Statistical Modelling

Anthony Davison and Jon Forster
(C)2008
http://stat.epfl.ch, http://www.s3ri.soton.ac.uk

1. Model Selection 2
Overview 3
Basic Ideas 4
Why model? 5
Criteria for model selection 6
Motivation 7
Setting 10
Logistic regression 11
Nodal involvement 12
Log likelihood 15
Wrong model 16
Out-of-sample prediction 18
Information criteria 19
Nodal involvement. 21
Theoretical aspects 22
Properties of AIC, NIC, BIC 23
Linear Model 24
Variable selection 25
Stepwise methods 26
Nuclear power station data 27
Stepwise Methods: Comments 29
Prediction error 30
Example 32
Cross-validation 33
Other criteria 35
Experiment 36
Sparse Variable Selection 40
Desiderata 41
Example: Lasso 42
Soft thresholding 43
Example 45
Penalties 46
Threshold functions 47
Properties of penalties 48
Oracle 49
Bayesian Inference 50
Thomas Bayes (1702-1761) 51
Bayesian inference 52
Encompassing model 54
Inference 55
Lindley's paradox 56
Model averaging 57
Cement data 58
DIC. 62
MDL 63
Bayesian Variable Selection 64
Variable selection 65
Example: NMR data 66
Wavelets 67
Posterior 68
Shrinkage 69
Empirical Bayes 70
Example: NMR data 71
Comments 73
2. Beyond the Generalised Linear Model 74
Overview 75
Generalised Linear Models 76
GLM recap 77
GLM failure 78
Overdispersion 79
Example 1 80
Quasi-likelihood 84
Reasons 86
Direct models 88
Random effects 90
Dependence 92
Example 1 revisited 93
Reasons 94
Random effects 95
Marginal models 96
Clustered data 98
Example 2: Rat growth 99
Random Effects and Mixed Models 103
Linear mixed models 104
Discussion 107
LMM fitting 109
REML 110
Estimating random effects 111
Bayesian LMMs 112
Example 2 revisited 114
GLMMs 117
GLMM fitting 120
Bayesian GLMMS 124
Example 1 revisited 125
Conditional independence and graphical representations 127
Conditional independence 128
Graphs 131
DAGs 132
Undirected graphs 138
A genuinely complex model 143
3. Missing Data and Latent Variables: 144
Overview 145
Missing Data 146
Examples 147
Introduction 149
Issues 150
Models 151
Ignorability 152
Inference 153
Nonignorable models 156
Latent Variables 160
Basic idea 161
Galaxy data 162
Other latent variable models 165
EM Algorithm 166
EM algorithm 167
Toy example 170
Example: Mixture model 171
Example: Galaxy data 172
Exponential family 174
Comments 175

Overview

1. Basic ideas
2. Linear model
3. Sparse variable selection
4. Bayesian inference
5. Bayesian variable selection

APTS: Statistical Modelling

Basic Ideas

Why model?

George E. P. Box (1920-):
All models are wrong, but some models are useful.
\square Some reasons we construct models:

- to simplify reality (efficient representation);
- to gain understanding;
- to compare scientific, economic, ... theories;
- to predict future events/data;
- to control a process.

We (statisticians!) rarely believe in our models, but regard them as temporary constructs subject to improvement.Often we have several and must decide which is preferable, if any.
APTS: Statistical Modelling
April 2008 - slide 5

Criteria for model selection

Substantive knowledge, from prior studies, theoretical arguments, dimensional or other general considerations (often qualitative)
\square Generalisability of conclusions and/or predictionsSensitivity to failure of assumptions (prefer models that are robustly valid)Quality of fit-residuals, graphical assessment (informal), or goodness-of-fit tests (formal)Prior knowledge in Bayesian sense (quantitative)
APTS: Statistical Modelling
April 2008 - slide 6

Motivation

Even after applying these criteria (but also before!) we may compare many models:
\square linear regression with p covariates, there are 2^{p} possible combinations of covariates (each in/out), before allowing for transformations, etc.- if $p=20$ then we have a problem;
\square choice of bandwidth $h>0$ in smoothing problems
\square the number of different clusterings of n individuals is a Bell number (starting from $n=1$): 1,2 , $5,15,52,203,877,4140,21147,115975, \ldots$
\square we may want to assess which among 5×10^{5} SNPs on the genome may influence reaction to a new drug;
For reasons of economy we seek 'simple' models.
APTS: Statistical Modelling
April 2008 - slide 7

Albert Einstein (1879-1955)

'Everything should be made as simple as possible, but no simpler.'
APTS: Statistical Modelling
April 2008 - slide 8

William of Occam (?1285-1347/9)

Occam's razor: Pluralitas non est ponenda sine necessitate: entities should not be multiplied beyond necessity.
APTS: Statistical Modelling
April 2008 - slide 9

Setting

$\square \quad$ To focus and simplify discussion we will consider parametric models, but the same ideas generalise to semi-parametric and non-parametric settings
$\square \quad$ We will take generalised linear models (GLMs) as example of moderately complex parametric models:

- Normal linear model has three key aspects:
\triangleright structure for covariates: linear predictor $\eta=x^{\mathrm{T}} \beta$;
\triangleright response distribution: $y \sim N\left(\mu, \sigma^{2}\right)$; and
\triangleright relation $\eta=\mu$ between $\mu=\mathrm{E}(y)$ and η.
- GLM extends last two to
$\triangleright \quad y$ has density

$$
f(y ; \theta, \phi)=\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y ; \phi)\right\}
$$

where θ depends on η; dispersion parameter ϕ is often known; and
$\triangleright \quad \eta=g(\mu)$, where g is monotone link function.
APTS: Statistical Modelling
April 2008 - slide 10

Logistic regression

Commonest choice of link function for binary reponses:

$$
\operatorname{Pr}(Y=1)=\pi=\frac{\exp \left(x^{\mathrm{T}} \beta\right)}{1+\exp \left(x^{\mathrm{T}} \beta\right)}, \quad \operatorname{Pr}(Y=0)=\frac{1}{1+\exp \left(x^{\mathrm{T}} \beta\right)},
$$

giving linear model for log odds of 'success',

$$
\log \left\{\frac{\operatorname{Pr}(Y=1)}{\operatorname{Pr}(Y=0)}\right\}=\log \left(\frac{\pi}{1-\pi}\right)=x^{\mathrm{T}} \beta
$$

Log likelihood for β based on independent responses y_{1}, \ldots, y_{n} with covariate vectors x_{1}, \ldots, x_{n} is

$$
\ell(\beta)=\sum_{j=1}^{n} y_{j} x_{j}^{\mathrm{T}} \beta-\sum_{j=1}^{n} \log \left\{1+\exp \left(x_{j}^{\mathrm{T}} \beta\right)\right\}
$$

\square Good fit gives small deviance $D=2\{\ell(\tilde{\beta})-\ell(\widehat{\beta})\}$, where $\widehat{\beta}$ is model fit MLE and $\tilde{\beta}$ is unrestricted MLE.

APTS: Statistical Modelling
April 2008 - slide 11

Nodal involvement data

Table 1: Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five binary covariates age etc.

m	r	age	stage	grade	xray	acid
6	5	0	1	1	1	1
6	1	0	0	0	0	1
4	0	1	1	1	0	0
4	2	1	1	0	0	1
4	0	0	0	0	0	0
3	2	0	1	1	0	1
3	1	1	1	0	0	0
3	0	1	0	0	0	1
3	0	1	0	0	0	0
2	0	1	0	0	1	0
2						
2	1	0	1	0	0	1
2	1	0	0	1	0	0
1	1	1	1	1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
1	1	0	0	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	0

APTS: Statistical Modelling

Nodal involvement deviances

Deviances D for 32 logistic regression models for nodal involvement data. + denotes a term included in the model.

age	st	gr	xr	ac	df	D	age	st	gr	xr	ac	df	D
+					52	40.71	+	$+$	+			49	29.76
					51	39.32	$+$	$+$		+		49	23.67
	+				51	33.01	$+$	+			+	49	25.54
		$+$			51	35.13	$+$		$+$	$+$		49	27.50
			+		51	31.39	$+$		$+$		$+$	49	26.70
				+	51	33.17	+			+	$+$	49	24.92
$+$	$+$				50	30.90		$+$	$+$	$+$		49	23.98
$+$		+			50	34.54		$+$	$+$		$+$	49	23.62
$+$			+		50	30.48		+		$+$	$+$	49	19.64
$+$				+	50	32.67			$+$	$+$	+	49	21.28
	$+$	$+$			50	31.00	$+$	$+$	$+$	$+$		48	23.12
	$+$		+		50	24.92	$+$	$+$	+		$+$	48	23.38
	$+$			$+$	50	26.37	$+$	$+$		$+$	$+$	48	19.22
		$+$	+		50	27.91	+		$+$	$+$	$+$	48	21.27
		+		$+$	50	26.72		$+$	$+$	$+$	$+$	48	18.22
			+	+	50	25.25	+	+	+	+	$+$	47	18.07

APTS: Statistical Modelling
April 2008 - slide 13

Nodal involvement

Adding terms

- always increases the log likelihood $\widehat{\ell}$ and so reduces D,
- increases the number of parameters,
so taking the model with highest $\widehat{\ell}$ (lowest D) would give the full model
We need to trade off quality of fit (measured by D) and model complexity (number of parameters)
APTS: Statistical Modelling
April 2008 - slide 14

Log likelihood

\square Given (unknown) true model $g(y)$, and candidate model $f(y ; \theta)$, Jensen's inequality implies that

$$
\begin{equation*}
\int \log g(y) g(y) d y \geq \int \log f(y ; \theta) g(y) d y \tag{1}
\end{equation*}
$$

with equality if and only if $f(y ; \theta) \equiv g(y)$.
\square If θ_{g} is the value of θ that maximizes the expected log likelihood on the right of (1), then it is natural to choose the candidate model that maximises

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f(y ; \widehat{\theta})
$$

which should be an estimate of $\int \log f(y ; \theta) g(y) d y$. However as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$, by definition of $\widehat{\theta}$, this estimate is biased upwards.
\square We need to correct for the bias, but in order to do so, need to understand the properties of likelihood estimators when the assumed model f is not equal to the true model g.

