
APTS Statistical Computing:
Pre-course material

1 Introduction

The APTS Statistical Computing course aims to introduce some rudiments of numerical analysis, which
it is helpful to know in order to do good statistics research. To get the most out of the course you need
to arrive with a reasonable knowledge of undergraduate statistics/mathematics, (in particular Taylor’s
theorem and some basic matrix algebra) and you need to be able to do some basic R programming. The
R requirement is the one where people’s prior knowledge and skill is likely to be most variable, so these
notes (i) suggest some places to go in order to teach yourself R and (ii) provide a set of exercises to
complete before the course. If you can complete the exercises reasonably well, then you are likely to be
well prepared for the course.

2 Mathematical preliminaries

Here is a check-list of basic mathematical concepts that it might help to brush up on if you are a little
rusty on any of them.

1. The multivariate version of Taylor’s theorem.

2. How to multiply matrices (by each other and with vectors).

3. The meaning of: square matrix, matrix transposition; upper/lower triangular matrix; symmetric
matrix; trace of a matrix; identity matrix.

4. The notion of a matrix inverse and its relationship to solving the matrix equation Ax = y for x,
where A is a square matrix and y and x are vectors.

5. The definition of eigenvectors and eigenvalues.

6. The determinant of a matrix.

7. Orthogonal matrices. The fact that if Q is an orthogonal matrix then Qy is a rotation of vector y.

8. The rank of a matrix and the problems associated with not being full rank.

Most textbooks with titles like ‘Mathematics for Engineers/Scientists/Science students’ will provide all
that is necessary: pick the one you like best, or is nearest to hand. At time of writing, the Wikepedia
entries on the above material looked fairly reasonable (http://en.wikipedia.org/wiki/).

3 Getting R and help with R

To quote from the R Project home page:
R is a free software environment for statistical computing and graphics.

• You can download R from http://cran.r-project.org/.

• There is a large amount of free documentation available. An introduction to R at is a good place
to start. See http://cran.r-project.org/manuals.html.

• The R guide at http://cran.r-project.org/other-docs.html is also worth a look. There is
much other useful information available as well.

• For books on R see http://www.r-project.org/doc/bib/R-books.html.
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• From the R command line typing help.start() will launch an html version of the R help system:
this is probably the best way to access the online help when starting out.

If you are not familiar with R, then I suggest starting by working through An introduction to R.
Otherwise, you might want to start with the exercises in the next section, and use the information
sources given above to help with anything that you get stuck on.

4 Some exercises

The solutions to these exercises will appear on the APTS web site one week before the start of the course.
You will get most out of the exercises by attempting them before looking at the solutions.

1. Computers do not represent most real numbers exactly. Rather, a real number is approximated
by the nearest real number that can be represented exactly (floating point number), given some
scheme for representing real numbers as fixed length binary sequences. Often the approximation
is not noticeable, but it can make a big difference relative to exact arithmetic (imagine that you
want to know the difference between 2 real numbers approximated by the same binary sequence,
for example).

One consequence of working in finite precision arithmetic is that for any number x, there is a small
number ε for which x+ ε is indistinguishable from x (with any number smaller than this having the
same property).

(a) Try out the following code to find the size of this number, when x = 1.

eps <- 1
x <- 1
while (x+eps != x) eps <- eps/2
eps/x

(b) Confirm that the final eps here is close to the largest ε for which x and x + ε give rise to the
same floating point number.

(c) 2*eps is stored in R as .Machine$double.eps. Is the definition of this quantity in the help
file for .Machine exactly right? If not suggest an alternative wording.

(d) Confirm that you get the same eps/x value for a range of x values which are representable
exactly as binary integers (of modest size).

(e) Now try some numbers without an exact binary representation.

(f) In terms of decimal digits, roughly how accurately are real numbers numbers being represented
here?

2. R is an interpreted language. Instructions are interpreted ‘on the fly’. This tends to mean that it
is efficient to code in such a way that many calculations are performed per interpreted instruction.
Often this implies that loops should be avoided, otherwise R can spend much more time interpreting
the instructions to carry out a calculation than on performing the calculation itself.

