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Introduction

These notes and exercises are designed to help students to prepare for the
first APTS week, in order to get the most out of the intensive module on
Statistical Inference. Many APTS students will have met all of this material
before, as undergraduates or at Masters level; others may have seen only
some parts of it. Some of the material is very basic indeed, and is included
here only for completeness. The APTS-week lectures themselves will be at
a rather higher level, and will assume that students already have a solid
grasp of everything that appears here.

Interspersed with the notes are some exercises. The ideal preparation
would be to do enough work to allow you to understand the notes in detail
and to complete all of the exercises. The amount of work needed is likely
to vary from one student to another. Students who find themselves unable
to complete all of the exercises in, say, 3 full days of work are advised to
spend at least a whole week acquiring/refreshing the necessary background
knowledge.

The notes here are brief, and should ideally be supplemented by reading
from a good textbook or two. Casella, G. and Berger, R. L., Statistical Infer-
ence (2nd edn; Duxbury, 2002) is a good text book at about the right level
for this preliminary material (there are of course others). For the APTS week
itself, the most appropriate single book would be Cox, D. R., Principles of
Statistical Inference (Cambridge University Press, 2006).

The notes are arranged with plenty of white space, to facilitate annotation
by hand as you work through them.
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Part I

Some commonly used (univariate) probability
models
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Introduction

Distributions in statistics serve two main purposes:

ñ to describe the assumed behaviour of the observations
made in an experiment, survey or other study;

ñ to calibrate the values of derived statistics used in
constructing confidence regions, hypothesis tests,
posterior distributions, etc.

Some distributions are much used for both purposes (the
normal distribution being the prime example).

In this Part we review some key (families of) distributions
used for the first purpose. Distributions used mainly for the
second purpose include the χ2, t and F distributions, which
will be briefly reviewed in Part 2.
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Introduction

Some abbreviations that will be used, in connection with the
distribution of a random variable Y :

cdf: cumulative distribution function, FY (y) = pr(Y ≤ y);

pmf: probability mass function (for discrete random variable),
fY (y) = pr(Y = y);

pdf: probability density function (for absolutely continuous
random variable), fY such that FY (y) =

∫y
−∞ fY (z)dz;

mgf: moment generating function, MY (t) = E(etY ), when the
expectation exists for t in a neighbourhood of t = 0.
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Discrete distributions

Binomial

Binomial distribution

The distribution of the number of ‘successes’ in m
independent binary ‘trials’; or, equivalently, random
sampling (with replacement) from a binary population.

The pmf is

fY (y) =
(

m
y

)
θy (1 − θ)m−y (y = 0, 1, . . . , m).

where θ is the probability of success (assumed constant for
all trials).

The mean and variance are mθ and mθ(1 − θ), and the mgf
is MY (t) = [θet + (1 − θ)]m.
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Discrete distributions

Binomial

Special case m = 1: the Bernoulli distribution

When m = 1,

fY (y) = θy (1 − θ)1−y (y = 0, 1)

=

θ (y = 1)
1 − θ (y = 0)

This simple distribution is the Bernoulli distribution.

Independent trials with binary outcomes are often referred to
as Bernoulli trials.
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Discrete distributions

Negative binomial

Negative binomial and geometric distributions
The negative binomial is the distribution of the number of
Bernoulli trials needed in order to see k successes (for any
fixed integer k > 0). If Y is the trial at which the kth success
occurs, the pmf of Y is

fY (y) =
(

y − 1
k − 1

)
θk(1 − θ)y−k (y = k, k + 1, . . .)

The name ‘negative binomial’ comes from noting that if
Z = Y − k (the number of failures seen before the kth
success),

fZ(z) = (−1)z
(

−k
z

)
θk(1 − θ)z (z = 0, 1, 2, . . .)

which looks strikingly similar to the binomial pmf.
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Discrete distributions

Negative binomial

The mean and variance of Z are k(1 − θ)/θ and k(1 − θ)/θ2

respectively.

The mgf is MZ(t) = [θ/{1 − (1 − θ)et}]k.

The geometric distribution is the special case with k = 1; i.e.,
Z is the number of failures seen before the first success.

Importantly, the negative binomial also arises (exercise) as
the marginal distribution of a random variable Z whose
distribution conditional upon a gamma-distributed latent
variable M is Z|M ∼ Pois(M). This is useful when modelling
‘overdispersed’ (relative to the Poisson distribution) count
data.
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Discrete distributions

Poisson

Poisson distribution
The distribution of a count of events that occur (separately
and independently, by assumption) in time, or space, say,
according to a Poisson process.