APTS: Statistical Modelling
April 2008 - slide 15

Wrong model

Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} g$, but we assume that $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. The \log likelihood $\ell(\theta)$ will be maximised at $\widehat{\theta}$, and

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \ell(\widehat{\theta}) \xrightarrow{\text { a.s. }} \int \log f\left(y ; \theta_{g}\right) g(y) d y, \quad n \rightarrow \infty,
$$

where θ_{g} minimizes the Kullback-Leibler discrepancy

$$
K L\left(f_{\theta}, g\right)=\int \log \left\{\frac{g(y)}{f(y ; \theta)}\right\} g(y) d y
$$

θ_{g} gives the density $f\left(y ; \theta_{g}\right)$ closest to g in this sense, and $\widehat{\theta}$ is determined by the finite-sample version of $\partial K L\left(f_{\theta}, g\right) / \partial \theta$, i.e.

$$
0=n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta}
$$

APTS: Statistical Modelling
April 2008 - slide 16

Wrong model II

Theorem 1 Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} g$, but we assume that $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. Then under mild regularity conditions the maximum likelihood estimator $\widehat{\theta}$ satisfies

$$
\begin{equation*}
\widehat{\theta} \sim N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\}, \tag{2}
\end{equation*}
$$

where $f_{\theta_{g}}$ is the density minimising the Kullback-Leibler discrepancy between f_{θ} and g, I is the Fisher information for f, and K is the variance of the score statistic. The likelihood ratio statistic

$$
W\left(\theta_{g}\right)=2\left\{\ell(\widehat{\theta})-\ell\left(\theta_{g}\right)\right\} \dot{\sim} \sum_{r=1}^{p} \lambda_{r} V_{r},
$$

where $V_{1}, \ldots, V_{p} \stackrel{\mathrm{iid}}{\sim} \chi_{1}^{2}$, and the λ_{r} are eigenvalues of $K\left(\theta_{g}\right)^{1 / 2} I_{g}\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)^{1 / 2}$. Thus $\mathrm{E}\left\{W\left(\theta_{g}\right)\right\}=\operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}$.

Under the correct model, θ_{g} is the 'true' value of $\theta, K(\theta)=I(\theta), \lambda_{1}=\cdots=\lambda_{p}=1$, and we recover the usual results.
APTS: Statistical Modelling
April 2008 - slide 17

Note: 'Proof' of Theorem 1

Expansion of the equation defining $\widehat{\theta}$ about θ_{g} yields

$$
\widehat{\theta} \doteq \theta_{g}+\left\{-n^{-1} \sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta \partial \theta^{\mathrm{T}}}\right\}^{-1}\left\{n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta}\right\}
$$

and a modification of the usual derivation gives

$$
\begin{equation*}
\widehat{\theta} \dot{\sim} N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\}, \tag{3}
\end{equation*}
$$

where the information sandwich variance matrix depends on

$$
\begin{align*}
& K\left(\theta_{g}\right)=n \int \frac{\partial \log f(y ; \theta)}{\partial \theta} \frac{\partial \log f(y ; \theta)}{\partial \theta^{\mathrm{T}}} g(y) d y \\
& I_{g}\left(\theta_{g}\right)=-n \int \frac{\partial^{2} \log f(y ; \theta)}{\partial \theta \partial \theta^{\mathrm{T}}} g(y) d y . \tag{4}
\end{align*}
$$

If $g(y)=f(y ; \theta)$, so that the supposed density is correct, then θ_{g} is the true θ, then

$$
K\left(\theta_{g}\right)=I_{g}\left(\theta_{g}\right)=I(\theta),
$$

and (2) reduces to the usual approximation.
In practice $g(y)$ is of course unknown, and then $K\left(\theta_{g}\right)$ and $I_{g}\left(\theta_{g}\right)$ may be estimated by

$$
\begin{equation*}
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}} ; \tag{5}
\end{equation*}
$$

the latter is just the observed information matrix. We may then construct confidence intervals for θ_{g} using (2) with variance matrix $\widehat{J}^{-1} \widehat{K} \widehat{J}^{-1}$.
Similar expansions lead to the result for the likelihood ratio statistic.
APTS: Statistical Modelling
April 2008 - note 1 of slide 17

Out-of-sample prediction

We need to fix two problems with using $\bar{\ell}(\widehat{\theta})$ to choose the best candidate model:

- upward bias, as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$ because $\widehat{\theta}$ is based on Y_{1}, \ldots, Y_{n};
- no penalisation if the dimension of θ increases.

If we had another independent sample $Y_{1}^{+}, \ldots, Y_{n}^{+} \stackrel{\mathrm{iid}}{\sim} g$ and computed

$$
\bar{\ell}^{+}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f\left(Y_{j}^{+} ; \widehat{\theta}\right),
$$

then both problems disappear, suggesting that we choose the candidate model that maximises

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right],
$$

where the inner expectation is over the distribution of the Y_{j}^{+}, and the outer expectation is over the distribution of $\widehat{\theta}$.

APTS: Statistical Modelling
April 2008 - slide 18

Information criteria

Previous results on wrong model give

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right] \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y-\frac{1}{2 n} \operatorname{tr}\left\{I_{g}\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

where the second term is a penalty that depends on the model dimension.
\square We want to estimate this based on Y_{1}, \ldots, Y_{n} only, and get

$$
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y+\frac{1}{2 n} \operatorname{tr}\left\{I_{g}\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

To remove the bias, we aim to maximise

$$
\bar{\ell}(\widehat{\theta})-\frac{1}{n} \operatorname{tr}\left\{\widehat{J}^{-1} \widehat{K}\right\}
$$

where

$$
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}} ;
$$

the latter is just the observed information matrix.
APTS: Statistical Modelling
April 2008 - slide 19

Note: Bias of log likelihood

To compute the bias in $\bar{\ell}(\widehat{\theta})$, we write

$$
\begin{aligned}
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} & =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\mathrm{E}\left\{\bar{\ell}(\widehat{\theta})-\bar{\ell}\left(\theta_{g}\right)\right\} \\
& =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \mathrm{E}\left\{W\left(\theta_{g}\right)\right\} \\
& \doteq \mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \operatorname{tr}\left\{I_{g}\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
\end{aligned}
$$

where E_{g} denotes expectation over the data distribution g.
APTS: Statistical Modelling
April 2008 - note 1 of slide 19

Information criteria

Let $p=\operatorname{dim}(\theta)$ be the number of parameters for a model, and $\widehat{\ell}$ the corresponding maximised log likelihood.
\square For historical reasons we choose models that minimise similar criteria

- $2(p-\widehat{\ell})$ (AIC—Akaike Information Criterion)
- $2\left\{\operatorname{tr}\left(\widehat{J}^{-1} \widehat{K}\right)-\widehat{\ell}\right\}$ (NIC-Network Information Criterion)
- $2\left(\frac{1}{2} p \log n-\widehat{\ell}\right)$ (BIC—Bayes Information Criterion)
- $\mathrm{AIC}_{\mathrm{c}}, \mathrm{AIC}_{u}$, DIC, EIC, FIC, GIC, TIC, ...
- Mallows $C_{p}=R S S / s^{2}+2 p-n$ commonly used in regression problems, where $R S S$ is residual sum of squares for candidate model, and s^{2} is an estimate of the error variance σ^{2}.

APTS: Statistical Modelling
April 2008 - slide 20

Nodal involvement data

AIC and BIC for 2^{5} models for binary logistic regression model fitted to the nodal involvement data. Both criteria pick out the same model, with the three covariates st, xr, and ac, which has deviance $D=19.64$. Note the sharper increase of BIC after the minimum.

APTS: Statistical Modelling
April 2008 - slide 21

Theoretical aspects

We may suppose that the true underlying model is of infinite dimension, and that by choosing among our candidate models we hoe to get as close as possible to this ideal model, using the data available.
\square If so, we need some measure of distance between a candidate and the true model, and we aim to minimise this distance.
\square A model selection procedure that selects the candidate closest to the truth for large n is called asymptotically efficient.
$\square \quad$ An alternative is to suppose that the true model is among the candidate models.
\square If so, then a model selection procedure that selects the true model with probability tending to one as $n \rightarrow \infty$ is called consistent.