(a) Re-write the following to eliminate the loops, first using apply and then using rowSums

X <- matrix(runif(100000),1000,100)
z <- rep(0,1000)
for (i in 1:1000) {

for (j in 1:100) z[i] <- z[i] + X[i,j]
}

Confirm that all three versions give the same answers, but that your re-writes are much faster
than the original. (system.time is a useful function.)
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(b) Re-write the following, replacing the loop with efficient code.

n <- 100000
z <- rnorm(n)
zneg <- 0;j <- 1
for (i in 1:n) {

if (z[i]<0) {
zneg[j] <- z[i]
j <- j + 1

}
}

Confirm that your re-write is faster but gives the same result.

Note that while it is important to avoid loops which perform a few computationally cheap operations
at each step, little will be gained by removing loops where each pass of the loop is itself irreducibly
expensive.

3. Run the following code

set.seed(1)
n <- 1000
A <- matrix(runif(n*n),n,n)
x <- runif(n)

Evaluate xTAx, tr(A) and tr(ATWA) where W is the diagonal matrix such that Wii = xi.

4. Consider solving the matrix equation Ax = y for x, where y is a known n vector and A a known
n × n matrix. The formal solution to the problem is x = A−1y, but it is possible to solve the
equation directly, without actually forming A−1. This question will explore this a little. Read the
help file for solve before trying it.

(a) First create an A, x and y satisfying Ax = y.

set.seed(0)
n <- 1000
A <- matrix(runif(n*n),n,n)
x.true <- runif(n)
y <- A%*%x.true

The idea is to experiment with solving the Ax = y for x, but with a known truth to compare
the answer to.

(b) Using solve form the matrix A−1 explicitly, and then form x1 = A−1y. Note how long this
takes. Also assess the mean absolute difference between x1 and x.true (the approximate mean
absolute ‘error’ in the solution).

(c) Now use solve to directly solve for x without forming A−1. Note how long this takes and
assess the mean absolute error of the result.

(d) What do you conclude?

5. The empirical cumulative distribution function for a set of measurements {xi : i = 1, . . . n} is

F̂ (x) =
#{xi < x}

n

where #{xi < x} denotes ‘number of xi values less than x’.

When answering the following, try to ensure that your code is commented, clearly structured, and
tested. To test your code, generate random samples using rnorm, runif etc.

3



(a) Write an R function which takes an un-ordered vector of observations x and returns the values
of the empirical c.d.f. for each value, in the order corresponding to the original x vector. (See
?sort.int.)

(b) Modify your function to take an extra argument plot.cdf, which when TRUE will cause the
empirical c.d.f. to be plotted as a step function, over a suitable x range.

6. Try out the debug function on your function from the previous question. Then install the debug
package from CRAN and see how using the mtrace function compares (take a look at the html help
for the debug package, in order to get started).

7. This question is about function writing and about quadratic approximation, which plays an impor-
tant part in statistics. Review Taylor’s theorem (multivariate) before starting.

Rosenbrock’s function is a simple and useful test function for optimization methods:

f(x, z) = 100(z − x2)2 + (1− x)2

(a) Write an R function, rb, which takes as arguments the equal length vectors x and z and returns
the vector of values of Rosenbrock’s function at each x[i], z[i].

(b) Produce a contour plot of the function over the rectangle: −1.5 < x < 1.5, −0.5 < z < 1.5.
Functions contour and outer are useful here.

(c) For visualization purposes it may be more useful to contour the log10 of the function, and to
adjust the default levels argument.

(d) Write an R function rb.grad which takes single values for each of x and z as arguments, and
returns the gradient vector of Rosenbrock’s function, i.e. a vector of length 2 containing ∂f/∂x
and ∂f/∂z evaluated at the supplied x, z values (you need to first differentiate f algebraically
to do this).

(e) Test rb.grad by ‘finite differencing’. That is by comparing the derivatives it produces to
approximations calculated using using

∂f

∂x
' f(x + ∆)− f(x)

∆

(and similar for z). Use ∆ = 10−7 (Delta <- 1e-7).

(f) Write an R function rb.hess which takes single values for each of x and z as arguments, and
returns a 2× 2 Hessian matrix of Rosenbrock’s function, H, where

H11 =
∂2f

∂x2
, H22 =

∂2f

∂z2
, and H12 = H21 =

∂2f

∂x∂z
.