A Poisson rv takes any value in {0, 1, 2, . . .}, and has pmf

fY (y) = e−µµy /y ! (y = 0, 1, 2, . . .).

The mean — the expected number of events — is µ. The
variance is also µ. The mgf is MY (t) = exp[µ(et − 1)].

If Y and Z are independently Poisson distributed with means
µ and λ, then Y + Z ∼ Pois(λ + µ).

(exercise: prove these last four statements)
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Discrete distributions

Some relationships

Some relationships

The Poisson distribution plays a useful approximation role
for some of the other main discrete distributions:

ñ the Bin(m, θ) is well approximated by Pois(mθ) when θ
is small.

ñ the NegBin(k, θ) is well approximated by Pois[k(1 − θ)]
for k large and θ close to 1.
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Discrete distributions

Some relationships

Poisson and binomial: an exact relationship

In addition to the approximation of binomial probabilities
using the Poisson pmf, mentioned above, we have the
following.

Equivalence of binomial and conditional Poisson sampling

If Y and Z are independent Poisson rv’s with means λ and µ,
then the conditional distribution of Y , given Y + Z = t, is
Bin[t, λ/(λ + µ)].

Proof: simply apply the definition of conditional probability,
pr(Y = y|Y +Z = t) = pr(Y = y) pr(Z = t−y)/ pr(Y +Z = t),
and use the fact that the Poisson family is closed under
independent addition. (exercise)
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Continuous distributions

Exponential and gamma

Exponential distribution

The exponential distribution is often used to describe the
distribution of measured time intervals (‘duration data’ or
‘waiting-time data’). The pdf is

fY (y) =


1
µ exp(−y/µ) (y > 0)
0 (otherwise)

The mean and variance are µ and µ2, and the mgf is

MY (t) = 1
1 − tµ

(t < 1/µ).

(exercise: verify these)
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Continuous distributions

Exponential and gamma

Gamma distribution
The gamma family generalizes the exponential. The pdf is

fY (y) =


α
µ

1
Γ (α) zα−1e−z (z > 0)

0 (otherwise),

where z = αy/µ. The mean of Y is µ. The extra parameter
α > 0 is often called the ‘shape’ parameter; the exponential
distribution is the special case α = 1.

The mgf is MY (t) = 1/(1 − µt/α)α (t < α/µ). From this, for
example, we see how α generalizes the mean-variance
relationship:

var(Y ) = µ2/α,

so the coefficient of variation, sd(Y )/E(Y ), is 1/
√

α.
(exercise: verify these statements)
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Continuous distributions

Exponential and gamma

We will write Gamma(µ, α) as shorthand for the above
parameterization of a gamma distribution.

The gamma, like the exponential, is also often used for
modelling durations (lengths of time intervals).

From the mgf we see immediately that, when α is a positive
integer, the gamma distribution is the distribution of the
sum of α independent exponential random variables each
having mean µ/α.
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Continuous distributions

Beta distribution

Beta distribution

The beta distributions are distributions on the unit interval
(0, 1).

The pdf of a beta distribution is

fX(x) =


1

B(α,β) xα−1(1 − x)β−1 (0 < x < 1)
0 (otherwise)

where B(α, β) is the beta function,

B(α, β) = Γ (α)Γ (β)
Γ (α + β)

.

The beta family includes a variety of distributional shapes,
including the uniform distribution (α = β = 1).
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Continuous distributions

Beta distribution

The beta distribution has

µ = E(X) = α
α + β

var(X) = αβ
(α + β)2(α + β + 1)

and the rather less elegant

MX(t) = 1 +
∞∑

k=1

k−1∏
r =0

α + r
α + β + r

 tk

k!
.

The mean is thus determined by the relative values of α and
β.

The variance is inversely related to the sum α + β: it can be
re-expressed as µ(1 − µ)/(α + β + 1).
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Continuous distributions

Normal distribution

Normal (or Gaussian) distribution

The most-used of all continuous distributions (largely on
account of the Central Limit Theorem).

The pdf of the N(µ, σ 2) distribution is

fY (y) = 1√
2πσ

exp

[
−(y − µ)2

2σ 2

]
(−∞ < y < ∞)

= 1
σ

φ
(

y − µ
σ

)
where φ(y) = exp(−y2/2)/

√
2π is the pdf of the standard

normal distribution N(0, 1).
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Continuous distributions

Normal distribution

The parameters µ and σ are respectively location and scale
parameters: for any constants c and d, linear transformation
cY + d has the normal distribution with location cµ + d and
scale cσ .

