
STATISTICAL INFERENCE

Lecture 1

Skeleton notes

1 Role of theory of inference

Objective is to provide concepts and methods helpful for science, technol-

ogy, public affairs, etc. Very wide variety of problems require variety of

approaches. Ultimate criterion is relevance.

Idealized scheme:

• research question or questions

• study design

• data collection

• preliminary analysis

• more formalized probabilistic analysis

• conclusions and interpretation and usually

• more questions
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Formal theory of inference needed to underpin and systematize methods and

to provide base for tackling new problems. In data mining, and to some

extent more generally, formalizing the right question is one of the objectives.

2 Probabilistic formulation

Assume observations on response (outcome) variables and explanatory vari-

ables. Typically treat the former as observed values of a random vector Y

having a distribution depending on the explanatory variables regarded as

fixed, the distribution specified by a model fY (y; θ). giving p.d.f. of Y as a

function of known x, omitted from notation, and unknown parameter vector

θ.

Usually θ is partitioned (ψ, λ) into parameter of interest ψ and nuisance

parameter λ. Model is an idealized model of variation in the physical,

biological, . . . , world and probabilities represent limiting frequencies under

(often hypothetical ) repetition.

Model choice is of key importance. It translates a subject-matter question

into a statistical one. Sometimes model represents data-generating process,

in others it is largely empirically descriptive. Parameters aim to capture

features of the system under study separated from features specific to the

particular data. Choice of parameters of interest crucial.

There are now a number of possible objectives:

• various possibilities studied on the basis that the model is sound

• model criticism

Specific objectives include the following

• what can be concluded about the value of ψ?
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• reach a decision among possibilities whose merit depends on ψ

• predict the value of a new observation from the same or related systems

• is there need for model change? Model criticism.

Strategical aspects of how to use statistical methods not considered here.

3 Broad approaches

There are two main formal approaches to these issues

• frequentist in which probability is constrained to mean a (usually hy-

pothetical) frequency

• inverse probability (Bayesian) in which often the notion of probability

is extended to cover assessment of (any) uncertain event or proposition

Both approaches have a number of variants. In some but by no means all

situations the numerical answers from the two approaches are nearly or even

exactly the same, although the meanings are even then subtly different.

4 Examples

In the simplest example Y1, . . . , Yn are iid with a normal distribution of un-

known mean µ and known variance σ2

0
. In the general notation µ is the

parameter of interest ψ. Had the variance been unknown it would have been

a nuisance parameter. Of course the definition of the parameter of interest

depends totally on the research question. With two unknown parameters

the parameter of interest might, for example, have been µ/σ, although most

commonly it is µ.
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In the lecture the following example will be used to illustrate general

issues: the random variables Y1, . . . , Yn are iid with the exponential distribu-

tion of rate parameter ρ, i.e. with mean µ = 1/ρ,

There are now a variety of problems corresponding to different questions

and to different approaches.

5 Exponential mean

5.1 Initial analysis

First step: find likelihood

Exponential family

Sufficient statistic, s = Σyl

Key to importance of sufficiency

The parting of the ways!

• frequentist: what is the probability distribution of S = ΣYl for fixed

value of the known constant ρ?

• Inverse probability (Bayesian) approach. Value of ρ is unknown and

therefore has a probability distribution with and without the data.

That is, ρ is the value of a random variable P .

In general a pivot is a function, p(y, ψ) of the data y and parameter of

interest ψ which has a fixed distribution and which is monotonic in ψ for

every fixed y. In frequentist theory we consider the distribution of p(Y, ψ)

for each fixed θ, whereas in Bayesian theory we consider the distribution of

p(y,Ψ) for each fixed y. Common form of pivot is that of an estimate minus

the parameter value divided by a standard error.
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6 Frequentist approach

Analyses and measures of uncertainty calibrated by performance under hy-

pothetical repetition

• simple significance test

– modelled on testing a deterministic hypothesis

• test, Neyman-Pearson style

• confidence intervals

• prediction

7 Simple significance test

Deterministic hypothesis tested

• find interesting observable consequence of hypothesis

• collect observation

• – consistency with hypothesis

– inconsistent

Statistical null hypothesis tested

– find interesting aspect, t, of data whose distribution under hy-

pothesis is known

– arrange that large values of t correspond to departures as before

– collect data

– calculate t
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– find

p = P (T ≥ t;H0).

– application

– interpretation; if we were to regard the current data as just de-

cisive evidence against H0 then in a long run of applications in

which hypothesis true we would be wrong in a proportion p of

times.

8 Test of hypothesis; Neyman-Pearson style

– require formulation of probability model for H0 and one or more

alternatives HA

– for given α find set of values with probability at most α under H0

and in some sense maximum probability under the alternatives.

Equivalent to choice of test statistic

– reject or accept H0 according to whether data fall or do not fall

in region in question

– in theoretical formulations α is a pre-chosen constant but in prac-

tice implementation is often closer to simple sig. test

9 Confidence intervals or limits

– Direct argument from pivot

– Set of parameter values consistent with data up to specified sig-

nificance level
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10 Bayesian approach

All calculations by laws of probability.

Leads to posterior density of P , the random variable corresponding to

ρ.

But what do the answers mean? Tests: two Bayesian versions

– Atom of probability at H0

– Prior over alternatives must be formulated

Sometimes better interpreted in terms of the question: does the apparent

effect have the wrong sign?