(evaluated at the supplied x, z values, of course).

(g) Test rb.hess by finite differencing the results from rb.grad.

(h) Taylor’s theorem implies that you can use rb, rb.grad and rb.hess to produce a quadratic
function approximating f(x, z) in the neigbourhood of any particular point x∗, z∗. Write an R
function to find such an approximation, given a point x∗, z∗, and to add a contour plot of the
approximation to an existing contour plot of f (see add argument of contour). Your function
should accept an argument col allowing you to set the colour of the contours of the quadratic
approximation. Do make sure that the same transformation (if any) and levels are used when
contouring the approximation and f itself.

(i) Plot the quadratic approximations centred on (-1,0.5), (0,0) and the function’s minimum (1,1).
Note the somewhat limited region over which the quadratic approximation is reasonable, in
each case.
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(j) The quadratic approximations in the last part all had the well defined minima. When this
is the case, the vector from the approximation point, x∗, z∗, to that minimum is a ‘descent
direction’— moving along this direction from the approximation point leads to decrease of the
function f , at least initially (provided we are not already at the function minimum, in which
case minima of approximation and function coincide). The quadratic approximation is not
always so well behaved. Try plotting the approximation at (.5,.5), for example (you may need
to adjust the plotting scales to do this — the approximation is no longer always positive).

8. By inspection Rosenbrock’s function has a minimum of 0 at 1, 1, but it is useful test function for
optimization methods. As an introduction to numerical optimization it is instructive to try out
some of the optimization methods supplied in the R function optim.

(a) Read the help file ?optim, noting in particular the required arguments, how to select the
optimization method, and what the function returns.

(b) Write a version of Rosenbrock’s function in which arguments x and z are supplied as first
and second elements of a single vector, so that this function is suitable for passing as the fn
argument of optim. Do the same for the gradient function for Rosenbrock’s function, so that
it is suitable for supplying as the gr argument to optim. The easiest way to do this is to write
simple ‘wrapper’ functions that call rb and rb.grad created in the previous question.

(c) From an initial point x = −0.5, z = 1 use optim to minimize Rosenbrock’s function, using the
default Nelder-Mead method. Check whether the method appears to have converged properly,
and note the accuracy with which the minimum has been located.

(d) From the same starting point retry the optimization using the BFGS method. Do not supply a
gr function, for the moment (which means that optim will have to approximate the derivatives
required by the method). Note the number of function evaluations used, and the apparent
accuracy with which the minimum has been located.

(e) Repeat the optimization in (d) but this time provide a gr argument to optim. Compare the
number of evaluations used this time, and the accuracy of the solution.

(f) Now repeat the optimization once more using the CG method (with gr argument supplied).
How far do you have to increase the maxit argument of optim to get convergence?

Nelder-Mead and the BFGS method will be covered in the course. The CG (Conjugate Gradi-
ent) method will not be (although it is sometimes the only feasible method for very large scale
optimization problems).

Once you have completed the exercises, check that your solutions are compatible with the solutions posted
on the APTS website. Once you are happy with the material, read on. . .

5 Why bother learning about numerical computation?

In combination, modern computer hardware, algorithms and numerical methods are extraordinarily im-
pressive. Take a moment to consider some simple examples, all using R.

1. Simulate a million random numbers x <- runif(1000000), and then sort them into ascending
order,

xs <- sort(x)

The sorting operation took 0.4 seconds on the laptop used to prepare these notes. If each of the
numbers in x had been written on its own playing card, the resulting stack of cards would have
been 40 metres high. Imagine trying to sort x without computers and clever algorithms.
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2. Here is a matrix calculation of comparatively modest dimension, by modern statistical standards.

> n <- 1000
> A <- matrix(runif(n*n),n,n)
> Ai <- solve(A) ## invert A
> range(Ai%*%A-diag(n)) ## check accuracy of result
[1] -3.035434e-11 2.632522e-11

The matrix inversion took under 4 seconds to perform, and the inverse satisfied its defining equations
to around one part in 1011. It involved around 2 billion (2 × 109) basic arithmetic calculations
(additions, subtractions multiplications or divisions). At a very optimistic 10 seconds per calculation
this would take 86 average working lives to perform without a computer (and that’s assuming we use
the same algorithm as the computer, rather than Cramer’s rule, and made no mistakes). Checking
the result by multiplying the A by the resulting inverse would take another 86 working lives.

