj, , j = 1, . . . , n,

where ε1, . . . , εn are independent random variables each having the known
density function exp{g(∙)}. The log-likelihood is given by

l(θ) =
∑

g(xj − θ).

Let a = (a1, . . . , an), where aj = xj− θ̂: it is readily shown that a is ancillary.
We may write xj = aj + θ̂, so that the log- likelihood may be written

l(θ; θ̂, a) =
∑

g(aj + θ̂ − θ).

Example 3.2 As a further example, let X1, . . . , Xn be an independent
sample from a full (m,m) exponential density

exp{xT θ − k(θ) +D(x)}.

The log-likelihood is, ignoring an additive constant,

l(θ) =
∑

xTj θ − nk(θ).

Since θ̂ satisfies the likelihood equation
∑

xj − nk
′(θ) = 0,

the log-likelihood may be written

l(θ; θ̂) = nk′(θ̂)T θ − nk(θ).
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3.5.2 Approximate ancillaries

Outside full exponential family and transformation models it is often difficult
to construct an appropriate ancillary a such that (θ̂, a) is minimal sufficient,
and it is usually necessary to work with notions of approximate ancillarity.
A statistic a is, broadly speaking, approximately ancillary if its asymptotic
distribution does not depend on the parameter. Useful approximate ancillar-
ies can often be constructed from signed log-likelihood ratios or from score
statistics.

Severini (2000, Section 6.6) gives a summary of techniques for construction of
approximate ancillaries. One particularly important approximate ancillary
is the Efron–Hinkley ancillary (Efron and Hinkley, 1978). Consider the
case of a scalar parameter θ and let, as before, i and j be the expected
and observed information and let lθ =

∂l
∂θ
, lθθ =

∂2l
∂θ2
etc. Use the notation

ν2,1 = E(lθθlθ; θ), ν2,2 = E(lθθlθθ; θ), ν2 = E(lθθ). Define

γ = i−1(ν2,2 − ν
2
2 − i

−1ν22,1)
1/2,

and use circumflex to denote evaluation at θ̂. Then the Efron–Hinkley ancil-
lary is defined by

a = (̂iγ̂)−1(ĵ − î).

A particularly powerful result is the following. For a location model with
θ as the location parameter, if î and ĵ denote respectively the Fisher and
observed information evaluated at θ̂,

var (θ̂ | a)− ĵ−1

var (θ̂ | a)− î−1
= Op(n

−1/2),

where a denotes the Efron–Hinkley ancillary: ĵ−1 provides a more accurate
estimate of the conditional variance of θ̂ given a.

A simple example of construction of this ancillary is provided by the ex-
ponential hyperbola. Under this model, (X1, Y1), . . . , (Xn, Yn) denote inde-
pendent pairs of independent exponential random variables, such that each
Xj has mean 1/θ and each Yj has mean θ. The minimal sufficent statis-

tic for the model may be written as (θ̂, a), where θ̂ = (ȳ/x̄)1/2 is the MLE
and a = (x̄ȳ)1/2 is an (exact) ancillary. Simple calculations show that the
Efron–Hinkley ancillary is

√
(2n)(ȳ/θ̂ − 1) =

√
(2n){(x̄ȳ)1/2 − 1},

which is in fact also exactly ancillary.
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3.5.3 The formula

A striking result due to Barndorff-Nielsen (1983) is that the conditional den-
sity function f(θ̂; θ | a) for the MLE θ̂ given an ancillary statistic a is, in
wide generality, exactly or approximately equal to

p∗(θ̂; θ | a) = c(θ, a)|j(θ̂)|1/2 exp{l(θ)− l(θ̂)}, (3.14)

i.e.
f(θ̂; θ | a) .= p∗(θ̂; θ | a).

In (3.14), c(θ, a) is a normalising constant, determined, usually numerically,
so that the integral of p∗ with respect to θ̂, for fixed a, equals 1.