The mean, variance and mgf are

E(Y ) = µ
var(Y ) = σ 2

MY (t) = exp

(
µt + σ 2t2

2

)

(exercise: prove these)

Some commonly used (univariate) probability models 18

Continuous distributions

Normal distribution

The normal cdf
The cdf of the N(µ, σ 2) distribution is

FY (y) =
∫ y

−∞

1√
2πσ

exp

[
−(t − µ)2

2σ 2

]
dt = Φ

(
y − µ

σ

)
,

where Φ(z) =
∫ z
−∞ φ(t)dt is the cdf of (Y − µ)/σ .

Values of Φ(z) must be read from a table. By symmetry,
Φ(−z) = 1 − Φ(z).

Some values of Φ worth remembering: Φ(1.64) ≈ 0.95, and
Φ(1.96) ≈ 0.975. The latter, for example, says that

pr(µ − 1.96σ < Y < µ + 1.96σ ) = Φ(1.96) − Φ(−1.96) ≈ 0.95

i.e., roughly, about 95% of probability is within 2 standard
deviations of the mean.
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Continuous distributions

Transformation

Transformation: the lognormal distribution
A much-used distribution for modelling positive quantities, in
economics in particular, is the log-normal distribution.

If Y ∼ N(µ, σ 2), then W = exp(Y ) is said to be log-normal
with parameters µ and σ .

The pdf is

fW (w) = 1
wσ

√
2π

exp

[
−(log w − µ)2

2σ 2

]
(w > 0)

(exercise)

The mean and variance are E(W ) = exp(µ + σ 2/2),
var(W ) = [E(W )]2[exp(σ 2) − 1], and the integral formally
defining the mgf does not converge for any real t ≠ 0.
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Inter-relationships (continued)

Normal approximation

Connections between distributions: Normal
approximation

The normal family can be used — largely on account of the
Central Limit Theorem — to approximate various other
distributions.

Some prominent examples are:

ñ approximation of Pois(λ) by N(λ, λ), for large values of
λ

ñ approximation of Bin(m, θ) by N[mθ, mθ(1 − θ)], for
large m (and θ not too close to 0 or 1).

ñ approximation of Gamma(µ, α) by N(µ, µ2/α), for large
values of α.
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Inter-relationships (continued)

Normal approximation

The Central Limit Theorem tells us that the normal can be
used to approximate the distribution of any random variable
which can be thought of as the sum of a large number of
independent, identically distributed components. All of the
above examples are of this kind:

ñ Y ∼ Pois(λ) can be thought of as
∑n

1 Yi, where the Yi are
independent Pois(λ/n)

ñ Y ∼ Bin(m, θ) is
∑m

1 Yi where Yi ∼ Bin(1, θ) are
independent

ñ Y ∼ Gamma(µ, α) can be thought of as
∑n

1 Yi where the
Yi are independent Gamma(µ/n, α/n).
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Inter-relationships (continued)

Normal approximation

Normal approximation in practice: continuity
correction

When approximating a discrete distribution, the normal
approximation is much improved by use of a ‘continuity
correction’.

Example: Y ∼ Bin(25, 0.6)
The approximating normal distribution is then N(15, 6). A
binomial probability such as

pr(Y ≤ 13) =
13∑

y=0

(
25
y

)
(0.6)y (0.4)25−y = 0.267

can then be approximated as

Φ
(

13 − 15√
6

)
= Φ(−0.82) = 0.206
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Inter-relationships (continued)

Normal approximation

— but this is not a very good approximation!

Much better is to recognise that pr(Y ≤ 13) is the same as
pr(Y ≤ 13.5), and to approximate the latter:

Φ
(

13.5 − 15√
6

)
= Φ(−0.61) = 0.271.
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Inter-relationships (continued)

Exact relationships

Some exact relationships

The gamma, Poisson and normal families are related to one
another also in various exact ways.

These include the following important relationships:

ñ Poisson with gamma

ñ normal with gamma
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Inter-relationships (continued)

Exact relationships

The Poisson-gamma relationship
Poisson and gamma (which includes exponential) are closely
related when the gamma shape parameter α is an integer.

(This is because waiting times in a Poisson process model for
randomly occurring events in continuous time are
gamma-distributed.)

Specifically, if Z ∼ Gamma(α, β), then for any t > 0

pr(Z > t) = pr(Y < α)

where Y ∼ Pois(t/β).

Special case α = 1 (exponential distribution) is most easily
shown:

pr(Z > t) = pr(Y = 0) = exp(−t/β).
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Inter-relationships (continued)

Exact relationships

The normal-gamma (exact) relationship

Suppose that Y ∼ N(0, σ 2), and consider Z = Y 2. The pdf of
Z is

fZ(z) ∝ fY (
√

z)
∣∣∣∣ 1

2
√

z

∣∣∣∣ (z > 0)

∝ z−1/2 exp[−z/(2σ 2)]

which we recognise as the kernel of the Gamma(σ 2, 1
2 ) pdf.