APTS: Statistical Modelling
April 2008 - slide 22

Properties of AIC, NIC, BIC

We seek to find the correct model by minimising IC $=c(n, p)-2 \widehat{\ell}$, where the penalty $c(n, p)$ depends on sample size n and model dimension p
$\square \quad$ Crucial aspect is behaviour of differences of IC.
\square We obtain IC for the true model, and IC + for a model with one more parameter. Then

$$
\begin{aligned}
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) & =\operatorname{Pr}\left\{c(n, p+1)-2 \widehat{\ell}_{+}<c(n, p)-2 \widehat{\ell}\right\} \\
& =\operatorname{Pr}\left\{2\left(\widehat{\ell}_{+}-\widehat{\ell}\right)>c(n, p+1)-c(n, p)\right\}
\end{aligned}
$$

and in large samples

$$
\begin{aligned}
& \text { for } \mathrm{AIC}, c(n, p+1)-c(n, p)=2 \\
& \text { for } \operatorname{NIC}, c(n, p+1)-c(n, p) \\
& \text { for } \mathrm{BIC}, c(n, p+1)-c(n, p)=2 \\
& =\log n
\end{aligned}
$$

In a regular case $2\left(\widehat{\ell}_{+}-\widehat{\ell}\right) \dot{\sim} \chi_{1}^{2}$, so as $n \rightarrow \infty$,

$$
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) \rightarrow \begin{cases}0.16, & \mathrm{AIC}, \mathrm{NIC} \\ 0, & \mathrm{BIC}\end{cases}
$$

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC does not.

APTS: Statistical Modelling
April 2008 - slide 23

Variable selection

\square Consider normal linear model

$$
Y_{n \times 1}=X_{n \times p}^{\dagger} \beta_{p \times 1}+\varepsilon_{n \times 1}, \quad \varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right)
$$

where design matrix X^{\dagger} has full rank $p<n$ and columns x_{r}, for $r \in \mathcal{X}=\{1, \ldots, p\}$. Subsets \mathcal{S} of \mathcal{X} correspond to subsets of columns.
\square Terminology

- the true model corresponds to subset $\mathcal{T}=\left\{r: \beta_{r} \neq 0\right\}$, and $|\mathcal{T}|=q<p$;
- a correct model contains \mathcal{T} but has other columns also, corresponding subset \mathcal{S} satisfies $\mathcal{T} \subset \mathcal{S} \subset \mathcal{X}$ and $\mathcal{T} \neq \mathcal{S}$;
- a wrong model has subset \mathcal{S} lacking some x_{r} for which $\beta_{r} \neq 0$, and so $\mathcal{T} \not \subset \mathcal{S}$.
$\square \quad$ Aim to identify \mathcal{T}.
\square If we choose a wrong model, have bias; if we choose a correct model, increase variance-seek to balance these.

APTS: Statistical Modelling
April 2008 - slide 25

Stepwise methods

Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;
2. if none of these terms is significant, stop; otherwise
3. update the current model to include the most significant new term; go to 1
\square Backward elimination: starting from model with all terms,
4. if all terms are significant, stop; otherwise
5. update current model by dropping the term with the smallest F statistic; go to 1
\square Stepwise: starting from an arbitary model,
6. consider 3 options-add a term, delete a term, swap a term in the model for one not in the model;
7. if model unchanged, stop; otherwise go to 1

APTS: Statistical Modelling
April 2008 - slide 26

Nuclear power station data

```
> nuclear
    cost date t1 t2 cap pr ne ct bw cum.n pt
1 460.05 68.58 14 46 687 0 1 1 0 0 0 % 14 0
2 452.99 67.33 10 73 1065 0 0 0 1 0 0 0
3 443.22 67.33 10 85 1065 1 0 0 1 0 0 1 1 0
4 652.32 68.00 11 67 1065 0 1 1 1 0 0 % 12 0
5 642.23 68.00 11 78 1065 1 1 1 1 1 0 0
6
7 272.37 68.17 12 50 822 0 0 0 0 0 0 0 % 5 0
8 317.21 68.42 14 59 457 0
9 457.12 68.42 15 55 822 1 0 0 0 0 0
10 690.19 68.33 12 71 792 0 1 1 1 1 % 0
32 270.71 67.83 7 7 80
```

APTS: Statistical Modelling
April 2008 - slide 27

Nuclear power station data

	Full model		Backward		Forward	
	Est (SE)	t	Est (SE)	t	Est (SE)	t
Constant	-14.24 (4.229)	-3.37	-13.26 (3.140)	-4.22	-7.627 (2.875)	-2.66
date	0.209 (0.065)	3.21	0.212 (0.043)	4.91	0.136 (0.040)	3.38
$\log (\mathrm{T} 1)$	0.092 (0.244)	0.38				
$\log (\mathrm{T} 2)$	0.290 (0.273)	1.05				
$\log ($ cap $)$	0.694 (0.136)	5.10	0.723 (0.119)	6.09	0.671 (0.141)	4.75
PR	-0.092 (0.077)	-1.20				
NE	0.258 (0.077)	3.35	0.249 (0.074)	3.36		
CT	0.120 (0.066)	1.82	0.140 (0.060)	2.32		
BW	0.033 (0.101)	0.33				
$\log (\mathrm{N})$	-0.080 (0.046)	-1.74	-0.088 (0.042)	-2.11		
PT	-0.224 (0.123)	-1.83	-0.226 (0.114)	-1.99	-0.490 (0.103)	-4.77
s (df)	0.164 (21)		0.159 (25)		0.195 (28	

Backward selection chooses a model with seven covariates also chosen by minimising AIC.
APTS: Statistical Modelling
April 2008 - slide 28

Stepwise Methods: Comments

Systematic search minimising AIC or similar over all possible models is preferable—not always feasible.
\square Stepwise methods can fit models to purely random data—main problem is no objective function.
\square Sometimes used by replacing F significance points by (arbitrary!) numbers, e.g. $F=4$
$\square \quad$ Can be improved by comparing AIC for different models at each step-uses AIC as objective function, but no systematic search.

APTS: Statistical Modelling
April 2008 - slide 29

Prediction error

To identify \mathcal{T}, we fit candidate model

$$
Y=X \beta+\varepsilon
$$

where columns of X are a subset \mathcal{S} of those of X^{\dagger}.
$\square \quad$ Fitted value is

$$
X \widehat{\beta}=X\left\{\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} Y\right\}=H Y=H(\mu+\varepsilon)=H \mu+H \varepsilon,
$$

where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the hat matrix and $H \mu=\mu$ if the model is correct.
\square Following reasoning for AIC, suppose we also have independent dataset Y_{+}from the true model, so $Y_{+}=\mu+\varepsilon_{+}$
\square Apart from constants, previous measure of prediction error is

$$
\Delta=n^{-1} \mathrm{E} \mathrm{E}_{+}\left\{\left(Y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(Y_{+}-X \widehat{\beta}\right)\right\},
$$

with expectations over both Y_{+}and Y.
APTS: Statistical Modelling
April 2008 - slide 30

Prediction error II

\square Can show that

$$
\Delta= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \tag{6}\\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model }\end{cases}
$$

recall that $q<p$.
\square Bias: $n^{-1} \mu^{\mathrm{T}}(I-H) \mu>0$ unless model is correct, and is reduced by including useful terms
\square Variance: $(1+p / n) \sigma^{2}$ increased by including useless terms
\square Ideal would be to choose covariates to minimise Δ : impossible-depends on unknowns μ, σ.
\square Must estimate Δ
APTS: Statistical Modelling
April 2008 - slide 31

Note: Proof of (6)

Consider data $y=\mu+\varepsilon$ to which we fit the linear model $y=X \beta+\varepsilon$, obtaining fitted value

$$
X \widehat{\beta}=H y=H(\mu+\varepsilon)
$$

where the second term is zero if μ lies in the space spanned by the columns of X, and otherwise is not. We have a new data set $y_{+}=\mu+\varepsilon_{+}$, and we will compute the average error in predicting y_{+}using $X \widehat{\beta}$, which is

$$
\Delta=n^{-1} \mathrm{E}\left\{\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)\right\} .
$$

Now

$$
y_{+}-X \widehat{\beta}=\mu+\varepsilon_{+}-(H \mu+H \varepsilon)=(I-H) \mu+\varepsilon_{+}-H \varepsilon .
$$

Therefore

$$
\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)=\mu^{\mathrm{T}}(I-H) \mu+\varepsilon^{\mathrm{T}} H \varepsilon+\varepsilon_{+}^{\mathrm{T}} \varepsilon_{+}+A
$$

where $\mathrm{E}(A)=0$; this gives that

$$
\Delta= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model }\end{cases}
$$

APTS: Statistical Modelling

Example

Δ as a function of the number of included variables p for data with $n=20, q=6, \sigma^{2}=1$. The minimum is at $p=q=6$:
\square there is a sharp decrease in bias as useful covariates are added;
\square a slow increase with variance as the number of variables p increases.
APTS: Statistical Modelling
April 2008 - slide 32

Cross-validation

If n is large, can split data into two parts $\left(X^{\prime}, y^{\prime}\right)$ and $\left(X^{*}, y^{*}\right)$, say, and use one part to estimate model, and the other to compute prediction error; then choose the model that minimises

$$
\widehat{\Delta}=n^{\prime-1}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)^{\mathrm{T}}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)=n^{\prime-1} \sum_{j=1}^{n^{\prime}}\left(y_{j}^{\prime}-x_{j}^{\prime} \widehat{\beta}^{*}\right)^{2}
$$

$\square \quad$ Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

$$
n \widehat{\Delta}_{\mathrm{CV}}=\mathrm{CV}=\sum_{j=1}^{n}\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}_{-j}\right)^{2}
$$

where $\widehat{\beta}_{-j}$ is estimate computed without $\left(x_{j}, y_{j}\right)$.
$\square \quad$ Seems to require n fits of model, but in fact

$$
\mathrm{CV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\left(1-h_{j j}\right)^{2}}
$$

where $h_{11}, \ldots, h_{n n}$ are diagonal elements of H, and so can be obtained from one fit.
APTS: Statistical Modelling
April 2008 - slide 33

Cross-validation II

Simpler (more stable?) version uses generalised cross-validation sum of squares

$$
\mathrm{GCV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\{1-\operatorname{tr}(H) / n\}^{2}}
$$

$\square \quad$ Can show that

$$
\begin{equation*}
\mathrm{E}(\mathrm{GCV})=\mu^{\mathrm{T}}(I-H) \mu /(1-p / n)^{2}+n \sigma^{2} /(1-p / n) \approx n \Delta \tag{7}
\end{equation*}
$$

so try and minimise GCV or CV.
\square Many variants of cross-validation exist. Typically find that model chosen based on CV is somewhat unstable, and that GCV or k-fold cross-validation works better. Standard strategy is to split data into 10 roughly equal parts, predict for each part based on the other nine-tenths of the data, and find model that minimises this estimate of prediction error.