Equation (3.14) gives the exact conditional distribution of the MLE for a
considerable range of models. In particular, this is the case for virtually all
transformation models, for which c(θ, a) is independent of θ. The location-
scale model provides a prototypical example, with the configuration statistic
as the ancillary. Among models for which (3.14) is exact, but which is not a
transformation model, is the inverse Gaussian distribution. Under many of
these models the norming constant c equals (2π)−d/2 exactly, d = dim(θ). In
general, c = c(θ, a) = (2π)−d/2c̄, where c̄ = 1+O(n−1). Outside the realm of
exactness cases, (3.14) is quite generally accurate to relative error of order
O(n−1):

f(θ̂; θ | a) = p∗(θ̂; θ | a)
(
1 +O(n−1)

)
,

for any fixed θ̂. For θ̂ of the form θ̂ = θ + Op(n
−1/2), which is the situation

we are primarily interested in in practice, the approximation achieves higher
accuracy, the relative error in fact being of order O(n−3/2). Severini (2000,
Section 6.5) provides an account of definitions of approximate ancillarity
which are strong enough for the relative error to be of order O(n−1) for values
of the argument θ̂ of this latter form without a being exactly ancillary.

Comparing (3.9) with (3.14), we see that the p∗ formula is equivalent to
the saddlepoint approximation in exponential families, with θ the natural
parameter.

Integration of the p∗ formula in the case of scalar θ to obtain an approx-
imation to the distribution function of the MLE is intricate: a very clear
description is given by Barndorff-Nielsen (1990). Write

rt ≡ rt(θ) = sgn(t− θ)
√
2(l(t; t, a)− l(θ; t, a)),

and let
vt ≡ vt(θ) = j(t; t, a)

−1/2{l;θ̂(t; t, a)− l;θ̂(θ; t, a)},
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in terms of the sample space derivative l;θ̂ defined by

l;θ̂(θ; θ̂, a) =
∂

∂θ̂
l(θ; θ̂, a),

and with j the observed information. Then

Prθ(θ̂ ≤ t | a) = Φ{r∗t (θ)}{1 +O(n
−3/2)},

where r∗t (θ) = rt + r
−1
t log{vt/rt}, for t = θ +O(n

−1/2).

The random quantity r∗(θ) corresponding to r∗t (θ) is an approximate pivot,
conditional on the ancillary, in the sense that its distribution is close to
normal. We may view r∗(θ) as a modified form of the signed root likelihood
ratio statistic

r(θ) = sgn(θ̂ − θ)[2{l(θ̂; θ̂, a)− l(θ; θ̂, a)}]1/2

which improves the accuracy of the normal approximation.

To define r∗(θ) formally,

r∗(θ) = r(θ) + r(θ)−1 log{v(θ)/r(θ)},

where

v(θ) = ĵ−1/2{l;θ̂(θ̂; θ̂, a)− l;θ̂(θ; θ̂, a)},

with ĵ denoting evaluation of the observed information at θ̂.

We have that r∗(θ) is distributed as N(0, 1) to (relative) error of order
O(n−3/2):

Prθ{r
∗(θ) ≤ t | a} = Φ(t){1 +O(n−3/2)},

for t = O(1).

The limits of an approximate (1−2α) confidence interval for θ may be found
as those θ such that Φ{r∗(θ)} = α, 1− α.

The above is expressed in terms of a one-parameter model. Versions of the
approximation appropriate to inference about a scalar parameter of interest
in the presence of a nuisance parameter are more complicated. To present
just the key formula, suppose that the model depends on a multi-dimensional
parameter θ = (ψ, λ), with ψ a scalar parameter of interest, with λ nuisance.
Then the N(0, 1) approximation to the distribution of the signed root like-
lihood ratio statistic rp = sgn(ψ̂ − ψ)[2{lp(ψ̂) − lp(ψ)}]1/2 is improved by
analytically adjusted versions of the form

ra(ψ) = rp(ψ) + rp(ψ)
−1 log(vp(ψ)/rp(ψ)),
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that are distributed as N(0, 1), conditionally on a (and hence uncondition-
ally), to error of order O(n−3/2).