3. The preceding two examples are problems in which smaller versions of the same problem can be
solved more or less exactly without computers and special algorithms or numerical methods. In
these cases, computers allow much more useful sizes of problem to be solved very quickly. Not all
problems are like this, and some problems can really only be solved by computer. For example,
here is a scaled version of a simple delay differential equation model of adult population size, n, in
a laboratory blowfly culture.

dn

dt
= PTDn(t− 1)e−n(t−1) − δTDn(t).

The dynamic behaviour of the solutions to this model is governed by parameter groups PTD and
δTD, but the equation can not be solved analytically, from any interesting set of initial conditions.
To see what solutions actually look like we must use numerical methods.

install.packages("ddesolve") ## install package from CRAN
library(ddesolve)

bfly <- function(t,y,parms) {
## function defining rate of change of blowfly population, y, at
## time t, given y, t, lagged values of y form ‘pastvalue’ and
## the parameters in ‘parms’. See ‘ddesolve’ docs for more details.

## making names more useful ...
P <- parms$P;d <- parms$delta;y0 <- parms$yinit

if (t<=1) y1 <- P*y0*exp(-y0)-d*y else { ## initial phase
ylag <- pastvalue(t-1) ## getting lagged y
y1 <- P*ylag*exp(-ylag) - d*y ## the gradient

}
y1 ## return gradient

}

## set parameters...
parms <- list(P=150,delta=6,yinit=2.001)
## solve model...
yout <- dde(y=parms$yinit,times=seq(0,15,0.05),func=bfly,parms=parms)
## plot result...
plot(yout$t,yout$y,type="l",ylab="n",xlab="time")
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Here the solution of the model (to an accuracy of 1 part in 108), took a quarter of a second.

5.1 Things can go wrong

The amazing combination of speed and accuracy apparent in many computer algorithms and numerical
methods can lead to a false sense of security and the wrong impression that in translating mathematical
and statistical ideas into computer code we can simply treat the numerical methods and algorithms we use
as infallible ‘black boxes’. This is not the case, as the following three simple examples should illustrate.
You may be able to figure out the cause of the problem in each case, but don’t worry if not: we will
return to each of the examples in the course.

1. The system.time function in R measures how long a particular operation takes to execute. First
generate two 2000× 2000 matrices, A and B and a vector, y.

n <- 2000
A <- matrix(runif(n*n),n,n)
B <- matrix(runif(n*n),n,n)
y <- runif(n)

Now form the product ABy in two slightly different ways

> system.time(f0 <- A%*%B%*%y)
user system elapsed

31.50 0.03 31.58
> system.time(f1 <- A%*%(B%*%y))

user system elapsed
0.08 0.00 0.08

f0 and f1 are identical, to machine precision, so why is one calculation so much quicker than the
other? Clearly anyone wanting to compute with matrices had better know the answer to this.

2. It is not unusual to require derivatives of complicated functions, for example when estimating mod-
els. Such derivatives can be very tedious or difficult to calculate directly, but can be approximated
quite easily by ‘finite differencing’. i.e. if f is a function of x then

∂f

∂x
' f(x + ∆)− f(x)

∆

where ∆ is a small interval. Taylor’s theorem implies that the left hand side tends to the right
hand side, above, as ∆ → 0. It is easy to try this out on an example where the answer is known,
so consider differentiating cos(x) w.r.t. x.

x <- seq(1,2*pi,length=1000)
delta <- 1e-5 ## FD interval
dsin.dx <- (sin(x+delta)-sin(x))/delta ## FD derivative
error <- dsin.dx-cos(x) ## error in FD derivative
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The following plots the results. On the LHS sin(x) is dashed, it’s true derivative cos(x) is dotted
and the FD derivative is continuous. The RHS shows the difference between the FD approximation
and the truth.
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Note that the error appears to be of about the same magnitude as the finite difference interval ∆.
Perhaps we could reduce the error to around the machine precision by using a much smaller ∆.
Here is the equivalent of the previous plot, when

delta <- 1e-15
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Clearly there is something wrong with the idea that decreasing ∆ must always increase accuracy
here.