APTS: Statistical Modelling
April 2008 - slide 34

Note: Derivation of (7)

We need the expectation of $(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})$, where $y-X \widehat{\beta}=(I-H) y=(I-H)(\mu+\varepsilon)$, and squaring up and noting that $\mathrm{E}(\varepsilon)=0$ gives

$$
\mathrm{E}\left\{(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})\right\}=\mu^{\mathrm{T}}(I-H) \mu+\mathrm{E}\left\{\varepsilon^{\mathrm{T}}(I-H) \varepsilon\right\}=\mu^{\mathrm{T}}(I-H) \mu+(n-p) \sigma^{2} .
$$

Now note that $\operatorname{tr}(H)=p$ and divide by $(1-p / n)^{2}$ to give (almost) the required result, for which we need also $(1-p / n)^{-1} \approx 1+p / n$, for $p \ll n$.
APTS: Statistical Modelling
April 2008 - note 1 of slide 34

Other selection criteria

Corrected version of AIC for models with normal responses:

$$
\mathrm{AIC}_{\mathrm{c}} \equiv n \log \widehat{\sigma}^{2}+n \frac{1+p / n}{1-(p+2) / n}
$$

where $\widehat{\sigma}^{2}=\mathrm{RSS} / n$. Related (unbiased) $\mathrm{AIC}_{\mathrm{u}}$ replaces $\widehat{\sigma}^{2}$ by $S^{2}=\mathrm{RSS} /(n-p)$.
\square Mallows suggested

$$
C_{p}=\frac{S S_{p}}{s^{2}}+2 p-n,
$$

where $S S_{p}$ is RSS for fitted model and s^{2} estimates σ^{2}.
\square Comments:

- AIC tends to choose models that are too complicated; $\mathrm{AIC}_{\mathrm{c}}$ cures this somewhat
- BIC chooses true model with probability $\rightarrow 1$ as $n \rightarrow \infty$, if the true model is fitted.

APTS: Statistical Modelling April 2008 - slide 35

Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using simulated normal data for each of 20 design matrices. The true model has $p=3$.

n		Number of covariates						
		1	2	3	4	5	6	7
10	C_{p}		131	504	91	63	83	128
	BIC		72	373	97	83	109	266
	AIC		52	329	97	91	125	306
	$\mathrm{AIC}_{\mathrm{c}}$	15	398	565	18	4		
20	C_{p}		4	673	121	88	61	53
	BIC		6	781	104	52	30	27
	AIC		2	577	144	104	76	97
	$\mathrm{AIC}_{\mathrm{c}}$		8	859	94	30	8	1
40	C_{p}			712	107	73	66	42
	BIC			904	56	20	15	5
	AIC			673	114	90	69	54
	$\mathrm{AIC}_{\mathrm{c}}$			786	105	52	41	16

APTS: Statistical Modelling
April 2008 - slide 36

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=20, p=1, \ldots, 16$, and $q=6$.

APTS: Statistical Modelling
April 2008 - slide 37

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=40, p=1, \ldots, 16$, and $q=6$.

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=80, p=1, \ldots, 16$, and $q=6$.

As n increases, note how
\square AIC and $\mathrm{AIC}_{\mathrm{c}}$ still allow some over-fitting, but BIC does not, and
$\square \quad \mathrm{AIC}_{\mathrm{c}}$ approaches AIC.
APTS: Statistical Modelling

Desiderata

Would like variable selection procedures that satisfy:near unbiasedness-the estimators almost provide the true parameters, when these are large and $n \rightarrow \infty$;sparsity-small estimates are reduced to zero by a threshold procedure; andcontinuity-the estimator is continuous in the data, to avoid instability in prediction.
None of the previous approaches is sparse, and stepwise selection (for example) is known to be highly unstable. To overcome this, we consider a regularised (or penalised) log likelihood of the form

$$
\frac{1}{2} \sum_{j=1}^{n} \ell_{j}\left(x_{j}^{\mathrm{T}} \beta ; y_{j}\right)-n \sum_{r=1}^{p} p_{\lambda}\left(\left|\beta_{r}\right|\right),
$$

where $p_{\lambda}(|\beta|)$ is a penalty discussed below.
APTS: Statistical Modelling
April 2008 - slide 41

Example: Lasso

\square The lasso (least absolute selection and shrinkage operator) chooses β to minimise

$$
(y-X \beta)^{\mathrm{T}}(y-X \beta) \text { such that } \sum_{r=1}^{p}\left|\beta_{r}\right| \leq \lambda,
$$

for some $\lambda>0$; call resulting estimator $\tilde{\beta}_{\lambda}$.
$\square \quad \lambda \rightarrow 0$ implies $\tilde{\beta}_{\lambda} \rightarrow 0$, and $\lambda \rightarrow \infty$ implies $\tilde{\beta}_{\lambda} \rightarrow \widehat{\beta}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} y$.
\square Simple case: orthogonal design matrix $X^{\mathrm{T}} X=I_{p}$, gives

$$
\tilde{\beta}_{\lambda, r}=\left\{\begin{array}{ll}
0, & \left|\widehat{\beta}_{r}\right|<\gamma, \tag{8}\\
\operatorname{sign}\left(\widehat{\beta}_{r}\right)\left(\left|\widehat{\beta}_{r}\right|-\gamma\right), & \text { otherwise }
\end{array} \quad r=1, \ldots, p\right.
$$

Call this soft thresholding.Generalised version is least angle regression (Efron et al., 2004, Annals of Statistics).
APTS: Statistical Modelling
April 2008 - slide 42

Note: Derivation of (8)

If the $X^{\mathrm{T}} X=I_{p}$, then with the aid of Lagrange multipliers the minimisation problem becomes

$$
\min _{\beta}(y-X \widehat{\beta}+X \widehat{\beta}-X \beta)^{\mathrm{T}}(y-X \widehat{\beta}+X \widehat{\beta}-X \beta)+2 \gamma\left(\sum_{r=1}^{p}\left|\beta_{r}\right|-\lambda\right)
$$

and this boils down to individual minimisations of the form

$$
\min _{\beta_{r}} g\left(\beta_{r}\right), \quad g(\beta)=\left(\beta-\widehat{\beta}_{r}\right)^{2}+2 \gamma|\beta| .
$$

This function is minimised at $\beta=0$ if and only iff the left and right derivatives there are negative and positive respectively, and this occurs if $\left|\widehat{\beta}_{r}\right|<c$. If not, then $\tilde{\beta}=\widehat{\beta}_{r}-\gamma$ if $\widehat{\beta}>0$, and $\tilde{\beta}=\widehat{\beta}_{r}+\gamma$ if $\widehat{\beta}<0$. This gives the desired result.
APTS: Statistical Modelling
April 2008 - note 1 of slide 42

Soft thresholding

APTS: Statistical Modelling

Graphical explanation

In each case aim to minimise the quadratic function subject to remaining inside the shaded region.

APTS: Statistical Modelling
April 2008 - slide 44

Lasso: Nuclear power data

Left: traces of coefficient estimates $\widehat{\beta}_{\lambda}$ as constraint λ is relaxed, showing points at which the different covariates enter the model. Right: behaviour of Mallows' C_{p} as λ increases.

APTS: Statistical Modelling
April 2008 - slide 45

Penalties

Some possible penalty functions $p_{\lambda}(|\beta|)$, all with $\lambda>0$:
\square ridge regression takes $\lambda|\beta|^{2}$;lasso takes $\lambda|\beta|$;bridge regression takes $\lambda|\beta|^{q}$, for $q>0$;hard threshold takes $\lambda^{2}-(|\beta|-\lambda)^{2} I(|\beta|<\lambda)$;
\square smoothly clipped absolute deviation (SCAD) takes

$$
\begin{cases}\lambda|\beta|, & |\beta|<\lambda, \\ -\left(\beta^{2}-2 a \lambda|\beta|+\lambda^{2}\right) /\{2(a-1)\}, & \lambda<|\beta|<a \lambda, \\ (a+1) \lambda^{2} / 2, & |\beta|>a \lambda,\end{cases}
$$

for some $a>2$.
In least squares case with a single observation seek to minimise $\frac{1}{2}(z-\beta)^{2}+p_{\lambda}(|\beta|)$, whose derivative

$$
\operatorname{sign}(\beta)\left\{|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta\right\}-z
$$

determines the properties of the estimator.
APTS: Statistical Modelling
April 2008 - slide 46

Some threshold functions

Ridge-shrinkage but no selection; hard threshold-subset selection, unstable; soft threshold-lasso, biased; SCAD-continuous, selection, unbiased for large β, but non-monotone.