EXERCISE

Suppose that s2 is the residual mean square with dres degrees of freedom

in a normal theory linear model and σ2 is the true variance. Suppose that it

is decided to base inference about σ2, whether Bayesian or frequentist, solely

on s2. You may assume that the random variable S2 is such that dresS
2/σ2

is distributed as chi-squared with dres degrees of freedom.

(i) What is the 95 per cent upper confidence limit for σ? (ii) For large

d the chi-squared distribution with d degrees of freedom is approximately

normal with mean d and variance 2d. How large would dres have to be for

the 95 percent upper limit to be 1.2sres? (iii) What is the conjugate prior

in a Bayesian analysis? When, if ever, would posterior and confidence limits

agree?
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STATISTICAL INFERENCE
Lecture 2

Skeleton notes

1 Use of a minimal sufficient statistic: some principles

Here ‘sufficient statistic’ will always mean minimal sufficient statistic.

Notation:

• random vector Y

• parameter (usually vector) θ

• sometimes θ = (ψ, λ), with ψ of interest and λ nuisance

• symbol f used for pdf, pmf — conditional or marginal as indicated by context (and

sometimes explicitly by subscripts).

1.1 Inference on θ

Sufficient statistic S:

f(y; θ) = fS(s(y); θ)fY |S(y|s)

where the second factor does not involve θ.

Implications:

1



• inference for θ based on fS(s; θ)

• fY |S(y|s) eliminates θ, and provides a basis for model checking.

Idea here is that S is a substantial reduction of Y .

(At the other extreme, if the minimal sufficient statistic is S = Y , the second factor above

is degenerate and this route to model-checking is not available.)

1.2 Inference on ψ (free of λ)

Often θ = (ψ, λ), where ψ is the parameter (scalar or vector) of interest, and λ represents

one or more nuisance parameters.

Ideal situation: there exists statistic Sλ — a function of the minimal sufficient statistic S —

such that, for every fixed value of ψ, Sλ is sufficient for λ. For then we can write

f(y;ψ, λ) = fY |Sλ
(y|sλ;ψ)fSλ

(sλ;ψ, λ),

and inference on ψ can be based on the first factor above.

This kind of factorization is not always possible. But:

• exponential families — exact;

• more generally — approximations.

1.3 Inference on model adequacy (free of θ)

How well does the assumed model fY (y; θ) fit the data?

Now θ is the ‘nuisance’ quantity to be eliminated.
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Suppose that statistic T is designed to measure lack of fit. Ideally, T has a distribution

that does not involve θ: a significant value of T relative to that distribution then represents

evidence against the model (i.e., against the family of distributions fY (y; θ)).

Condition on the minimal sufficient statistic for θ: refer T to its conditional distribution

fT |S(t|s), which does not depend on θ.

2 Exponential families

Introduced here as the cleanest/simplest class of models in which to explore and exemplify

the above principles.

2.1 Introduction: some special types of model

Many (complicated) statistical models used in practice are built upon one or more of these

three types of family:

• transformation family;

• mixture family;

• exponential family.

Transformation families and exponential families are excellent models for the purpose of

studying general principles. (Mixture families tend to be messier, inferentially speaking.)

Our main focus in the rest of this lecture will be on exponential families. The other two

types will be introduced briefly for completeness.

2.1.1 Transformation families

Prime examples of a transformation model are
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• location model f(y; θ) = g(y − θ)

• scale model f(y; θ) = θ−1g(y/θ)

• location-scale model f(y;µ, τ) = τ−1g{(y − µ)/τ}

where in each case g(.) is a fixed function (not depending on θ).

Each such model is characterized by a specified group of transformations.

2.1.2 Mixture families

Simplest case: 2-component mixture

f(y; θ) = (1− θ)f(y; 0) + θf(y; 1) (0 ≤ θ ≤ 1),

where f(y; 0) and f(y; 1) are the specified ‘component’ distributions.

More generally: any number of components (possibly infinite), with θ indexing a suitable

‘mixing’ distribution.

Summation of components makes life easy in some respects (normalization is automatic),

but much harder in other ways (no factorization of the likelihood).

2.1.3 Exponential families

When the parameter is the canonical parameter of an EF, we will call it φ instead of θ

(merely to remind ourselves).

An EF interpolates between (and extrapolates beyond) component distributions on the scale

of log f (cf. mixtures; interpolation on the scale of f itself). For example, a one-parameter

EF constructed from two known components is f(y; θ) such that

log f(y;φ) = (1− φ) log f(y; 0) + φ log f(y; 1)− k(φ)

= φ log
f(y; 1)

f(y; 0)
+ log f(y; 0)− k(φ),
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where the k(φ) is needed in order to normalize the distribution. This is an instance of the

general form for an EF (see the preliminary material)

f(y;φ) = m(y) exp[sT (y)φ− k(φ)].

Some EFs are also transformation models [but not many! — indeed, it can be shown that

among univariate models there are just two families in both classes, namely N(µ, σ2) (a

location-scale family) and the Gamma family with known ‘shape’ parameter α (a scale

family)].

2.2 Canonical parameters, sufficient statistic

Consider a d-dimensional full EF, with canonical parameter vector φ = (φ1, . . . , φd), and

sufficient statistic S = (S1, . . . , Sd).

Clearly (from the definition of EF) the components of φ and of S are in one-one correspon-

dence.

Suppose now that φ = (ψ, λ), and that the corresponding partition of S is S = (Sψ, Sλ).