3. These data
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were generated with this code. . .

set.seed(1); n <- 100
xx <- sort(runif(n))
y <- .2*(xx-.5)+(xx-.5)^2 + rnorm(n)*.1
x <- xx+100

An appropriate and innocuous linear model for these data is yi = β0 + β1xi + β2x
2
i + εi, where the

εi are independent, zero mean constant variance r.v.s and the βj are parameters. This can be fitted
in R with

b <- lm(y~x+I(x^2))

which results in the following fitted curve.
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From basic statistical modelling courses, recall that the least squares parameter estimates for a
linear model are given by β̂ = (XTX)−1XTy where X is the model matrix. An alternative to use
of lm would be to use this expression for β̂ directly.

> X <- model.matrix(b) ## get same model matrix used above
> beta.hat <- solve(t(X)%*%X,t(X)%*%y) ## direct solution of ‘normal equations’
Error in solve.default(t(X) %*% X, t(X) %*% y) :
system is computationally singular: reciprocal condition number = 3.98648e-19

Something has gone badly wrong here, and this is a rather straightforward model. It’s important to
understand what has happened before trying to write code to apply more sophisticated approaches
to more complicated models.
In case you are wondering, I can make lm fail to. Mathematically it is easy to show that the model
fitted values should be unchanged if I simply add 900 to the x values, but if I refit the model to
such shifted data using lm then the following fitted values result, which can not be correct.

1000.0 1000.2 1000.4 1000.6 1000.8 1001.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

9



6 Further reading

The course itself is supposed to provide an introduction to some numerical analysis that is useful in
statistics, but if you can’t wait to get started than here is a list of some possibilities for finding out more.

• Burden, R & J.D. Faires (2005) Numerical Analysis (8th ed) Brooks Cole. This is an undergraduate
text covering some of the material in the course: the initial chapter is a good place to start for a
discussion of computer arithmetic.

• Press WH, SA Teukolsky, WT Vetterling and BP Flannery Numerical Recipes (various editions),
Cambridge. This covers most of what we will cover in an easily digested form, but, as the name
suggests, it is structured for those wanting to perform a particular numerical task, rather than for
providing overview. Numerical analysts are not always complimentary about this one, but that
may not be unrelated to the fact that this book sold 135,000 copies in its first edition. The brief
introduction to Error, Accuracy and Stability of numerical methods is well worth reading.

• Monahan, J.F. (2001) Numerical Methods of Statistics, Cambridge. This covers most of the course
material and more, in a bit more depth than the previous books. Chapters 1 and 2 definitely provide
useful background on good coding practice and the problems inherent in finite precision arithmetic.
The rest of the book provides added depth on many of the other topics that the course will cover.

• Lange, K. (2000) Numerical Analysis for Statisticians, Springer. This covers a more comprehensive
set of material than the previous book, at a similar level, although with less discussion of the
computational nitty-gritty.

If you want more depth still. . .

• Golub, GH and CF Van Loan (1996) Matrix Computations 3rd ed. John Hopkins. This is the
reference for numerical linear algebra, but not the easiest introduction.

• Watkins, DS (2002) Fundamentals of Matrix Computations 2nd ed. Wiley. This is a more accessible
book, but still aimed at those who really want to understand the material (for example, the author
encourages you to write your own SVD routine, and with this book you can).

• Nocedal and Wright (2006) Numerical Optimization 2nd ed. Springer, is a very clear and up to
date text on optimization, which also covers automatic differentiation with great clarity.

• Gill, P.E. , W. Murray and M.H. Wright (1981) Practical Optimization Academic Press, is a classic,
particularly on constrained optimization. Chapter 2 is also an excellent introduction to computer
arithmetic, numerical linear algebra and stability.

• Ripley, B.D. (1987) Stochastic Simulation Wiley (re-published 2006). A classic on the subject.
Chapters 2 and 3 are particularly relevant.

• Cormen, T.H., C.E. Leiserson, R.L. Rivest and C. Stein (2001) Introduction to Algorithms (2nd
ed.) MIT. Working with graphs, trees, complex data structures? Need to sort or search efficiently.
This book covers algorithms for these sorts of problems (and a good deal more) in some depth.
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