APTS: Statistical Modelling
April 2008 - slide 47

Properties of penalties

It turns out that to achieve
\square near unbiasedness, the penalty must satisfy $\partial p_{\lambda}(|\beta|) / \partial \beta \rightarrow 0$ when $|\beta|$ is large, so then the estimating function approaches $\beta-z$;
\square sparsity, the minimum of the function $|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta$ must be positive; and
\square continuity, the minimum of $|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta$ must be attained at $\beta=0$.
The SCAD is constructed to have these properties, but there is no unique minimum to the resulting objective function, so numerically it is awkward.
APTS: Statistical Modelling
April 2008 - slide 48

Oracle

Oracle:
A person or thing regarded as an infallible authority or guide.
\square A statistical oracle says how to choose the model or bandwidth that will give us optimal estimation of the true parameter or function, but not the truth itself.
\square In the context of variable selection, an oracle tells us which variables we should select, but not their coefficients.
\square It turns out that under mild conditions on the model, and provided $\lambda \equiv \lambda_{n} \rightarrow 0$ and $\sqrt{n} \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, variable selection using the hard and SCAD penalties has an oracle property: the estimators of β work as well as if we had known in advance which covariates should be excluded.
\square Same ideas extend to generalised linear models, survival analysis, and many other regression settings (Fan and Li, 2001, JASA).
$\square \quad$ Harder: what happens when $p \rightarrow \infty$ also?
APTS: Statistical Modelling
April 2008 - slide 49

Bayesian Inference

Thomas Bayes (1702-1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London.
APTS: Statistical Modelling
April 2008 - slide 51

Bayesian inference

Parametric model for data y assumed to be realisation of $Y \sim f(y ; \theta)$, where $\theta \in \Omega_{\theta}$.
Frequentist viewpoint (cartoon version):there is a true value of θ that generated the data;this 'true' value of θ is to be treated as an unknown constant;probability statements concern randomness in hypothetical replications of the data (possibly conditioned on an ancillary statistic).
Bayesian viewpoint (cartoon version):all ignorance may be expressed in terms of probability statements;a joint probability distribution for data and all unknowns can be constructed;Bayes' theorem should be used to convert prior beliefs $\pi(\theta)$ about unknown θ into posterior beliefs $\pi(\theta \mid y)$, conditioned on data;
\square probability statements concern randomness of unknowns, conditioned on all known quantities.
APTS: Statistical Modelling
April 2008 - slide 52

Mechanics

Separate from data, we have prior information about parameter θ summarised in density $\pi(\theta)$
\square Data model $f(y \mid \theta) \equiv f(y ; \theta)$
\square Posterior density given by Bayes' theorem:

$$
\pi(\theta \mid y)=\frac{\pi(\theta) f(y \mid \theta)}{\int \pi(\theta) f(y \mid \theta) d \theta} .
$$

$\square \pi(\theta \mid y)$ contains all information about θ, conditional on observed data y
\square If $\theta=(\psi, \lambda)$, then inference for ψ is based on marginal posterior density

$$
\pi(\psi \mid y)=\int \pi(\theta \mid y) d \lambda
$$

APTS: Statistical Modelling

Encompassing model

Suppose we have M alternative models for the data, with respective parameters $\theta_{1} \in \Omega_{\theta_{1}}, \ldots, \theta_{m} \in \Omega_{\theta_{m}}$. Typically dimensions of $\Omega_{\theta_{m}}$ are different.
\square We enlarge the parameter space to give an encompassing model with parameter

$$
\theta=\left(m, \theta_{m}\right) \in \Omega=\bigcup_{m=1}^{M}\{m\} \times \Omega_{\theta_{m}}
$$

\square Thus need priors $\pi_{m}\left(\theta_{m} \mid m\right)$ for the parameters of each model, plus a prior $\pi(m)$ giving pre-data probabilities for each of the models; overall

$$
\pi\left(m, \theta_{m}\right)=\pi\left(\theta_{m} \mid m\right) \pi(m)=\pi_{m}\left(\theta_{m}\right) \pi_{m}
$$

say.Inference about model choice is based on marginal posterior density

$$
\pi(m \mid y)=\frac{\int f\left(y \mid \theta_{m}\right) \pi_{m}\left(\theta_{m}\right) \pi_{m} d \theta_{m}}{\sum_{m^{\prime}=1}^{M} \int f\left(y \mid \theta_{m^{\prime}}\right) \pi_{m^{\prime}}\left(\theta_{m^{\prime}}\right) \pi_{m^{\prime}} d \theta_{m^{\prime}}}=\frac{\pi_{m} f(y \mid m)}{\sum_{m^{\prime}=1}^{M} \pi_{m^{\prime}} f\left(y \mid m^{\prime}\right)} .
$$

APTS: Statistical Modelling
April 2008 - slide 54

Inference

Can write

$$
\pi\left(m, \theta_{m} \mid y\right)=\pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

so Bayesian updating corresponds to

$$
\pi\left(\theta_{m} \mid m\right) \pi(m) \mapsto \pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

and for each model $m=1, \ldots, M$ we need

- posterior probability $\pi(m \mid y)$, which involves the marginal likelihood

$$
f(y \mid m)=\int f\left(y \mid \theta_{m}, m\right) \pi\left(\theta_{m} \mid m\right) d \theta_{m} ; \text { and }
$$

- the posterior density $f\left(\theta_{m} \mid y, m\right)$.
\square If there are just two models, can write

$$
\frac{\pi(1 \mid y)}{\pi(2 \mid y)}=\frac{\pi_{1}}{\pi_{2}} \frac{f(y \mid 1)}{f(y \mid 2)}
$$

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor $B_{12}=f(y \mid 1) / f(y \mid 2)$.

APTS: Statistical Modelling
April 2008 - slide 55

Sensitivity of the marginal likelihood

Suppose the prior for each θ_{m} is $\mathcal{N}\left(0, \sigma^{2} I_{d_{m}}\right)$, where $d_{m}=\operatorname{dim}\left(\theta_{m}\right)$. Then, dropping the m subscript for clarity,

$$
\begin{aligned}
f(y \mid m) & =\sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \exp \left\{-\theta_{r}^{2} /\left(2 \sigma^{2}\right)\right\} \mathrm{d} \theta_{r} \\
& \approx \sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \mathrm{~d} \theta_{r},
\end{aligned}
$$

for a highly diffuse prior distribution (large σ^{2}). The Bayes factor for comparing the models is approximately

$$
\frac{f(y \mid 1)}{f(y \mid 2)} \approx \sigma^{\left(d_{2}-d_{1}\right) / 2} g(y),
$$

where $g(y)$ depends on the two likelihoods but is independent of σ^{2}. Hence, whatever the data tell us about the relative merits of the two models, the Bayes factor in favour of the simpler model can be made arbitrarily large by increasing σ.
This illustrates Lindley's paradox, and implies that we must be careful when specifying prior dispersion parameters to compare models.
APTS: Statistical Modelling
April 2008 - slide 56

Model averaging

If a quantity Z has the same interpretation for all models, it may be necessary to allow for model uncertainty:

- in prediction, each model may be just a vehicle that provides a future value, not of interest per se;
- physical parameters (means, variances, etc.) may be suitable for averaging, but care is needed.The predictive distribution for Z may be written

$$
f(z \mid y)=\sum_{m=1}^{M} f(z \mid y, m) \operatorname{Pr}(m \mid y)
$$

where

$$
\operatorname{Pr}(m \mid y)=\frac{f(y \mid m) \operatorname{Pr}(m)}{\sum_{m^{\prime}=1}^{M} f\left(y \mid m^{\prime}\right) \operatorname{Pr}\left(m^{\prime}\right)}
$$

Computational problems can arise if MCMC methods are needed, because jumps between spaces of different dimensions are often required-can be awkward.

APTS: Statistical Modelling
April 2008 - slide 57

Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement $\left(x_{1}, \ldots, x_{4}\right)$ and heat evolved y in calories, in $n=13$ samples.

Example: Cement data

cement					
	x 1	x 2	x 3	x 4	y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	20	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	115.9
11	1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

APTS: Statistical Modelling

Example: Cement data

Bayesian model choice and prediction using model averaging for the cement data ($n=13, p=4$). For each of the 16 possible subsets of covariates, the table shows the log Bayes factor in favour of that subset compared to the model with no covariates and gives the posterior probability of each model. The values of the posterior mean and scale parameters a and b are also shown for the six most plausible models; $\left(y_{+}-a\right) / b$ has a posterior t density. For comparison, the residual sums of squares are also given.

Model	RSS	$2 \log B_{10}$	$\operatorname{Pr}(M \mid y)$	a	b
----	2715.8	0.0	0.0000		
$1---$	1265.7	7.1	0.0000		
$-2--$	906.3	12.2	0.0000		
$--3-$	1939.4	0.6	0.0000		
---4	883.9	12.6	0.0000		
$12--$	57.9	45.7	0.2027	93.77	2.31
$1-3-$	1227.1	4.0	0.0000		
$1--4$	74.8	42.8	0.0480	99.05	2.58
$-23-$	415.4	19.3	0.0000		
$-2-4$	868.9	11.0	0.0000		
--34	175.7	31.3	0.0002		
$123-$	48.11	43.6	0.0716	95.96	2.80
$12-4$	47.97	47.2	0.4344	95.88	2.45
$1-34$	50.84	44.2	0.0986	94.66	2.89
-234	73.81	33.2	0.0004		
1234	47.86	45.0	0.1441	95.20	2.97

APTS: Statistical Modelling
April 2008 - slide 60

Example: Cement data

Posterior predictive densities for cement data. Predictive densities for a future observation y_{+}with covariate values x_{+}based on individual models are given as dotted curves. The heavy curve is the average density from all 16 models.