It is then immediate that, for each fixed value of ψ, Sλ is sufficient for λ. This is the ‘ideal

situation’ mentioned in 1.2 above.

More specifically:

1. the distribution of S is a full EF with canonical parameter vector φ;

2. the conditional distribution of Sψ, given that Sλ = sλ, is a full EF with canonical

parameter vector ψ.
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2.3 Conditional inference on parameter of interest

The key property, of the two just stated, is the second one: the conditional distribution of

Sψ given Sλ is free of λ. This allows ‘exact’ testing of a hypothesis of the form ψ = ψ0, since

the null distribution of any test statistic is (in principle) known — it does not involve the

unspecified λ.

Tests → confidence sets.

Note that the canonical parameter vector φ can be linearly transformed to φ′ = Lφ, say,

with L a fixed, invertible d× d matrix, without disturbing the EF property:

sTφ = [(L−1)T s]T (Lφ),

so the sufficient statistic after such a re-parameterization is (L−1)TS = S ′, say. This allows

the parameter of interest ψ to be specified as any linear combination, or vector of linear

combinations, of φ1, . . . , φd.

2.3.1 Example: 2 by 2 table of counts

Counts Rij in cells of a table indexed by two binary variables:

R00 R01 R0+

R10 R11 R1+

R+0 R+1 R++ = n

Several possible sampling mechanisms for this:

• Individuals counted into the four cells as result of random events over a fixed time-

period. Model: Rij ∼ Poisson(µij) independently. [No totals fixed in the model.]

• Fixed number n of individuals counted into the rour cells. Model: (R00, R01, R10, R11) ∼
Multinomial(n; π00, π01, π10, π11). [Grand total, n, fixed in the model]
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• Row variable is treatment (present/absent), column variable is binary response. Num-

bers treated and untreated are fixed (R0+ = n0, R1+ = n1, say). Model: Ri0 ∼
Binomial(ni; πi) (i = 0, 1). [Row totals fixed in the model]

In each case the model is a full EF. Take the (canonical) parameter of interest to be

ψ = log
µ11µ00

µ10µ01

,

where µij = E(Rij). In the pair-of-binomials model this is the log odds ratio.

In each case the relevant conditional distribution for inference on ψ turns out to be the same.

It can be expressed as the distribution of R11, say, conditional upon the observed values of

all four marginal totals M = {R0+, R1+, R+0, R+1}:

pr(R11 = r11|M) =

(
r0+
r01

)(
r1+
r11

)
exp(r11ψ)∑(

r0+
r+1−w

)(
r1+
w

)
exp(wψ)

— a generalized hypergeometric distribution.

When ψ = 0, this reduces to the ordinary hypergeometric distribution, and the test of ψ = 0

based on that distribution is known as Fisher’s exact test.

The practical outcome (condition on all four marginal totals for inference on ψ) is thus the

same for all 3 sampling mechanisms. But there are two distinct sources of conditioning at

work:

Conditioning by model formulation: the multinomial model conditions on n; the pair-of-

binomials model conditions on r0+ = n0, r1+ = n1.

‘Technical’ conditioning (to eliminate nuisance parameters) applies in all 3 models; the

numbers of nuisance parameters eliminated are 3, 2 and 1 respectively.

2.3.2 Example: Several 2 by 2 tables

(The Mantel-Haenszel procedure)
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Extend the previous example: m independent 2× 2 tables, with assumed common log odds

ratio ψ.

Pair-of-binomials model for each table: canonical parameters (log odds) for table k are

φk0 = αk, φk1 = αk + ψ.

Parameters α1, . . . , αm are nuisance. Eliminate by (technical) conditioning on all of the

individual column totals, as well as conditioning (as part of the model formulation) on all

the row totals.

Resulting conditional distribution is the distribution of Sψ =
∑
Rk.11 conditional upon all

row and column totals — the convolution of m generalized hypergeometric distributions.

In practice (justified by asymptotic arguments), the ‘exact’ conditional distribution for test-

ing ψ = 0 — the convolution of m hypergeometrics — is usually approximated by the normal

with matching mean and variance.

2.3.3 Example: binary matched pairs

Extreme case of previous example: row totals rk.0+, rk.1+ are all 1.

Each table is a pair of independent binary observations (e.g., binary response before and

after treatment).

Conditional upon column totals: only ‘mixed’ pairs k, with rk.+0 = rk.+1 = 1, carry any

information at all.

Conditional distribution for inference on ψ is binomial. (see exercises)

This is an example where conditional inference is a big improvement on standard approxima-

tions based on the unconditional likelihood: e.g., the unconditional MLE ψ̂ is inconsistent

as m→∞, its limit in probability being 2ψ rather than ψ.

8



2.4 Conditional test of model adequacy

The principle: refer any proposed lack-of-fit statistic to its distribution conditional upon the

minimal sufficient statistic for the model parameter(s).

We mention here just a couple of fairly simple examples, to illustrate the principle in action.

2.4.1 Example: Fit of Poisson model for counts

(Fisher, 1950)

Testing fit of a Poisson model.

Conditional distribution of lack-of-fit statistic given MLE (which is minimal sufficient since

the model is a full EF).

Calculation quite complicated but ‘do-able’ in this simple example.

2.4.2 Example: Fit of a binary logistic regression model

A standard lack-of-fit statistic in generalized linear models is the deviance, which is twice

the log likelihood difference between the fitted model and a ‘saturated’ model.