Hence Y 2 has this particular gamma distribution.

The distribution of the standardized squared normal, Y 2/σ 2,
is thus Gamma(1, 1

2 ). This is the chi-squared distribution
with one degree of freedom.
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Inter-relationships (continued)

Exact relationships

Continuing a little further with this: suppose X and Y are
independent N(0, σ 2), and let R be the length of the random
vector (X, Y ):

R =
√

X2 + Y 2

Then R2 has an exponential distribution.

Proof: MX2(t) = MY 2(t) = 1/(1 − 2σ 2t)1/2, so
MR2(t) = 1/(1 − 2σ 2t), which is the mgf of the Exp(2σ 2)
distribution.
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Part II

Sampling from a normal distribution
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Distributions derived from N(µ, σ 2)

Distributions derived from N(µ, σ 2)

ñ the chi-squared distributions, χ2
n (n = 1, 2, . . .)

ñ the variance-ratio (or “F”) distributions, Fm,n
(m, n ∈ {1, 2, . . .})

ñ the “Student t” distributions, tn (n = 1, 2, . . .)

Sampling from a normal distribution 30

Distributions derived from N(µ, σ 2)

The chi-squared distributions

The chi-squared distributions

Definition: if Y1, . . . , Yn are independent N(0, 1), then

Y = Y 2
1 + . . . + Y 2

n ∼ χ2
n.

In words: the sum of n squared, independent standard
normal random variables is said to have the chi-squared
distribution with n degrees of freedom.

All chi-squared distributions have support on (0, ∞) and are
skewed to the right (sketch a typical pdf). The cdf is
tabluated.
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Distributions derived from N(µ, σ 2)

The chi-squared distributions

Chi-squared and gamma

We have already seen in Part 1 that

Y 2
1 + . . . + Y 2

n ∼ Gamma(µ = n, α = n
2

)

— so every chi-squared distribution is of the gamma form.

From this we also have immediately that

ñ the mean of a χ2
n rv is n, and the variance is 2n;

ñ the Exponential(µ) distribution is the distribution of
µY /2 where Y ∼ χ2

2.
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Distributions derived from N(µ, σ 2)

The F distributions

The F distributions

Definition: if X ∼ χ2
m and Y ∼ χ2

n independently, then

R = X/m
Y /n

∼ Fm,n.

In words: the ratio of two independent chi-squared rv’s, each
scaled to have mean 1, is said to have the F distribution with
degrees of freedom m and n.

Sometimes m is called the numerator degrees of freedom,
and n the denominator degrees of freedom.

Clearly if R ∼ Fm,n then 1/R ∼ Fn,m.

The Fm,n cdf’s are tabulated.
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Distributions derived from N(µ, σ 2)

The t distributions

The t distributions
Definition: if X ∼ N(0, 1) and Y ∼ χ2

n independently, then

T = X√
Y /n

∼ tn.

In words: the ratio of a standard normal rv to the square root
of a scaled chi-squared rv has the Student t distribution with
n degrees of freedom.

(“Student”: W. S. Gosset, 1876–1937)

The cdf’s of the tn distributions are tabulated.

Note that as n → ∞, T converges in distribution to X (by
Slutsky’s theorem, since Y /n converges in probability to 1).
The t distributions are like the normal, but with “fatter tails”.
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Distributions derived from N(µ, σ 2)

The t distributions

Relationship between t and F

If T ∼ tn, then

T 2 = X2

Y /n
= X2/1

Y /n
∼ F1,n.

So every F distribution with 1 numerator df is the distribution
of a squared t-distributed rv.
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Distribution of Ȳ and S2

Distribution of Ȳ and S2

Suppose that Y1, . . . , Yn are iid N(µ, σ 2), and let

Ȳn = 1
n

n∑
i=1

Yi, S2
n = 1

n − 1

n∑
i=1

(Yi − Ȳn)2.

Four important things to know:

(a) Ȳn ∼ N(µ, σ 2/n)
(b) Ȳn and S2

n are independent

(c) (n − 1)S2
n/σ 2 ∼ χ2

n−1

(d) (Ȳn − µ)/(Sn/
√

n) ∼ tn−1
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Distribution of Ȳ and S2

Interpretation/applications of properties (a)–(d)

A very brief overview:

(a) Ȳn ∼ N(µ, σ 2/n) can be used for inference on µ when σ
is known. In practice this is fairly rare, though: σ is most
often not known.