Now the statistic vp is defined (Barndorff-Nielsen, 1986) by

vp(ψ) =

∣
∣
∣
∣
∣
l;θ̂(θ̂)− l;θ̂(ψ, λ̂ψ)

lψ;θ̂(ψ, λ̂ψ)

∣
∣
∣
∣
∣
/{|jψψ(ψ, λ̂ψ)|

1/2|j(θ̂)|1/2}.

Here, as previously, the log-likelihood function has been written as l(θ; θ̂, a),
with (θ̂, a) minimal sufficient and a ancillary, λ̂ψ denotes the MLE of λ for
given ψ, and

l;θ̂(θ) ≡ l;θ̂(θ; θ̂, a) =
∂

∂θ̂
l(θ; θ̂, a), lψ;θ̂(θ) ≡ lψ;θ̂(θ; θ̂, a) =

∂2

∂ψ∂θ̂
l(θ; θ̂, a).

Again, j denotes the observed information matrix and jψψ denotes the (ψ, ψ)
component of the observed information matrix.

A key drawback to use of ra(ψ) (the same comment is true of r
∗(θ)) is the

need to calculate sample space derivatives, which necessitates explicit specifi-
cation of the ancillary a. We have commented that this is difficult in general,
outside full exponential family and transformation models. Several methods
of approximation to ra(ψ) which avoid this by approximating to the sample
space derivatives have been developed. A computationally attractive approx-
imation based on orthogonal parameters is described by DiCiccio and Martin
(1993): recall that in the case we are assuming here of a scalar parameter of
interest it is always possible to find a parameterisation in which the interest
parameter ψ and the nuisance parameters λ are orthogonal. The DiCiccio
and Martin (1993) approximation replaces vp(ψ) by

ṽp(ψ) = lψ(ψ, λ̂ψ)
|jλλ(ψ, λ̂ψ)|1/2iψψ(θ̂)1/2

|j(θ̂)|1/2iψψ(ψ, λ̂ψ)1/2
,

with the usual partitioning of the observed information j and the Fisher
information i, and with lψ denoting, as before, the derivative of the log-
likelihood l with respect to the parameter of interest. The corresponding
adjusted version of the signed root likelihood ratio statistic,

r̃a(ψ) = rp(ψ) + rp(ψ)
−1 log(ṽp(ψ)/rp(ψ)),

is distributed as N(0, 1) to error of order O(n−1), rather than order O(n−3/2)
for ra(θ). A further point should be noted, that ra is parameterisation invari-
ant, with respect to interest-respecting reparameterisation, while r̃a depends
on the orthogonal parameterisation adopted. Other approximations to ra,
due to various authors and with the same property of being distributed as
N(0, 1) to error of order O(n−1), are detailed by Severini (2000, Chapter 7).
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3.5.4 An example: Normal distribution with known coefficient of
variation

Let X1, . . . , Xn denote independent normally distributed random variables
each with mean θ and standard deviation rθ where θ > 0 and the coeffi-
cient of variation r is known; for simplicity take r = 1. This distribution is
widely assumed in many biological and agricultural problems. The minimal
sufficient statistic for the model may be written (θ̂, a) where

a =
√
n
(
∑
x2j)
1/2

∑
xj

is easily seen to be an exactly ancillary statistic and

θ̂ =
(
∑
x2j)
1/2

√
n

2|a|
(1 + 4a2)1/2 + sgn(a)

is the maximum likelihood estimator of θ. Assume that a > 0, which occurs
with probability rapidly approaching 1 as n→∞.

The log-likelihood function may be written

l(θ; θ̂, a) = −
n

2θ2
[
q2θ̂2 −

2qθθ̂

a

]
− n log θ

where

q =
(1 + 4a2)1/2 + 1

2a
.

It follows that

p∗(θ̂; θ | a) =
√
nc̄

√
(2π)

(
θ̂

θ

)n−1
1

θ
(1 + q2)1/2

× exp
{
−
n

2

[q2

θ2
(θ̂2 − θ2)−

2q

aθ
(θ̂ − θ)

]}
.