In the case of independent binary responses yi the deviance statistic for a logistic regression

with maximum-likelihood fitted probabilities π̂i is

D = 2
∑{

yi log
(
yi
π̂i

)
+ (1− yi) log

(
1− yi
1− π̂i

)}
= 2

∑{
yi log yi + (1− yi) log(1− yi)− yi log

(
π̂i

1− π̂i

)
− log(1− π̂i)

}

Since y is 0 or 1, the first two terms are both zero. Since the fitted log odds is log{π̂i/(1−
π̂i)} = xTi β̂, the deviance can be written as

D = −2β̂TXTY − 2
∑

log(1− π̂i)
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= −2β̂TXT π̂ − 2
∑

log(1− π̂i),

since the MLE solves XTY = XT π̂.

Hence D in this (binary-response) case is a function of β̂, which is equivalent to the minimal

sufficient statistic.

The required conditional distribution of D is thus degenerate. The deviance statistic carries

no information at all regarding lack of fit of the model.

The same applies, not much less severely, to other general-purpose lack of fit statistics such

as the ‘Pearson chi-squared’ statistic X2 =
∑

(yi − π̂)2/{π̂i(1− π̂i)}.

This (i.e., the case of binary response) is an extreme situation. In logistic regressions where

the binary responses are grouped, the lack-of-fit statistics usually have non-degenerate distri-

butions; but when the groups are small it will be important to use (at least an approximation

to) the conditional distribution given β̂, to avoid a potentially misleading result.

Exercise

For the binary matched pairs model, derive the conditional binomial distribution for inference

on the common log odds ratio ψ. Discuss whether it is reasonable to discard all the data

from ‘non-mixed’ pairs.
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STATISTICAL INFERENCE

Lecture 3

Skeleton notes

1 Brief assessment

In the model, probability is an idealized representation of an aspect of the

natural world and represents a frequency.

Two approaches:

• Frequentist theory uses frequentist view of probability indirectly to

calibrate significance tests, confidence intervals, etc

• Bayesian theory uses probability directly by typically using a different

or more general notion of probability.

2 Frequentist theory

• covers a wide range of kinds of formulation

• provides a clear link with assumed data generating process

• very suitable for assessing methods of design and analysis in advance

of data

• accommodates model criticism
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• some notion of at least approximately correct calibration seems essen-

tial

but

• derivation of procedures may involve approximations, typically those

of asymptotic theory

• nature of asymptotic theory

• there may be problems in specifying the set of hypothetical repetitions

involved in calculating error-rates appropriate for the typically unique

set of data under analysis

• use of probability to assess uncertainty is indirect

3 Bayesian approaches

• all calculations are applications of the laws of probability: find the

conditional distribution of the unknown of interest given what is known

and assumed

• if unknown is not determined by stochastic process, probability has to

be a measure of uncertainty not directly a frequency

Central issues

• What does such a probability mean, especially for the prior?

• How do we determine numerical values for the prior?
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• Bayesian frequentist theory (empirical Bayes)

– role of hyperparameter

• impersonal (objective ) degree of belief

• personalistic degree of belief

Objectives

• may be valuable way of inserting new evidence, for example expert

opinion

• in other contexts interest may lie in a neutral or reference prior so that

contribution of data is emphasized

but

• flat priors sometimes, but by no means always, in some sense represent

initial ignorance or indifference

• most foundational work on Bayesian theory rejects the notion that a

prior can represent an initial state of ignorance

• nominally a closed world

• issues of temporal coherency

• merges different sources of information without examining mutual con-

sistency

• if meaning of prior is unclear so is that of posterior.
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4 Some issues in frequentist theory

Central issue of principle (although not of practice) is how to ensure frequen-

tist probability, an aggregate property, relevant to a unique situation.

Role of conditioning

5 Probability as a degree of belief

• impersonal (objective) degree of belief

• personalistic degree of belief

– assessed in principle by Your betting behaviour

– tied to personal decision making

– for public discussion prior needs to be evidence-based

– temporal coherency

– mutual consistency of data and prior

– escape from too narrow a world

– model criticism

Six views of Bayesian approaches

• empirical Bayes

• objective degree of belief or standardized reference priot

• personalistic degree of belief

• technique for incorporating additional information
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• personal decision making

• technical device for producing good confidence intervals

EXERCISE

The random variables Y1, . . . , Yn
are independently normally distributed with

unit variance and unknown means and n is large. It is possible that all the

means are zero; alternatively a smallish number of the means are positive.

How would you proceed from a Bayesian and from a frequentist perspective?

OR

The observed random variable Y is normally distributed with mean µ and

unit variance. The prior distribution of µ assigns equal probability 1/2 to

the values ±10. We observe y = 1. What would be concluded about µ?
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STATISTICAL INFERENCE
Lecture 4
skeleton notes

Scalar parameter 2

Score function and MLE

Score function

Scalar parameter

Score function:

U =
∂l(θ;Y )
∂θ

— a random function of θ.

Scalar parameter 3

Score function and MLE

Score has mean zero at true θ

The score has mean zero at the true value of θ (subject to
regularity condition).

Regularity: can validly differentiate under the integral sign the
normalizing condition ∫

fY (y; θ)dy = 1

so that ∫
U(θ; y)fY (y; θ)dy = 0,

i.e.,
E[U(θ;Y ); θ] = 0.



Scalar parameter 4

Score function and MLE

MLE

MLE

Maximum likelihood estimator (MLE): taken here to be θ̂ which
solves

U(θ̂;Y ) = 0,

(or the solution giving largest l if there is more than one)

— a random variable.