(b) Independence of Ȳ and S2: e.g., the sample mean has no
predictive power for the average size of (squared)
deviations from the sample mean.
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Distribution of Ȳ and S2

(c) (n − 1)S2
n/σ 2 ∼ χ2

n−1 can be used for inference on σ 2

when µ is unknown — in essence, it is a ‘corrected’
version of the result that would hold if µ were known,
namely

∑
(Yi − µ)2/σ 2 ∼ χ2

n. The correction is to take
account of the use of Ȳ in place of µ.

(d) (Ȳn − µ)/(Sn/
√

n) ∼ tn−1 is the corresponding
‘corrected’ version of (a) — corrected, that is, for the
replacement of σ by Sn. It allows straightforward
inference on µ when σ is unknown.
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Part III

Likelihood and sufficiency
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Likelihood

Definition

Likelihood

Consider a statistical model for random vector Y whose
distribution depends on an unknown parameter (vector) θ.

Write f (Y ; θ) for the joint pdf or pmf of random vector
Y = (Y1, . . . , Yn) when θ is the value of the unknown
parameter. Then, given that Y = y is observed, the function
of θ defined by

L(θ; y) = f (y ; θ)

is the likelihood function for θ based on data y.
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Likelihood

Definition

For any fixed value of θ, say θ = θ1, L(θ1; Y ) is a statistic —
a scalar-valued transformation of Y .

Note the key distinction between

ñ f , which is considered as a function of y (and, for
example, must sum or integrate to 1)

ñ L, which is considered as a function of θ.

The purpose of L(θ; y) is to compare the plausibility of
different candidate values of θ, given the observed data y.

If L(θ1; y) > L(θ2; y), then the data y were more likely to
occur under the hypothesis that θ = θ1 than under the
hypothesis that θ = θ2. In that sense, θ1 is a more plausible
value than θ2 for the unknown parameter θ.
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Likelihood

Likelihood ratio

Likelihood ratio
The relative plausibility of candidate parameter values, θ1

and θ2 say, may be measured by the likelihood ratio,

L(θ1; y)
L(θ2; y)

.

Interpretation: for example, if L(θ1; y)/L(θ2; y) = 10, then
the observed data y were 10 times more likely under truth
θ1 than under truth θ2.

The use of likelihood ratios to compare the plausibility of
different θ-values means that any constant factor in the
likelihood — that is, any factor not depending on θ — can be
neglected.
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Likelihood

Likelihood ratio

Example: Yi ∼ Bin(mi, θ), independently (i = 1, . . . , n).

Here

L(θ; y) =
n∏

i=1

(
mi
yi

)
θyi(1 − θ)mi−yi

= constant ×
(

θ
1 − θ

)∑n
1 yi

(1 − θ)
∑n

1 mi .

ñ the binomial coefficients
(

mi
yi

)
are not needed, since they

do not involve θ
ñ the (non-constant part of) the likelihood depends on y

only through s(y) =
∑n

1 yi.

The function s(Y ) =
∑n

i=1 Yi here is a sufficient statistic for θ:
the value of s(y) is all the knowledge that is needed of y in
order to compute the likelihood (ignoring constants).
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Likelihood

Continuous distributions

A note on continuous distributions

For a continuous rv Y the pdf is not invariant to a change of
measurement scale. If Z = g(Y ), then

fZ(z; θ) = fY [g−1(z); θ]
∣∣∣∣dy

dz

∣∣∣∣ .

But the derivative factor here does not involve θ; the
likelihood for data y, or for the equivalent data z = g(y), is
thus

L(θ; z) = L(θ; y) × constant,

i.e., likelihood (unlike probability density) is essentially
unaffected by a change of measurement scale.
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Likelihood

Log likelihood

Log likelihood
In practice, especially when observations are independent, it
is usually most convenient to work with the (natural)
logarithm of the likelihood,

l(θ) = log L(θ),

since this converts products into sums, which are easier to
handle.

Example: n independent binomials (continued),

l(θ) = log

constant ×
(

θ
1 − θ

)∑n
1 yi

(1 − θ)
∑n

1 mi


= constant +

 n∑
i=1

yi

 log
(

θ
1 − θ

)
+
 n∑

i=1

mi

 log(1 − θ).
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Likelihood

Log likelihood

In terms of the log-likelihood, then, any two candidate values
of θ are compared via the log-likelihood-ratio

log
L(θ1)
L(θ2)

= l(θ1) − l(θ2).

On the log scale, it is additive constants that can be ignored.



Likelihood and sufficiency 46

Sufficiency

Sufficiency

We have introduced the notion of sufficient statistic already,
informally, as a data summary that provides all that is
needed in order to compute the likelihood.