DIC

How to compare complex models (e.g. hierarchical models, mixed models, Bayesian settings), in which the 'number of parameters' may:

- outnumber the number of observations?
- be unclear because of the regularisation provided by a prior density?
$\square \quad$ Suppose model has 'Bayesian deviance'

$$
D(\theta)=-2 \log f(y \mid \theta)+2 \log f(y)
$$

for some normalising function $f(y)$, and suppose that samples from the posterior density of θ are available and give $\bar{\theta}=\mathrm{E}(\theta \mid y)$.
\square One possibility is the deviance information criterion (DIC)

$$
D(\bar{\theta})+2 p_{D},
$$

where the number of associated parameters is

$$
p_{D}=\overline{D(\theta)}-D(\bar{\theta}) .
$$

\square This involves only (MCMC) samples from the posterior, no analytical computations, and reproduces AIC for some classes of models.

APTS: Statistical Modelling
April 2008 - slide 62

Minimum description length

Model selection can also be based on related ideas of minimum description length (MDL) or minimum message length (MML), which use ideas from computer science-coding and information theory:idea is to choose encoding of data that minimises length of equivalent binary sequence, regarding all data as discrete;
\square minimum message includes parameter estimates, data using optimal code based on parameter estimates, (and prior information);
\square close links to AIC, BIC, etc.;
\square see http://www.mdl-research.org/ or tutorial on http://homepages.cwi.nl/~pdg/ftp/mdlintro.pdf to learn more.
APTS: Statistical Modelling
April 2008 - slide 63

Variable selection

In Bayesian context, must determine prior probability for the inclusion (or not) of each variable in the model.
\square Common to use 'spike and slab' prior for coefficient θ :

$$
\theta= \begin{cases}0, & \text { with probability } 1-p \\ \mathcal{N}\left(0, \tau^{2}\right), & \text { with probability } p\end{cases}
$$

corresponding to prior 'density'

$$
\pi(\theta)=(1-p) \delta(\theta)+p \tau^{-1} \phi(\theta / \tau), \quad \theta \in \mathbb{R}
$$

where $\delta(\theta)$ is the delta function putting unit mass at $\theta=0$.
\square Now find posterior for β based on data.
$\square \quad$ Usually independent priors for each covariate, and typically need clever (dimension-jumping) MCMC.

APTS: Statistical Modelling April 2008 - slide 65

Example: NMR data

Left: original data, with $n=1024$
Right: orthogonal transformation into $n=1024$ coefficients at different resolutions
APTS: Statistical Modelling
April 2008 - slide 66

Orthogonal transformation

Model: original data $X \sim \mathcal{N}_{n}\left(\mu, \sigma^{2} I_{n}\right)$, where signal $\mu_{n \times 1}$ is perturbed by normal noise, giving noisy data $X_{n \times 1}$$\square$ set $Y_{n \times 1}=W_{n \times n} X_{n \times 1}$, where $W^{\mathrm{T}} W=W W^{\mathrm{T}}=I_{n}$ is orthogonal
\square choose W so that $\theta=W \mu$ should be 'sparse' (i.e. most elements of θ are zero)—good choice is wavelet coefficients (mathematical compression properties)
\square 'kill' small coefficients of Y, which correspond to noise, giving $\tilde{\theta}_{n \times 1}=\operatorname{kill}(Y)=\operatorname{kill}(W X)$, say, then
\square estimate signal μ by

$$
\tilde{\mu}=W^{\mathrm{T}} \tilde{\theta}=W^{\mathrm{T}}(\operatorname{kill}(W X)) .
$$

APTS: Statistical Modelling

Posterior

If given $\theta, Y \sim \mathcal{N}\left(\theta, \sigma^{2}\right)$, then the posterior 'density' is of form

$$
\pi(\theta \mid y)=\left(1-p_{y}\right) \delta(\theta)+p_{y} b^{-1} \phi\left(\frac{\theta-a y}{b}\right), \quad \theta \in \mathbb{R}
$$

where

$$
a=\tau^{2} /\left(\tau^{2}+\sigma^{2}\right), \quad b^{2}=1 /\left(1 / \sigma^{2}+1 / \tau^{2}\right)
$$

and

$$
p_{y}=\frac{p\left(\sigma^{2}+\tau^{2}\right)^{-1 / 2} \phi\left\{y /\left(\sigma^{2}+\tau^{2}\right)^{1 / 2}\right\}}{(1-p) \sigma^{-1} \phi(y / \sigma)+p\left(\sigma^{2}+\tau^{2}\right)^{-1 / 2} \phi\left\{y /\left(\sigma^{2}+\tau^{2}\right)^{1 / 2}\right\}}
$$

is the posterior probability that $\theta \neq 0$.
Summary statistic: posterior median $\tilde{\theta}$, for which $\operatorname{Pr}(\theta \leq \tilde{\theta} \mid y)=0.5$. For small $|y|$, this gives $\tilde{\theta}=0$. (Next slide)
APTS: Statistical Modelling

Shrinkage

Prior CDF of θ (left), and posterior CDFs when $p=0.5, \sigma=\tau=1$, and $y=-2.5$ (centre), and $y=-1$ (right).
Red horizontal line: cumulative probability $=0.5$
Blue vertical line: data y
Green vertical line: posterior median $\tilde{\theta}$

APTS: Statistical Modelling

Posterior, $\mathrm{y}=-2.5$, posterior median $=-0.98$

April 2008 - slide 69

Empirical Bayes

The parameters p, σ, τ are unknown. We estimate them by empirical Bayes:
\square we note that the marginal density of y is

$$
f(y)=(1-p) \sigma^{-1} \phi(y / \sigma)+p\left(\sigma^{2}+\tau^{2}\right)^{-1 / 2} \phi\left\{y /\left(\sigma^{2}+\tau^{2}\right)^{1 / 2}\right\}, \quad y \in \mathbb{R},
$$

so if we have $y_{1}, \ldots, y_{n} \stackrel{\text { iid }}{\sim} f$ we estimate p, σ, τ by maximising the log likelihood

$$
\ell(p, \sigma, \tau)=\sum_{j=1}^{n} \log f\left(y_{j} ; p, \sigma, \tau\right) .
$$

Here we obtain $\tilde{p}=0.04, \tilde{\sigma}=2.1$, and $\tilde{\tau}=52.1$.
\square Now compute the posterior medians $\tilde{\theta}_{j}$ corresponding to each y_{j}.
APTS: Statistical Modelling

Example: NMR data

APTS: Statistical Modelling
April 2008 - slide 71

Example: NMR data

APTS: Statistical Modelling
April 2008 - slide 72

Comments

$\square \quad$ Large and rapidly-growing literature on Bayesian 'variable' selection, now particularly focused on 'large p, small n ' paradigm
\square Close relation to classical 'super-efficient' estimation: James-Stein theorem, Hodges-Lehmann estimator, biased (but lower loss) estimation

APTS: Statistical Modelling
April 2008 - slide 73

2. Beyond the Generalised Linear Model

Overview

1. Generalised linear models
2. Overdispersion
3. Correlation
4. Random effects models
5. Conditional independence and graphical representations

APTS: Statistical Modelling
April 2008 - slide 75

Generalised Linear Models

GLM recap

y_{1}, \ldots, y_{n} are observations of response variables Y_{1}, \ldots, Y_{n} assumed to be independently generated by a distribution of the same exponential family form, with means $\mu_{i} \equiv \mathrm{E}\left(Y_{i}\right)$ linked to explanatory variables $X_{1}, X_{2}, \ldots, X_{p}$ through

$$
g\left(\mu_{i}\right)=\eta_{i} \equiv \beta_{0}+\sum_{r=1}^{p} \beta_{r} x_{i r} \equiv x_{i}^{\mathrm{T}} \beta
$$

GLMs have proved remarkably effective at modelling real world variation in a wide range of application areas.
APTS: Statistical Modelling
April 2008 - slide 77

GLM failure

However, situations frequently arise where GLMs do not adequately describe observed data.
This can be due to a number of reasons including:
\square The mean model cannot be appropriately specified as there is dependence on an unobserved (or unobservable) explanatory variable.
$\square \quad$ There is excess variability between experimental units beyond that implied by the mean/variance relationship of the chosen response distribution.
$\square \quad$ The assumption of independence is not appropriate.
\square Complex multivariate structure in the data requires a more flexible model class
APTS: Statistical Modelling
April 2008 - slide 78

Overdispersion

Example 1: toxoplasmosis

The table below gives data on the relationship between rainfall (x) and the proportions of people with toxoplasmosis (y / m) for 34 cities in El Salvador.

City	y	x	City	y	x	City	y	x
1	$5 / 18$	1620	12	$3 / 5$	1800	23	$3 / 10$	1973
2	$15 / 30$	1650	13	$8 / 10$	1800	24	$1 / 6$	1976
3	$0 / 1$	1650	14	$0 / 1$	1830	25	$1 / 5$	2000
4	$2 / 4$	1735	15	$53 / 75$	1834	26	$0 / 1$	2000
5	$2 / 2$	1750	16	$7 / 16$	1871	27	$7 / 24$	2050
6	$2 / 8$	1750	17	$24 / 51$	1890	28	$46 / 82$	2063
7	$2 / 12$	1756	18	$3 / 10$	1900	29	$7 / 19$	2077
8	$6 / 11$	1770	19	$23 / 43$	1918	30	$9 / 13$	2100
9	$33 / 54$	1770	20	$3 / 6$	1920	31	$4 / 22$	2200
10	$8 / 13$	1780	21	$0 / 1$	1920	32	$4 / 9$	2240
11	$41 / 77$	1796	22	$3 / 10$	1936	33	$8 / 11$	2250
						34	$23 / 37$	2292

APTS: Statistical Modelling
April 2008 - slide 80

Example

Toxoplasmosis data and fitted models

APTS: Statistical Modelling
April 2008 - slide 81

Example

Fitting various binomial logistic regression models relating toxoplasmosis incidence to rainfall:

Model	df	deviance
Constant	33	74.21
Linear	32	74.09
Quadratic	31	74.09
Cubic	30	62.62

So evidence in favour of the cubic over other models, but a poor fit ($X^{2}=58.21$ on 30 df).
This is an example of overdispersion where residual variability is greater than would be predicted by the specified mean/variance relationship

$$
\operatorname{var}(Y)=\frac{\mu(1-\mu)}{m} .
$$

APTS: Statistical Modelling

Example

Toxoplasmosis residual plot

Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops short of a full probability model for Y.