We will not discuss (here) situations where the value of θ that
maximizes the likelihood is not a solution of the score equation as
above.

Scalar parameter 5

Observed and expected information

Observed information

Observed information

Observed information measures curvature (as a function of θ) of
the log likelihood:

j(θ) = −∂U
∂θ

= − ∂
2l

∂θ2

— the [in general, random] curvature of l(θ;Y ) at θ.

High curvature at ĵ = j(θ̂) indicates a well-determined MLE.

Scalar parameter 6

Observed and expected information

Expected information

Expected information

In most models, j(θ) is random — a function of Y .

The expected information is

i(θ) = E[j(θ); θ]

= E

[
− ∂

2l

∂θ2
; θ

]

— a repeated-sampling property of the likelihood for θ; important
in asymptotic apprximations.

Expected information is also known as Fisher information.



Scalar parameter 7

Observed and expected information

The ‘information identity’

The ‘information identity’

We had: ∫
U(θ; y)fY (y; θ)dy = 0.

Differentiate again under the integral sign:∫ [
∂2l(θ;Y )
∂θ2

+ U2(θ;Y )
]
fY (y; θ)dy = 0.

That is,
i(θ) = var[U(θ;Y ); θ].

Scalar parameter 8

Optimality

Optimal unbiased estimating equation

Maximum likelihood can be thought of in various ways as optimal.
We mention two here.

The ML ‘estimating equation’

U(θ;Y ) = 0

is an example of an unbiased estimating equation (expectations of
LHS and RHS are equal).

Subject to some mild limiting conditions, unbiased estimating
equations yield consistent estimators.

It can be shown (lecture 7) that the ML equation U = 0 is optimal
among unbiased estimating equations for θ.

Scalar parameter 9

Optimality

Approximate sufficiency

Approximate sufficiency of {θ̂, j(θ̂)}

Consider the first two terms of a Taylor approximation of l(θ):

l(θ) ≈ l(θ̂)− 1
2
(θ − θ̂)2ĵ.

Exponentiate to get the approximate likelihood:

L(θ) ≈ m(y) exp[−1
2
(θ − θ̂)2ĵ],

where m(y) = exp[l(θ̂)].

Interpretation: the pair (θ̂, ĵ) is an approximately sufficient statistic
for θ.



Scalar parameter 10

Parameter transformation

Re-parameterization

Suppose we change from θ to φ(θ) (a smooth 1-1 transformation).
This is just a change of the model’s coordinate system.

Then:

I φ̂ = φ(θ̂) — the MLE is unaffected;

I UΦ{φ(θ);Y } = UΘ(θ;Y ) dθdφ (by the chain rule);

I iΦ{φ(θ)} = iΘ(θ)
(
dθ
dφ

)2
[since i = var(U)]

The units of information change with the units of the parameter.

Scalar parameter 11

Large-sample approximations

Large-sample approximations

It can be shown that (a suitably re-scaled version of) the MLE
converges in distribution to a normal distribution.

For this we need some conditions:

I ‘regularity’ as before (ability to differentiate under the
∫

sign);
I for some (notional or actual) measure n of the amount of

data,
I i(θ)/n→ ī∞, say, a nonzero limit as n→∞;
I U(θ)/

√
n converges in distribution to N(0, ī∞).

Scalar parameter 12

Large-sample approximations

Asymptotic distribution of MLE

Asymptotic distribution of θ̂
√
n(θ̂ − θ)→ N [0, {̄i∞(θ)}−1]

Sketch proof:

Taylor-expand U(t;Y ) around the true parameter value θ:

U(t;Y ) = U(θ;Y )− (t− θ)j(θ;Y ) + . . .

and evaluate at t = θ̂:

0 = U(θ;Y )− (θ̂ − θ)j(θ;Y ) + . . .

Now ignore the remainder term, re-arrange and multiply by
√
n:

√
n(θ̂ − θ) =

√
n
U(θ;Y )
j(θ;Y )

=
1√
nU(θ;Y )
1
nj(θ;Y )

.

The result follows from the assumptions made, and the fact [based
on a weak continuity assumption about i(θ)] that n−1j(θ)
converges in probability to ī∞.



Scalar parameter 13

Large-sample approximations

Asymptotic distribution of MLE

√
n(θ̂ − θ)→ N [0, {̄i∞(θ)}−1]

So the MLE, θ̂, is distributed approximately as

θ̂ ∼ N [θ, i−1(θ)].

Hence approximate pivots:

θ̂ − θ√
i−1(θ)

or
θ̂ − θ√
ĵ−1

and approximate interval estimates, e.g., based on ĵ:

θ̂ ± c
√
ĵ−1,

with c from the N(0, 1) table.

Scalar parameter 14

Large-sample approximations

Three asymptotically equivalent statistics

Three asymptotically equivalent test statistics
Think of testing null hypothesis H0 : θ = θ0.

Then three possibilities, all having approximately the χ2
1

distribution under H0, are:

WE = (θ̂ − θ0)i(θ0)(θ̂ − θ0)

WU = U(θ0;Y )i−1(θ0)U(θ0;Y )

WL = 2[l(θ̂)− l(θ0)]

(the last from a quadratic Taylor approximation to l).

These typically give slightly different results (and WE depends on
the parameterization).