Here we will give a formal definition, and then prove the
factorization theorem, which

ñ provides a straightforward way of checking whether a
particular statistic is sufficient

ñ allows a sufficient statistic, to be identified by simple
inspection of the likelihood function (as we did in the
example of n binomials)
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Sufficiency

Definition

Sufficient statistic: the definition
A statistic s(Y ) is said to be a sufficient statistic for θ if the
conditional distribution of Y , given the value of s(Y ), does
not depend on θ.

In this precise sense, a sufficient statistic s(Y ) carries all of
the information about θ that is contained in Y . The notion is
that, given the observed value s(y) of s(Y ), all further
knowledge about y is uninformative about θ.

In particular, this is useful for data reduction: e.g., if s(Y ) is
a scalar sufficient statistic, then all of the information in
y = (y1, . . . , yn) relating to θ is contained in the
single-number summary s(y) (assuming the model is
correct).
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Sufficiency

The factorization theorem

The factorization theorem
Statistic s(Y ) is sufficient for θ if and only if, for all y and θ,

f (y ; θ) = g(s(y), θ)h(y) (∗)

for some pair of functions g(t, θ) and h(y).

Proof: (discrete case)

Suppose that s(Y ) is sufficient. Let

g(t, θ) = pr(s(Y ) = t),

and
h(y) = pr[Y = y|s(Y ) = s(y)]

(the latter of which does not involve θ). Then
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Sufficiency

The factorization theorem

Then

f (y ; θ) = pr(Y = Y )
= pr[Y = y and s(Y ) = s(y)]
= pr[s(Y ) = s(y)] pr[Y = y|s(Y ) = s(y)]
= g(s(y), θ)h(y).

Now suppose that (*) holds. Write q(t; θ) for the pmf of s(Y ).
Define the sets At = {z : s(z) = t}. Then

pr[Y = y|s(Y ) = s(y)] = f (y ; θ)
q(s(y); θ)

= g(s(y), θ)h(y)∑
As(y) g(s(z), θ)h(z)

= g(s(y), θ)h(y)
g(s(y), θ)

∑
As(y) h(z)

,

which is h(y)/
∑

As(y) h(z) and does not involve θ.
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Sufficiency

The factorization theorem

An essentially similar argument applies in the continuous
case.

Example: Y1, . . . , Yn iid N(µ, σ 2), with σ known.

We can write

f (y ; µ) = 1
(2πσ 2)n/2 exp

−
n∑

i=1

(yi − ȳ)2

2σ 2


︸ ︷︷ ︸

h(y)

exp

(
−n

(ȳ − µ)2

2σ 2

)
︸ ︷︷ ︸

g(ȳ,µ)

— so Ȳ is a sufficient statistic for µ.

(exercise: verify this.)
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Sufficiency

The factorization theorem

Example: Y1, . . . , Yn iid discrete Uniform random variables on
{1, 2, . . . , θ}

(e.g., a town has bus routes numbered 1, . . . , θ, with θ being
unknown; data are n bus numbers sampled at random.)

For each Yi the pmf is

f (y ; θ) =

1/θ (y = 1, 2, . . . , θ)
0 (otherwise)

so the joint pmf is

f (y, θ) =

1/θn (all yi ∈ {1, 2, . . .} and max(yi) ≤ θ)
0 (otherwise)

Hence, if we let s(Y ) = max(Yi), then
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Sufficiency

The factorization theorem

...then
f (y ; θ) = g(s(y), θ)h(y),

where

g(t, θ) =

1/θn (t ≤ θ)
0 (otherwise)

and

h(y) =

1 (y ∈ {1, 2 . . .})
0 (otherwise)

Hence s(Y ) = max(Yi) is a sufficient statistic for θ.
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Sufficiency

Minimal sufficient statistic

Minimal sufficient statistic

There clearly is no unique sufficient statistic in any problem.
For if s(Y ) is a scalar sufficient statistic, then for example

(i) r (s(Y )) is sufficient, for any 1-1 function r (.)
(ii) the pair {s(Y ), Y1}, for example, is sufficient

(iii) the full vector Y is always (trivially) sufficient

(exercise: use the factorization theorem to check these
assertions)

The idea of a minimal sufficient statistic is to eliminate
redundancy of the kind evident in (ii) or (iii) [but not (i)]
above, in order to achieve maximal reduction of the data
from y to s(y).
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Sufficiency

Minimal sufficient statistic

Definition

Sufficient statistic s(Y ) is said to be minimal sufficient if, for
any other sufficient statistic s′(Y ), s(Y ) is a function of s′(Y )
[i.e., whenever s′(y) = s′(z), we have that s(y) = s(z)].