For a model specified by the mean relationship $g\left(\mu_{i}\right)=\eta_{i}=x_{i}^{\mathrm{T}} \beta$, and variance $\operatorname{var}\left(Y_{i}\right)=\sigma^{2} V\left(\mu_{i}\right) / m_{i}$, the quasi-likelihood equations are

$$
\sum_{i=1}^{n} x_{i} \frac{y_{i}-\mu_{i}}{\sigma^{2} V\left(\mu_{i}\right) g^{\prime}\left(\mu_{i}\right) / m_{i}}=0
$$

If $V\left(\mu_{i}\right) / m_{i}$ represents $\operatorname{var}\left(Y_{i}\right)$ for a standard distribution from the exponential family, then these equations can be solved for β using standard GLM software.
Provided the mean and variance functions are correctly specified, asymptotic normality for $\widehat{\beta}$ still holds. The dispersion parameter σ^{2} can be estimated using

$$
\widehat{\sigma}^{2} \equiv \frac{1}{n-p-1} \sum_{i=1}^{n} \frac{m_{i}\left(y_{i}-\widehat{\mu}_{i}\right)^{2}}{V\left(\widehat{\mu}_{i}\right)}
$$

APTS: Statistical Modelling
April 2008 - slide 84

Quasi-likelihood for toxoplasmosis data

Assuming the same mean model as before, but $\operatorname{var}\left(Y_{i}\right)=\sigma^{2} \frac{\mu_{i}\left(1-\mu_{i}\right)}{m_{i}}$, we obtain $\widehat{\sigma}^{2}=1.94$ with $\widehat{\beta}$ (and corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

$$
F=\frac{(74.21-62.62) / 3}{1.94}=1.99
$$

which provides much less compelling evidence in favour of an effect of rainfall on toxoplasmosis incidence.

APTS: Statistical Modelling
April 2008 - slide 85

Reasons

To construct a full probability model in the presence of overdispersion, it is necessary to consider why overdispersion might be present.

Possible reasons include:
There may be an important explanatory variable, other than rainfall, which we haven't observed.
\square Or there may be many other features of the cities, possibly unobservable, all having a small individual effect on incidence, but a larger effect in combination. Such effects may be individually undetectable - sometimes described as natural excess variability between units.

APTS: Statistical Modelling
April 2008 - slide 86

Reasons: unobserved heterogeneity

When part of the linear predictor is 'missing' from the model,

$$
\eta_{i}^{\text {true }}=\eta_{i}^{\text {model }}+\eta_{i}^{\text {diff }}
$$

We can compensate for this, in modelling, by assuming that the missing $\eta_{i}^{\text {diff }} \sim F$ in the population. Hence, given $\eta_{i}^{\text {model }}$

$$
\mu_{i} \equiv g^{-1}\left(\eta_{i}^{\text {model }}+\eta_{i}^{\text {diff }}\right) \sim G
$$

where G is the distribution induced by F. Then

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\mathrm{E}_{G}\left[\mathrm{E}\left(Y_{i} \mid \mu_{i}\right)\right]=\mathrm{E}_{G}\left(\mu_{i}\right) \\
\operatorname{var}\left(Y_{i}\right) & =\mathrm{E}_{G}\left(V\left(\mu_{i}\right) / m_{i}\right)+\operatorname{var}_{G}\left(\mu_{i}\right)
\end{aligned}
$$

APTS: Statistical Modelling
April 2008 - slide 87

Direct models

One approach is to model the Y_{i} directly, by specifying an appropriate form for G.
For example, for the toxoplasmosis data, we might specify a beta-binomial model, where

$$
\mu_{i} \sim \operatorname{Beta}\left(k \mu_{i}^{*}, k\left[1-\mu_{i}^{*}\right]\right)
$$

leading to

$$
\mathrm{E}\left(Y_{i}\right)=\mu_{i}^{*}, \quad \operatorname{var}\left(Y_{i}\right)=\frac{\mu_{i}^{*}\left(1-\mu_{i}^{*}\right)}{m_{i}}\left(1+\frac{m_{i}-1}{k+1}\right)
$$

with $\left(m_{i}-1\right) /(k+1)$ representing an overdispersion factor.
APTS: Statistical Modelling
April 2008 - slide 88

Direct models

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred approach, e.g. the beta-binomial model has likelihood

$$
f\left(y \mid \mu^{*}, k\right) \propto \prod_{i=1}^{n} \frac{\Gamma\left(k \mu_{i}^{*}+m_{i} y_{i}\right) \Gamma\left(k\left(1-\mu_{i}^{*}\right)+m_{i}\left(1-y_{i}\right)\right) \Gamma(k)}{\Gamma\left(k \mu_{i}^{*}\right) \Gamma\left(k\left(1-\mu_{i}^{*}\right)\right) \Gamma\left(k+m_{i}\right)}
$$

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean, leading to a negative binomial marginal distribution for Y_{i}.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is usually preferred.
APTS: Statistical Modelling
April 2008 - slide 89

A random effects model for overdispersion

A more flexible, and extensible approach models the excess variability by including an extra term in the linear predictor

$$
\begin{equation*}
\eta_{i}=x_{i}^{\mathrm{T}} \beta+u_{i} \tag{9}
\end{equation*}
$$

where the u_{i} can be thought of as representing the 'extra' variability between units, and are called random effects.

The model is completed by specifying a distribution F for u_{i} in the population - almost always, we use

$$
u_{i} \sim N\left(0, \sigma^{2}\right)
$$

for some unknown σ^{2}.
We set $\mathrm{E}\left(u_{i}\right)=0$, as an unknown mean for u_{i} would be unidentifiable in the presence of the intercept parameter β_{0}.
APTS: Statistical Modelling
April 2008 - slide 90

Random effects: likelihood

The parameters of this random effects model are usually considered to be $\left(\beta, \sigma^{2}\right)$ and therefore the likelihood is given by

$$
\begin{align*}
f\left(y \mid \beta, \sigma^{2}\right) & =\int f\left(y \mid \beta, u, \sigma^{2}\right) f\left(u \mid \beta, \sigma^{2}\right) \mathrm{d} u \\
& =\int f(y \mid \beta, u) f\left(u \mid \sigma^{2}\right) \mathrm{d} u \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid \beta, u_{i}\right) f\left(u_{i} \mid \sigma^{2}\right) \mathrm{d} u_{i} \tag{10}
\end{align*}
$$

where $f\left(y_{i} \mid \beta, u_{i}\right)$ arises from our chosen exponential family, with linear predictor (9) and $f\left(u_{i} \mid \sigma^{2}\right)$ is a univariate normal p.d.f.

Usually no further simplification of (10) is possible, so computation needs careful consideration - we will come back to this later.
APTS: Statistical Modelling
April 2008 - slide 91

Toxoplasmosis example revisited

We can think of the toxoplasmosis proportions Y_{i} in each city (i) as arising from the sum of binary variables, $Y_{i j}$, representing the toxoplasmosis status of individuals (j), so $m_{i} Y_{i}=\sum_{j=1}^{m_{i}} Y_{i j}$. Then

$$
\begin{aligned}
\operatorname{var}\left(Y_{i}\right) & =\frac{1}{m_{i}^{2}} \sum_{j=1}^{m_{i}} \operatorname{var}\left(Y_{i j}\right)+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right) \\
& =\frac{\mu_{i}\left(1-\mu_{i}\right)}{m_{i}}+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right)
\end{aligned}
$$

So any positive correlation between individuals induces overdispersion in the counts.
APTS: Statistical Modelling
April 2008 - slide 93

Dependence: reasons

There may be a number of plausible reasons why the responses corresponding to units within a given cluster are dependent (in the toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed previously.
In the 'correct' model (corresponding to $\eta_{i}^{\text {true }}$), the toxoplasmosis status of individuals, $Y_{i j}$, are
independent, so

$$
Y_{i j} \Perp Y_{i k}\left|\eta_{i}^{\text {true }} \quad \Leftrightarrow \quad Y_{i j} \Perp Y_{i k}\right| \eta_{i}^{\text {model }}, \eta_{i}^{\text {diff }}
$$

However, in the absence of knowledge of $\eta_{i}^{\text {diff }}$

$$
Y_{i j} \not \Perp Y_{i k} \mid \eta_{i}^{\text {model }}
$$

Hence conditional (given $\eta_{i}^{\text {diff }}$) independence between units in a common cluster i becomes marginal dependence, when marginalised over the population distribution F of unobserved $\eta_{i}^{\text {diff }}$.
APTS: Statistical Modelling
April 2008 - slide 94

Random effects and dependence

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests that intra-cluster dependence might be modelled using random effects, For example, for the individual-level toxoplasmosis data

$$
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i j}\right), \quad \log \frac{\mu_{i j}}{1-\mu_{i j}}=x_{i j}^{\mathrm{T}} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

which implies

$$
Y_{i j} \not \Perp Y_{i k} \mid \beta, \sigma^{2}
$$

Intra-cluster dependence arises in many applications, and random effects provide an effective way of modelling it.