Scalar parameter 15

Large-sample approximations

Bayesian posterior distribution

Asymptotic normality of Bayesian posterior distribution

Provided the prior is ‘well behaved’, the posterior is approximately

N(θ̂, ĵ−1).
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Score, information, transformation

Multidimensional parameter θ

All of the above results extend straightforwardly. Score is a vector,
and information is a matrix.

Write
U(θ;Y ) = ∇l(θ;Y ).

Then
E(U) = 0

cov(U) = E(−∇∇T l) = i(θ).

The extension of the asymptotic normality argument yields

I a multivariate normal approximation for θ̂, with
variance-covariance matrix i−1(θ)

I test statistics which straightforwardly extend WE , WU and
WL.

Multidimensional parameter 17

Score, information, transformation

The information matrix transforms between parameterizations as

iΦ(φ) =
(
∂θ

∂φ

)T

iΘ(θ)
(
∂θ

∂φ

)
and its inverse transforms as

[
iΦ(φ)

]−1
=

(
∂φ

∂θ

)T [
iΘ(θ)

]−1
(
∂φ

∂θ

)
.

Multidimensional parameter 18

Nuisance parameters

Information matrix

Nuisance parameters

Suppose θ = (ψ, λ), with ψ of interest.

Then partition vector U into (Uψ, Uλ), and information matrix
(and its inverse) correspondingly:

i(θ) =
(
iψψ iψλ
iλψ iλλ

)

i−1(θ) =
(
iψψ iψλ

iλψ iλλ

)
(and similarly for observed information j)



Multidimensional parameter 19

Nuisance parameters

Main distributional results; and profile likelihood

Large-sample results

Simplest route to inference on ψ: approximate normality,

ψ̂ ∼ N(ψ, iψψ)

— from which comes the quadratic test statistic

WE = (ψ̂ − ψ0)T
(
iψψ

)−1
(ψ̂ − ψ0)

[or perhaps use
(
jψψ

)−1
in place of

(
iψψ

)−1
].

Corresponding extensions also of WU and WL — the latter based
on the notion of profile likelihood.

Multidimensional parameter 20

Nuisance parameters

Main distributional results; and profile likelihood

Profile likelihood
Define, for any fixed value of ψ, the MLE λ̂ψ for λ.

Then the profile log likelihood for ψ is defined as

lP (ψ) = l(ψ, λ̂ψ)

— a function of ψ alone.

Clearly ψ̂ maximizes lP (ψ).

The extension of WL for testing ψ = ψ0 is then

WL = 2
[
lP (ψ̂)− lP (ψ0)

]
— which can be shown to have asymptotically the χ2 distribution
with dψ degrees of freedom under the null hypothesis.

Hence also confidence sets based on the profile (log) likelihood.

Multidimensional parameter 21

Nuisance parameters

Parameter orthogonality

Orthogonal parameterization
Take ψ as given — represents the question(s) of interest.

Can choose λ in different ways to ‘fill out’ the model. Some ways
will be better than others, especially in terms of

I stability of estimates under change of assumptions (about λ)
I stability of numerical optimization.

Often useful to arrange that ψ and λ are orthogonal, meaning that
iψλ = 0 (locally or, ideally, globally; approximately or, ideally,
exactly).

In general this involves the solution of differential equations.

In a full EF, a ‘mixed’ parameterization is always orthogonal
(exactly, globally).
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Information in a full EF

Constant information for canonical parameters

Information in a full EF

Information on the canonical parameters does not depend on Y :

i(φ) = j(φ) = ∇∇Tk(φ).

So in a full EF model it does not matter whether we use observed
or expected information for inference on φ: the answer is the same.

Multidimensional parameter 23

Information in a full EF

Orthogonality of mixed parameterization

Full EF: Orthogonality of mixed parameterization

If φ = (φ1, φ2) and the parameter (possibly vector) of interest is
ψ = φ1, then choosing

λ = η2 = E[s2(Y )]

makes the interest and nuisance parameters (φ1, η2) orthogonal.

This follows straight from the transformation rule, for
re-parameterization (φ1, φ2)→ (φ1, η2).

Example: The model Y ∼ N(µ, σ2) is a full 2-parameter EF, with
φ1 = 1/(2σ2), φ2 = −µ/σ2 and (s1, s2) = (y2, y). Hence
µ = E[s2(Y )] is orthogonal to φ1 (and thus orthogonal to σ2).

Multidimensional parameter 24

Information in a full EF

Orthogonality of mixed parameterization

Exercise

Let Y1, . . . , Yn have independent Poisson distributions with mean
µ. Obtain the maximum likelihood estimate of µ and its variance

(a) from first principles

(b) by the general results of asymptotic theory.

Suppose now that it is observed only whether each observation is
zero or non-zero.

I What now are the maximum likelihood estimate of µ and its
asymptotic variance?

I At what value of µ is the ratio of the latter to the former
variance minimized?

I In what practical context might these results be relevant?



STATISTICAL INFERENCE
Lecture 5

Skeleton notes

1 Asymptotic Bayesian estimation

For Bayesian estimation with a single parameter and a relatively flat prior

series expansions show how the f-pivot (θ̂ − θ)
√

ĵ is approximately also a b-

pivot and that departures from the standard normal distribution depend on

the asymmetry of the log likelihood at the maximum and the rate of change

of the log prior density at the maximum.

Bayesian testing requires more delicate analysis. A key issue is how to specify

the dependence, if any, on n of the conditional prior density of θ when the

null hypothesis is false.