The definition is clear enough in its meaning, but is not
constructive: it does not help us to find a minimal sufficient
statistic in any given situation.

The following theorem helps:
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Sufficiency

Minimal sufficient statistic

Theorem (Lehmann and Scheffé)

Suppose that statistic s(Y ) is such that for every pair of
sample points y and z the ratio

f (y ; θ)
f (z; θ)

is constant if and only if

s(y) = s(z).

Then s(Y ) is minimal sufficient.

Proof: omitted. See, e.g., Casella & Berger p281.
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Sufficiency

Minimal sufficient statistic

Example: Y1, . . . , Yn Uniform on the interval (θ, θ + 1)

The joint pdf of Y is

f (y ; θ) =

1 (θ < yi < θ + 1 ∀i)
0 (otherwise)

which can be usefully re-expressed as

f (y ; θ) =

1 (max(yi) − 1 < θ < min(yi))
0 (otherwise)

Thus, for two sample points y and x, f (y ; θ)/f (z; θ) takes
the constant value 1 (for all θ for which the ratio is defined) if
and only if both min(yi) = min(zi) and max(yi) = max(zi).
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Sufficiency

Minimal sufficient statistic

Example [Unif(θ, θ + 1) continued]

Hence the two-component statistic

s(Y ) = {min(Yi), max(Yi)}

is a minimal sufficient statistic for this problem.

Note, then, that the minimal sufficient statistic in a
one-parameter problem is not necessarily a scalar.
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Part IV

Exponential families

Exponential families 59

Exponential families

Definition

Exponential families

A family of distributions is a set of distributions indexed
(smoothly) by a parameter (in general, a vector) θ.

Suppose that θ is d-dimensional, and that the joint pdf (or
pmf) of vector rv Y can be written as

f (y) = m(y) exp[sT (y)φ − k(φ)]

for some d-dimensional statistic s(Y ) and one-one
transformation φ of θ. Then S = s(Y ) is sufficient, and
(subject to regularity conditions) the model is a full
exponential family with canonical parameter φ.
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Exponential families

Definition

Example: Y ∼ Binomial(m, θ). This is a full, one-parameter
exponential family, with φ = log[θ/(1 − θ)]. (exercise)

Example: Y1, . . . , Yn ∼ N(µ, σ 2) (iid). This is a full,
2-parameter exponential family with sufficient statistic
{
∑

Yi,
∑

Y 2
i }. (exercise)

Example: Y1, . . . , Yn ∼ N(µ, µ2) (iid) — normal distribution
with unit coefficient of variation. The minimal sufficient
statistic is still {

∑
Yi,

∑
Y 2

i }, but this is only a 1-parameter
model. So this is not a full exponential family. This is an
example of a curved exponential family. A curved EF with
d-dimensional parameter is derived from a full exponential
family of dimension k (k > d) by imposing one or more
nonlinear constraints on the canonical parameters of the full
EF.
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Exponential families

Properties

Mean parameterization of a full EF:
Since every value of φ indexes a distribution, we have that∫

m(y) exp[sT φ − k(φ)]dy = 1

and indeed, for any d-vector p,∫
m(y) exp[sT (φ + p) − k(φ + p)]dy = 1.

Hence the mgf of S is

MS(p) = E[exp(pT S)] = exp[k(φ + p) − k(φ)],

from which the mean parameter is derived as

E(S) = ∇MS(p)|p=0 = ∇k(φ) = η, say.

[The symbol ‘∇’ denotes a vector of partial derivatives, e.g.,
(∂/∂p1, ∂/∂p2, . . .), or (∂/∂φ1, ∂/∂φ2, . . .), as appropriate.]
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Exponential families

Properties

Maximum likelihood in a full EF:

Subject to regularity conditions, the unique value of φ that
maximizes l(φ; y) in a full EF model solves the system of d
simultaneous equations

∇l(φ̂) = 0,

which reduces to
s(y) = η(φ̂).

In a full EF model, then, the MLE is also a
method-of-moments estimator: the observed values of the
sufficient statistics s1(y), . . . , sd(y) are equated with their
respective expectations η1(φ), . . . , ηd(φ).
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Part V

Linear models
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Normal-theory linear model

Normal-theory linear model
If the conditional distribution of n-vector Y , given (full-rank)
n × p covariate matrix or design matrix x, is N(xβ, σ 2In),
then the least-squares estimator is β̂ = (xT x)−1xT Y , and the
log likelihood can be written as a function of β̂ and the
residual sum of squares:

l(β, σ ; y) = −n log σ − ||xβ̂ − xβ||2 + ||y − xβ̂||2

2σ 2

(where ||v||2, for a vector v, means vT v).