This expression may be rewritten as

p∗(θ̂; θ | a) =
√
nc̄

√
(2π)

exp
{n
2
(q − 1/a)2

}
(1 + q2)1/2

(
θ̂

θ

)n−1
1

θ

× exp
{
−
n

2
q2(θ̂/θ − 1/(aq))2

}
.

It may be shown that the exact conditional density of θ̂ given a is of the form

p(θ̂; θ | a) = b(a)

(
θ̂

θ

)n−1
1

θ
exp

{
−
n

2
q2(θ̂/θ − 1/(aq))2},
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where b(a) is a normalizing constant depending on a. Hence, the conditional
density approximation is exact for this model. A N(0, 1) approximation to
the conditional distribution of r∗(θ) is not exact, but highly accurate.

3.5.5 The score function

We now consider the application of the p∗-formula to the score vector. Given
an ancillary a, the MLE θ̂ and the score vector U = ∇l, with components
lr, will in general be in one-to-one correspondence for a region of values of θ̂
around the true parameter value θ, and this region will carry all the prob-
ability mass, except for an asymptotically negligible amount. The Jacobian
of the transformation from θ̂ to the vector of derivatives lr = lr(θ; θ̂, a) is the
matrix l; of mixed second-order log model derivatives

lr;s = lr;s(θ; θ̂, a) =
∂

∂θr
∂

∂θ̂s
l(θ; θ̂, a).

As an example of calculation of these derivatives, consider the location model.
We saw above that

l(θ; θ̂, a) =
∑

g(aj + θ̂ − θ).

Then
l; ≡ lθ;θ̂ = −

∑
g′′(aj + θ̂ − θ).

From (3.14) an approximation of high accuracy to the conditional density of
the score vector given a is provided by

p(u; θ | a) .= p∗(u; θ | a),

where
p∗(u; θ | a) = c(θ, a)|ĵ|1/2|l; |−1el−l̂.

Note than an Edgeworth or saddlepoint apporximation to the marginal dis-
tribution of U is easy to obtain in the case when U is a sum of IID variates.

3.6 Conditional inference in exponential families

A particularly important inference problem to which ideas of this Chapter
apply concerns inference about the natural parameter of an exponential fam-
ily model.

Suppose that X1, . . . , Xn are independent, identically distributed from the
exponential family density

f(x;ψ, λ) = exp{ψτ1(x) + λτ2(x)− d(ψ, λ)−Q(x)},
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where we will suppose for simplicity that the parameter of interest ψ and the
nuisance parameter λ are both scalar.

The natural statistics are T = n−1
∑
τ1(xi) and S = n−1

∑
τ2(xi). We

know from the general properties of exponential families (Chapter 1) that
the conditional distribution of X = (X1, . . . , Xn) given S = s depends only
on ψ, so that inference about ψ may be derived from a conditional likelihood,
given s.

The log-likelihood based on the full data x1, . . . , xn is

nψt+ nλs− nd(ψ, λ),

ignoring terms not involving ψ and λ, and the conditional log-likelihood
function is the full log-likelihood minus the log-likelihood function based on
the marginal distribution of S. We consider an approximation to the marginal
distribution of S, based on a saddlepoint approximation to the density of S,
evaluated at its observed value s.

The cumulant generating function of τ2(Xi) is given by

K(z) = d(ψ, λ+ z)− d(ψ, λ).

Write dλ(ψ, λ) =
∂
∂λ
d(ψ, λ) and dλλ(ψ, λ) =

∂2

∂λ2
d(ψ, λ). The saddlepoint

equation is then given by

dλ(ψ, λ+ ẑ) = s.