2 Comparison of test procedures based on log

likelihood

There are a considerable number of procedures equivalent to the first order of

asymptotic theory, i.e., procedures for which the standardized test statistics

agree. For a scalar parameter problem the procedures (all of which appear

in the standard software packages) are based

1



• directly on the log likelihood (Wilks)

• on the gradient of the log likelihood at a notional null point, the score

statistic (Rao)

• on the maximum likelihood estimate (Wald)

The last is not exactly invariant under nonlinear transformations of the pa-

rameter but is very convenient for data summarization. They would be

numerically equal if the log likelihood were quadratic at the maximum. The

second does not require fitting a full model and so is especially useful for

testing the adequacy of relatively complex models.

The first has the major advantage of retaining at least qualitative reason-

ableness for likelihood functions of non-standard shape.

3 Jeffreys prior

The notion of a flat and in general improper prior has a long history and

some intuitive appeal. It is, however, not invariant under transformation of

the parameter, for example from θ to eθ. The flat priors with most obvious

appeal refer to location parameters, so that one resolution of the difficulty is

in effect to transform the parameter to approximately location form, take a

uniform prior for it and back-transform. This leads to the Jeffreys invariant

prior.

Suppose that θ is one-dimensional with expected information iΘ(θ), where the

notation emphasizes the parameter under study. Consider a transformation

to a new parameter φ = φ(θ). The expected information for φ is

iΦ(φ) = iΘ(θ)/(dφ/dθ)2.

2



The parameter φ has constant information and hence behaves like a location

parameter if for some constant c

dφ/dθ = c
√

iΘ(θ),

that is

φ = c
∫ θ √

iΘ(κ)dκ.

If now we formally define a flat prior to Φ the prior for Θ is proportional to

dφ/dθ, thus resolving some of the arbitrariness of the notion of a flat prior.

In simple cases this choice achieves second-order matching of frequentist

and Bayesian analyses.

For multidimensional problems the Jeffreys prior is proportional to {det(iΘ(θ)}1/2

but in general it has no obvious optimum properties.

3



STATISTICAL INFERENCE
Lecture 6

Skeleton notes

1 Outline

Asymptotic theory, Bayesian and frequentist, provides a systematic basis

for a wide range of important statistical techniques. There are, however,

a number of situations where standard arguments fail and careful analysis

is needed. To some extent there are parallel Bayesian considerations. The

situations include

• large number of nuisance parameters

• irregular log likelihood

• maximum approached at infinity

• nuisance parameters ill-defined at null point

2 Large number of nuisance parameters

Sometimes called Neyman-Scott problem.

Simplest example is the normal-theory linear model

Methods of resolution

1



• simplify

• empirical Bayes

• modification of likelihood

For standard normal theory model with E(Y ) = Xβ the log likelihood is

−n log σ − (y −Xβ)T (y −Xβ)/(2σ2)

which with the least squares estimate defined by β̂ = (XTX)−1XTy can be

written

−n log σ − {(y −Xβ̂)T (y −Xβ̂) + (β̂ − β)TXTX(β̂ − β)}/(2σ2).

Properties of maximum likelihood estimate of σ2.

Resolution by factorization of likelihood.

May be possible to apply transformation to new variables V,W such that

likelihood is

fV (v;ψ)fW |V (w, v;ψ, λ)

so that all or nearly all the information about ψ is in the first term. Then

use marginal likelihood of V . Alternatively the dependence might be

fV (v;ψ, λ)fW |V (w, v;ψ)

in which case use the conditional likelihood for inference about ψ.

Application in present example. For inference about σ2 use marginal likeli-

hood of residual sum of squares.

When would this be inappropriate in both Bayesian and frequentist ap-

proaches.

2



3 Irregular problems

Log likelihood may not be of standard form.

Already discussed multiple maxima.

May be failure of Fisher′s identity and in more extreme form the log likeli-

hood may be discontinuous at maximum.

Simple example.

Y1, . . . , Yn independent and identically distributed in rectangular distribu-

tion over (θ, 1). Likelihood is 1/(1 − θ)n provided θ < min(yk) = y(1) and

max(yk) < 1. Minimal sufficient statistic is y(1). This is within Op(1/n) of θ.

A more interesting example is that of i.i.d. values from a distribution with,

say, a lower terminal, for example

ρ exp{−ρ(y − γ)}

for y > γ and zero otherwise.

Similar behaviour. More complicated situations.

Another possibility is that supremum is approached at infinity.

Complete separation in logistic regression

pr(Yk = 1) =
exp(α+ βxk)

1 + exp(α+ βxk)
.

4 Nuisance parameters ill-defined at null

Simple example

Suppose density is

θσ−1
1 φ{(y − µ1)/σ1}+ (1− θ)σ−1

2 φ{(y − µ2)/σ2}.

Null hypothesis: two components the same.

3



5 Generalized method of moments

Sometimes may be necessary or helpful not to use likelihood and argue more

informally. If the parameter is d-dimensional find d interesting statistics

whose expectation can be evaluated under the model. Equate statistics to

their expectations and solve.

Generalizations

6 Modified likelihoods

Both Bayesian and frequentist discussions start in principle from the likeli-

hood. There are a number of reasons why modifications of the likelihood may

be desirable, for example to produce good frequentist properties or to avoid

the need to specify prior distributions over largely unimportant features of

the data. Such methods include

• marginal likelihood

• conditional likelihood

• partial likelihood

• pseudo-likelihood

• quasi-likelihood

• empirical likelihood

EXERCISE

Let Y1, . . . , Yn be independently binomially distributed each corresponding to

ν trials with probability of success θ. Both ν and θ are unknown. Construct

4



simple (inefficient) estimates of the parameters. When would you expect

the maximum likelihood estimate of ν to be at infinity? Set up a Bayesian

formulation.