(Exercise: show this, and interpret it geometrically in terms
of the projection of n-vector y onto the linear subspace
spanned by the columns of matrix x.)

Hence the least-squares estimates β̂ and residual sum of
squares ||y − xβ̂||2 are jointly minimal sufficient for β and σ .
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Generalized linear model

Generalized linear model

The normal-theory linear model, with σ 2 known, is a full
p-dimensional exponential family indexed by β. (exercise)

More generally, suppose that Y1, . . . , Yn are independent,
each with distribution in a ‘natural’ [i.e., such that s(y) = y]
exponential family:

f (yi; φi) = mi(yi) exp[yiφi − ki(φi)].

Examples include binomial, Poisson and gamma [with α
known] distributions for Yi, as well as the normal [with σ
known].
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Generalized linear model

Then if φ1, . . . , φn are assumed to be such that φi = xT
i β,

with xi a specified p-vector for each i, the resulting model
with parameter vector β is a full p-dimensional EF.

Exercise: show that {
∑

i Yixir : r = 1, . . . , p} are sufficient.

Such a model is a generalized linear model with canonical
link. Examples include logistic regression for binary or
binomial Y , and log-linear models for Poisson-distributed Y .

In practice, not all generalized linear models have canonical
link. A more general dependence of φi on xi is
h(φi) = xT

i β, for some specified function h(.). When h is not
the identity, the resulting model with parameters β is usually
a curved exponential family. Probit and complementary
log-log models for binary response, and log-linear models for
gamma-distributed response, are examples.
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Generalized linear model

Exercise

Suppose that Y1, . . . , Yn are independent Poisson, with

µi = E(Yi) = tiβ

for specified positive (‘exposure’) constants t1, . . . , tn.

Show that this is a full 1-dimensional exponential family, and
find the sufficient statistic.

(As written above, this is a generalized linear model with
non-canonical link. But it can be re-expressed as

log(µi) = log ti + γ,

with γ = log(β); this is a log-linear model — i.e., it has the
canonical link for the Poisson family — involving the
constants log ti as a so-called ‘offset’ term.)
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Part VI

Bayesian inference

Bayesian inference 69

Bayes’ theorem

Bayes’ theorem

The formula known as Bayes’ theorem or Bayes’ rule comes
directly from the definition of conditional probability. If
events A1, A2, . . . partition the sample space, and B is any
event, then for any i

pr(Ai|B) = pr(B|Ai) pr(Ai)∑
j pr(B|Aj) pr(Aj)

.

In Bayesian inference the probability model includes
unknown parameters as random variables, and the events Ai
partition the set of possible parameter values.
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Bayes’ theorem

Bayes’ theorem and Bayesian inference
In Bayesian inference, the likelihood combines with a
specified prior distribution to produce a posterior
distribution. This comes simply from treating the parameter
as a random variable Θ, and applying Bayes’ theorem:

fΘ|Y (θ|y) = fY |Θ(y|θ)fΘ(θ)∫
fY |Θ(y|φ)fΘ(φ)dφ

or, with some notational shortcuts,

f (θ|y) ∝ L(θ; y)f (θ).

The posterior density is then used as the basis for
(conditional) probability statements about the random
variable Θ.

The data y enter a Bayesian analysis only through the
likelihood function L(θ; y).
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Conjugate priors

Conjugate family of priors
The definition and choice of a prior distribution for a
Bayesian analysis may raise challenging conceptual and
practical issues. Here we merely note one possible
simplification which is available in some situations, and
which may sometimes be helpful either for mathematical
tractability or for interpretation.

For a given likelihood function L(θ; y), a family of prior
distributions which also contains the posterior, whatever the
value of y, is said to be conjugate to the likelihood.

Example: For the model Y |Θ ∼ Binomial(m, Θ), any prior
distribution fΘ(θ) in the family of beta distributions leads to
a posterior density fΘ|y (θ|y) which is also a beta
distribution. (exercise: show this)
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Conjugate priors

Exponential families

Conjugate prior for full EF model
If the likelihood takes the full exponential family form

L(φ; y) = m(y) exp[sT φ − k(φ)],

then a prior (for canonical parameter φ) proportional to

exp[sT
0 φ − a0k(φ)]

leads to a posterior density that is proportional to

exp[(s + s0)T φ − (1 + a0)k(φ)],

which is in the same family (indexed by s0, a0) as the prior.

Exercise: show how this works for the binomial/beta
conjugate likelihood/prior pair mentioned above, and how
the beta prior might be interpreted in terms of ‘pseudo-data’
from a (notional) prior experiment with binomial outcome.