With s the observed value of S, the likelihood equation for the model with
ψ held fixed is

ns− ndλ(ψ, λ̂ψ) = 0,

so that λ + ẑ = λ̂ψ, where λ̂ψ denotes the maximum likelihood estimator of
λ for fixed ψ. Applying the saddlepoint approximation, ignoring constants,
we therefore approximate the marginal likelihood function based on S as

|dλλ(ψ, λ̂ψ)|
−1/2 exp{n[d(ψ, λ̂ψ)− d(ψ, λ)− (λ̂ψ − λ)s]};

the resulting approximation to the conditional log-likelihood function is given
by

nψt+ nλ̂Tψs− nd(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|

≡ l(ψ, λ̂ψ) +
1

2
log |dλλ(ψ, λ̂ψ)|.

The form of this conditional log-likelihood indicates that instead of just using
the profile log-likelihood of ψ, an adjustment term should be added. This
notion is developed in detail in Section 3.8 below.
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3.7 Bartlett correction

The first-order χ2 approximation to the distribution of the likelihood ratio
statistic w(ψ) can be expressed as

Prθ{w(ψ) ≤ ω◦} = Pr{χ2q ≤ ω◦}{1 +O(n−1)},

where q is the dimension of ψ and the full parameter vector is θ = (ψ, λ),
with λ nuisance. The χ2 approximation has relative error of order O(n−1).

In the case of independent, identically distributed sampling, it can be shown
that

Eθw(ψ) = q{1 + b(θ)/n+O(n
−2)},

and so Eθw′(ψ) = q{1 +O(n−2)}, where w′ = w/{1 + b(θ)/n}.

This adjustment procedure, of replacing w by w′, is known as Bartlett cor-
rection. In spite of its simplicity, this device yields remarkably good results
under continuous models, the reason being that division by {1+ b(θ)/n} ad-
justs, in fact, not only the mean but simultaneously all the cumulants—and
hence the whole distribution—of w towards those of χ2q. It can be shown
that

Prθ{w
′(ψ) ≤ ω◦} = Pr{χ2q ≤ ω◦}{1 +O(n−2)}.

In practice, because of the (possible) presence of an unknown nuisance pa-
rameter λ, b(θ) may be unknown. If b(θ) is replaced by b(ψ, λ̂ψ), the above
result still holds, even to O(n−2). An explicit expression for b(θ) is given by
Barndorff-Nielsen and Cox (1994, Chapter 6).

Note that the effect of the Bartlett correction is due to the special character
of the likelihood ratio statistic, and the same device applied to, for instance,
the score test does not have a similar effect. Also, under discrete models this
type of adjustment does not generally lead to an improved χ2 approximation.

3.8 Modified profile likelihood

The profile likelihood Lp(ψ) for a parameter of interest ψ can largely be
thought of as if it were a genuine likelihood. However, this amounts to
behaving as if the nuisance parameter χ over which the maximisation has
been carried out were known. Inference on ψ based on treating Lp(ψ) as
a proper likelihood may therefore be grossly misleading if the data contain
insufficient information about χ, as is likely to happen, for instance, if the
dimension of χ is large. Modified profile likelihood is intended as a remedy
for this type of problem.
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The modified profile likelihood L̃p(ψ) for a parameter of interest ψ, with
nuisance parameter χ, due to Barndorff-Nielsen (1983), is defined by

L̃p(ψ) =M(ψ)Lp(ψ), (3.15)

where M is a modifying factor

M(ψ) =

∣
∣
∣
∣
∂χ̂

∂χ̂ψ

∣
∣
∣
∣ |ĵψ|

−1/2.

Here | ∙ | denotes the absolute value of a matrix determinant, and ∂χ̂/∂χ̂ψ is
the matrix of partial derivatives of χ̂ with respect to χ̂ψ, where χ̂ is considered

as a function of (ψ̂, χ̂ψ, a). Also, ĵψ = jχχ(ψ, χ̂ψ), the observed information
on χ assuming ψ is known. An instructive example to look at to grasp
the notation is the case of X1, . . . , Xn independent, identically distributed
N(μ, σ2). Here we see that σ̂2μ =

1
n

∑
(Xj − μ)2 = σ̂2 + (μ̂− μ)2.