HINT: For the simple estimates, think of two mathematical properties

specifying aspects of the binomial distribution, equate these to the corre-

sponding features of the data and solve for an estimate of ν. Are there

circumstances in which the estimate is infinite or undefined? Why is this?

Suggest a combination of parameter values for which such anomalies are quite

likely and simulate say 10 realizations and look at the corresponding likeli-

hoods. When interesting parameter combinations have been found make a

more detailed study.

5
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STATISTICAL INFERENCE
Lecture 7
skeleton notes

Non-likelihood inference 2

Introduction

Non-likelihood inference

Sometimes inference based on likelihood is not possible (e.g., for
computational reasons, or because a full probability model cannot
be specified).

Sometimes inference based on likelihood may be regarded as not
desirable (e.g., worries about impact of failure of tentative
‘secondary’ assumptions).

Various non-likelihood approaches, including

I ‘pseudo likelihoods’ — typically designed either for
computational simplicity or robustness to failure of (some)
assumptions

I ‘estimating equations’ approaches (includes ‘quasi likelihood’)

Non-likelihood inference 3

Estimating equations

Estimating equations

Consider scalar θ.

Define estimator θ∗ as solution to

g(θ∗;Y ) = 0

— an estimating equation, with the ‘estimating function’ g chosen
to that the equation is unbiased:

E[g(θ;Y ); θ] = 0

for all possible values of θ. (cf. score equation for MLE)

Unbiasedness of the estimating equation results (subject to limiting
conditions) in a consistent estimator θ∗.



Non-likelihood inference 4

Estimating equations

Examples

Examples
Two extremes:

1. Model is fully parametric, Y ∼ fY (y; θ). Then the choice
g(θ;Y ) = U(θ;Y ) results in an unbiased estimating equation.
There may be many others (e.g., based on moments).

2. Model is ‘semi-parametric’ perhaps specified in terms of some
moments. For example, the specification

E(Y ) = m(θ)
for some given function m may be all that is available, or all that is
regarded as reliable: in particular, the full distribution of Y is not
determined by θ.

In this case, with Y a scalar rv, the equation

g(θ;Y ) = Y −m(θ) = 0

is (essentially) the only unbiased estimating equation available.

Non-likelihood inference 5

Estimating equations

Properties

Properties

Assume ‘standard’ limiting conditions. (as for MLE)

Then a similar asymptotic argument to the one used for the MLE
yields the large-sample normal approximation

θ∗ ∼ N

(
θ,

E(g2)
[E(g′)]2

)
.

Note that the asymptotic variance is invariant to trivial scaling
g(θ;Y )→ ag(θ;Y ) for constant a — as it should be, since θ∗ is
invariant.

Non-likelihood inference 6

Estimating equations

Lower bound

Lower bound on achievable variance

(Godambe, 1960)

For unbiased estimating equation g = 0,

E(g2)
[E(g′)]2

≥ 1
E(U2)

= i−1(θ),

where U = ∂ log f/∂θ.

Equality if g = U .

This comes from the Cauchy-Schwarz inequality; it generalizes the
Cramér-Rao lower bound for the variance of an unbiased estimator.



Non-likelihood inference 7

Estimating equations

An illustration

A simple illustration

Suppose that counts Yi (i = 1, . . . , n) are made in time intervals ti.

Suppose it is suspected that the counts are over-dispersed relative
to the Poisson distribution. The actual distribution is not known,
but it is thought that roughly var(Yi) = φE(Yi) (with φ > 1).

Semi-parametric model:

1. E(Yi) = tir(xi; θ) = µi

2. var(Yi) = φµi.

The first assumption here defines the parameter of interest: θ
determines the rate (r) of occurrence at all covariate settings xi.

The second assumption is more ‘tentative’.

Non-likelihood inference 8

Estimating equations

An illustration

Hence restrict attention to estimating equations unbiased under
only assumption 1: don’t require assumption 2 for unbiasedness, in
case it is false.

Use assumption 2 to determine an optimal choice of g, among all
those such that g = 0 is unbiased under assumption 1.

Consider now the simplest case: r(xi, θ) = θ (constant rate).

Non-likelihood inference 9

Estimating equations

An illustration

The possible unbiased (under 1.) estimating equations are then

g(θ;Y ) =
n∑
1

ai(Yi − tiθ)

for some choice of constants a1, . . . , an.

Using both assumptions 1 and 2 we have that

E(g2)
[E(g′)]2

=
∑

a2
i φtiθ

(
∑

aiti)
2

— which is minimized when ai = constant.

The resulting estimator is θ∗ =
∑

Yi/
∑

ti (total count / total
exposure)

— which is ‘quasi Poisson’ in the sense that it is the same as if we
had assumed the counts to be Poisson-distributed and used MLE.
(But standard error would be inflated by an estimate of

√
φ.)

— a specific (simple) instance of the method of ‘quasi likelihood’.



Non-likelihood inference 10

Estimating equations

Generalizations

Some generalizations:

I vector parameter
I working variance → working variance/correlation structure:

quasi-likelihood → ‘generalized estimating equations’
I estimating equations designed specifically for outlier

robustness

etc., etc.
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