The modified profile likelihood L̃p is, like Lp, parametrisation invariant. An
alternative expression for the modifying factor M is

M(ψ) = |lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a)|
−1 × |jχχ(ψ, χ̂ψ; ψ̂, χ̂, a)|

1/2. (3.16)

Identity (3.16) follows from the likelihood equation for χ̂ψ:

lχ(ψ, χ̂ψ(ψ̂, χ̂, a); ψ̂, χ̂, a) = 0.

Differentiation with respect to χ̂ yields

lχχ(ψ, χ̂ψ; ψ̂, χ̂, a)
∂χ̂ψ

∂χ̂
+ lχ;χ̂(ψ, χ̂ψ; ψ̂, χ̂, a) = 0,

from which (3.16) follows.

Asymptotically, L̃p and Lp are equivalent to first-order. A justification for
using L̃p rather than Lp is that (3.15) arises as a higher-order approximation
to a marginal likelihood for ψ when such a marginal likelihood function is
available, and to a conditional likelihood for ψ when this is available.

Specifically, suppose that the density f(ψ̂, χ̂;ψ, χ | a) factorises, either as

f(ψ̂, χ̂;ψ, χ | a) = f(ψ̂;ψ | a)f(χ̂;ψ, χ | ψ̂, a) (3.17)

or as
f(ψ̂, χ̂;ψ, χ | a) = f(χ̂;ψ, χ | a)f(ψ̂;ψ | χ̂, a). (3.18)
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In the case (3.17), (3.15) can be obtained as an approximation (using the p∗-
formula) to the marginal likelihood for ψ based on ψ̂ and conditional on a, i.e.
to the likelihood for ψ determined by f(ψ̂;ψ | a). Similarly, under (3.18) the
same expression (3.15) is obtained as an approximation to the conditional
likelihood for ψ given χ̂ and a i.e. to the likelihood for ψ obtained from
f(ψ̂;ψ | χ̂, a). Proofs of both results are given by Barndorff-Nielsen and Cox
(1994, Chapter 8).

Sometimes the joint conditional distribution of ψ̂ and χ̂ψ may be factorised
as

f(ψ̂, χ̂ψ;ψ, χ | a) = f(χ̂ψ;ψ, χ | a)f(ψ̂;ψ | χ̂ψ, a),

while (3.18) does not hold. In this case, (3.15) may be obtained as an ap-
proximation to f(ψ̂;ψ | χ̂ψ, a), considered as a pseudo-likelihood for ψ.

Note that if χ̂ψ does not depend on ψ,

χ̂ψ ≡ χ̂, (3.19)

then
L̃p(ψ) = |ĵψ|

−1/2Lp(ψ). (3.20)

In the case that ψ and χ are orthogonal, which is a weaker assumption than
(3.19), we have that (3.19) holds to order O(n−1), as does (3.20).

The version of modified profile likelihood defined by (3.20) was first presented
by Cox and Reid (1987). It is easy to construct and seems to give reasonable
results in applications. It is easier to compute than (3.15), but is not invariant
with respect to one-to-one transformations of χ which leave the parameter
of interest fixed. A simple Bayesian motivation for (3.20) may be given. Let
ψ and the nuisance parameter χ be orthogonal, and let the prior density of
ψ and χ be π(ψ, χ). Then the posterior density of ψ is proportional to

∫
exp{l(ψ, χ)}π(ψ, χ)dχ. (3.21)

We consider this at a fixed value of ψ. As a function of χ, l(ψ, χ) achieves its
maximum at χ = χ̂ψ. Expanding about this point using Laplace’s method,
as given by (3.10), shows that (3.21) is approximately

(2π)dχ/2π(ψ, χ̂ψ) exp{l(ψ, χ̂ψ)}/|ĵψ|
1/2,

with dχ denoting the dimension of χ. Now argue as follows. As ψ varies

in the range of interest, within O(n−1/2) of ψ̂, χ̂ψ varies by Op(n
−1), by

orthogonality, and therefore so too does the term involving the prior density.

58



APTS/April 2008 3.9 Bayesian asymptotics

Because of its dependence on ψ, the factor involving the determinant varies
by O(n−1/2), while the part depending on the likelihood is O(1). Therefore,
ignoring an error of order O(n−1), inference about ψ can be based on an
effective log-likelihood of

l(ψ, χ̂ψ)−
1

2
log |ĵψ|,

as given by (3.20).

3.9 Bayesian asymptotics

In this section we review briefly the asymptotic theory of Bayesian infer-
ence. The results provide demonstration of the application of asymptotic
approximations discussed earlier, in particular Laplace approximations. Key
references in such use of Laplace approximation in Bayesian asymptotics in-
clude Tierney and Kadane (1986) and Tierney, Kass and Kadane (1989).

The key result is that the posterior distribution given data x is asymptotically
normal. Write

πn(θ | x) = f(x; θ)π(θ)/
∫
f(x; θ)π(θ)dθ

for the posterior density. Denote by θ̂ the MLE.

For θ in a neighbourhood of θ̂ we have, by Taylor expansion,

log

{
f(x; θ)

f(x; θ̂)

}
.
= −1

2
(θ − θ̂)T j(θ̂)(θ − θ̂).

Provided the likelihood dominates the prior, we can approximate π(θ) in a
neighbourhood of θ̂ by π(θ̂). Then we have

f(x; θ)π(θ)
.
= f(x; θ̂)π(θ̂) exp{−1

2
(θ − θ̂)T j(θ̂)(θ − θ̂)},

so that, to first order,

πn(θ | x) ∼ N
(
θ̂, j−1(θ̂)

)
.

A more natural approximation to the posterior distribution when the likeli-
hood does not dominate the prior is obtained if we expand about the posterior
mode θ̂π, which maximises f(x; θ)π(θ). An analysis similar to the above then
gives

πn(θ | x) ∼ N
(
θ̂π, j

−1
π (θ̂π)

)
,
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where jπ is minus the matrix of second derivatives of f(x; θ)π(θ).

A more accurate approximation to the posterior is provided by the following.
We have

πn(θ | x) = f(x; θ)π(θ)/

∫
f(x; θ)π(θ)dθ

.
=

c exp{l(θ; x)}π(θ)

exp{l(θ̂; x)}|j(θ̂)|−1/2π(θ̂)
,

by Laplace approximation of the denominator. We can rewrite as

πn(θ | x)
.
= c|j(θ̂)|1/2 exp{l(θ)− l(θ̂)} × {π(θ)/π(θ̂)};

note the similarity to the density approximation (3.14) for θ̂.

Finally, we consider use of the Laplace approximation to approximate to the
posterior expectation of a function g(θ) of interest,

E{g(θ) | x} =

∫
g(θ)enl̄n(θ)π(θ)dθ
∫
enl̄n(θ)π(θ)dθ

,

where l̄n = n
−1
∑n

i=1 log f(xi; θ) is the average log-likelihood function. Recall
that such expectations arise as the solutions to Bayes decision problems. It
turns out to be more effective to rewrite the integrals as

E{g(θ) | x} =

∫
en{l̄n(θ)+q(θ)/n}dθ

∫
en{l̄n(θ)+p(θ)/n}dθ

and to use the version (3.13) of the Laplace approximation. Applying this
to the numerator and denominator gives

E{g(θ) | x} .
=

enl̄n(θ
∗)+q(θ∗)

enl̄n(θ̃)+p(θ̃)

×
{−nl̄′′n(θ̃)− p

′′(θ̃)}1/2

{−nl̄′′n(θ∗)− q′′(θ∗)}1/2
{1 +O(n−1)}
{1 +O(n−1)}

where θ∗ maximises nl̄n(θ) + log g(θ) + log π(θ) and θ̃ maximises nl̄n(θ) +
log π(θ). Further detailed analysis shows that the relative error is, in fact,
O(n−2). If the integrals are approximated in their unmodified form the result
is not as accurate.
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