APTS: Statistical Modelling
April 2008 - slide 95

Marginal models

It should be noted that random effects modelling is not the only way of accounting for intra-cluster dependence.

A marginal model models $\mu_{i j} \equiv \mathrm{E}\left(Y_{i j}\right)$ as a function of explanatory variables, through $g\left(\mu_{i j}\right)=x_{i j}^{\mathrm{T}} \beta$, and also specifies a variance relationship $\operatorname{var}\left(Y_{i j}\right)=\sigma^{2} V\left(\mu_{i j}\right) / m_{i j}$ and a model for $\operatorname{corr}\left(Y_{i j}, Y_{i k}\right)$, as a function of μ and possibly additional parameters.

It is important to note that the parameters β in a marginal model have a different interpretation from those in a random effects model, because for the latter

$$
\mathrm{E}\left(Y_{i j}\right)=\mathrm{E}\left(g^{-1}\left[x_{i j}^{\mathrm{T}} \beta+u_{i}\right]\right) \neq g^{-1}\left(x_{i j}^{\mathrm{T}} \beta\right) \quad \text { (unless } g \text { is linear). }
$$

$\square \quad$ A random effects model describes the mean response at the subject level ('subject specific')
\square A marginal model describes the mean response across the population ('population averaged')
APTS: Statistical Modelling
April 2008 - slide 96

GEEs

As with the quasi-likelihood approach above, marginal models do not generally provide a full probability model for Y. Nevertheless, β can be estimated using generalised estimating equations (GEEs).

The GEE for estimating β in a marginal model is of the form

$$
\sum_{i}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\mathrm{T}} \operatorname{var}\left(Y_{i}\right)^{-1}\left(Y_{i}-\mu_{i}\right)=0
$$

where $Y_{i}=\left(Y_{i j}\right)$ and $\mu_{i}=\left(\mu_{i j}\right)$
Consistent covariance estimates are available for GEE estimators.
Furthermore, the approach is generally robust to mis-specification of the correlation structure.
For the rest of this module, we focus on fully specified probability models.
APTS: Statistical Modelling
April 2008 - slide 97

Clustered data

Examples where data are collected in clusters include:
\square Studies in biometry where repeated measures are made on experimental units. Such studies can effectively mitigate the effect of between-unit variability on important inferences.
$\square \quad$ Agricultural field trials, or similar studies, for example in engineering, where experimental units are arranged within blocks
\square Sample surveys where collecting data within clusters or small areas can save costs

Of course, other forms of dependence exist, for example spatial or serial dependence induced by arrangement in space or time of units of observation. This will be the focus of a later APTS module.
APTS: Statistical Modelling
April 2008 - slide 98

Example 2: Rat growth

The table below is extracted from a data set giving the weekly weights of 30 young rats.

	Week				
Rat	1	2	3	4	5
1	151	199	246	283	320
2	145	199	249	293	354
3	147	214	263	312	328
4	155	200	237	272	297
5	135	188	230	280	323
6	159	210	252	298	331
7	141	189	231	275	305
8	159	201	248	297	338
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
30	153	200	244	286	324

APTS: Statistical Modelling

Example

Rat growth data

A simple model

Letting Y represent weight, and X represent week, we can fit the simple linear regression

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+\epsilon_{i j}
$$

with resulting estimates $\widehat{\beta}_{0}=156.1(2.25)$ and $\widehat{\beta}_{1}=43.3(0.92)$
Residuals show clear evidence of an unexplained difference between rats

APTS: Statistical Modelling
April 2008 - slide 101

Model elaboration

Naively adding a (fixed) effect for animal

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+u_{i}+\epsilon_{i j}
$$

Residuals show evidence of a further unexplained difference between rats in terms of dependence on x

More complex cluster dependence required.
APTS: Statistical Modelling
April 2008 - slide 102

Linear mixed models

A linear mixed model (LMM) for observations $y=\left(y_{1}, \ldots, y_{n}\right)$ has the general form

$$
\begin{equation*}
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right) \tag{11}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables. Usually, $\Sigma=\sigma^{2} I_{n}$. A typical example for clustered data might be

$$
\begin{equation*}
Y_{i j} \stackrel{\operatorname{ind}}{\sim} N\left(\mu_{i j}, \sigma^{2}\right), \quad \mu_{i j}=x_{i j}^{\mathrm{T}} \beta+z_{i j}^{\mathrm{T}} b_{i}, \quad b_{i} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}^{*}\right) \tag{12}
\end{equation*}
$$

where $x_{i j}$ contain the explanatory data for cluster i, observation j and (normally) $z_{i j}$ contains that sub-vector of $x_{i j}$ which is allowed to exhibit extra between cluster variation in its relationship with Y. In the simplest (random intercept) case, $z_{i j}=(1)$, as in equation (9).
APTS: Statistical Modelling
April 2008 - slide 104

LMM example

A plausible LMM for k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the rat growth data) is

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right) \stackrel{\mathrm{T}}{\stackrel{\text { nd }}{\sim}} N\left(0, \Sigma_{b}^{*}\right)
$$

This fits into the general LMM framework (11) with $\Sigma=\sigma^{2} I_{n}$ and

$$
\begin{aligned}
& X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{cc}
1 & x_{i 1} \\
\vdots & \vdots \\
1 & x_{i n_{i}}
\end{array}\right) \\
& \beta=\binom{\beta_{0}}{\beta_{1}}, \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right), \quad b_{i}=\binom{b_{0 i}}{b_{1 i}}, \quad \Sigma_{b}=\left(\begin{array}{ccc}
\Sigma_{b}^{*} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \Sigma_{b}^{*}
\end{array}\right)
\end{aligned}
$$

where Σ_{b}^{*} is an unspecified 2×2 positive definite matrix.
APTS: Statistical Modelling

Variance components

The term mixed model refers to the fact that the linear predictor $X \beta+Z b$ contains both fixed effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

$$
\begin{equation*}
Y \sim N\left(X \beta, \Sigma+Z \Sigma_{b} Z^{\mathrm{T}}\right) \tag{13}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables.
Hence $\operatorname{var}(Y)$ is comprised of two variance components.
Other ways of describing LMMs for clustered data, such as (12) (and their generalised linear model counterparts) are as hierarchical models or multilevel models. This reflects the two-stage structure of the model, a conditional model for $Y_{i j} \mid b_{i}$, followed by a marginal model for the random effects b_{i}.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for example, patients within wards within hospitals, or pupils within classes within schools.
APTS: Statistical Modelling
April 2008 - slide 106

Discussion: Why random effects?

It would be perfectly possible to take a model such as (12) and ignore the final component, leading to fixed cluster effects (as we did for the rat growth data).

The main issue with such an approach is that inferences, particularly predictive inferences can then only be made about those clusters present in the observed data.
Random effects models, on the other hand, allow inferences to be extended to a wider population (at the expense of a further modelling assumption).

It also can be the case, as in (9) with only one observation per 'cluster', that fixed effects are not identifiable, whereas random effects can still be estimated. Similarly, some treatment variables must be applied at the cluster level, so fixed treatment and cluster effects are aliased.

Random effects allow 'borrowing strength' across clusters by shrinking fixed effects towards a common mean.
APTS: Statistical Modelling
April 2008 - slide 107

Discussion: A Bayesian perspective

A Bayesian LMM supplements (11) with prior distributions for β, Σ and Σ_{b}.
In one sense the distinction between fixed and random effects is much less significant, as in the full Bayesian probability specification, both β and b, as unknowns have probability distributions, $f(\beta)$ and $f(b)=\int f\left(b \mid \Sigma_{b}\right) f\left(\Sigma_{b}\right) \mathrm{d} \Sigma_{b}$

Indeed, prior distributions for 'fixed' effects are sometimes constructed in a hierarchical fashion, for convenience (for example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for which we have no relevant data (for example cluster effects for unobserved clusters) might need to be predicted.
APTS: Statistical Modelling
April 2008 - slide 108

LMM fitting

The likelihood for $\left(\beta, \Sigma, \Sigma_{b}\right)$ is available directly from (13) as

$$
\begin{equation*}
f\left(y \mid \beta, \Sigma, \Sigma_{b}\right) \propto|V|^{-1 / 2} \exp \left(\frac{1}{2}(y-X \beta)^{\mathrm{T}} V^{-1}(y-X \beta)\right) \tag{14}
\end{equation*}
$$

where $V=\Sigma+Z \Sigma_{b} Z^{\mathrm{T}}$. This likelihood can be maximised directly (usually numerically).
However, mles for variance parameters of LMMs can have large downward bias (particularly in cluster models with a small number of observed clusters).
Hence estimation by REML - REstricted (or REsidual) Maximum Likelihood is usually preferred.
REML proceeds by estimating the variance parameters $\left(\Sigma, \Sigma_{b}\right)$ using a marginal likelihood based on the residuals from a (generalised) least squares fit of the model $\mathrm{E}(Y)=X \beta$.
APTS: Statistical Modelling
April 2008 - slide 109

REML

In effect, REML maximizes the likelihood of any linearly independent sub-vector of $\left(I_{n}-H\right) y$ where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the usual hat matrix. As

$$
\left(I_{n}-H\right) y \sim N\left(0,\left(I_{n}-H\right) V\left(I_{n}-H\right)\right)
$$

this likelihood will be free of β. It can be written in terms of the full likelihood (14) as

$$
\begin{equation*}
f\left(r \mid \Sigma, \Sigma_{b}\right) \propto f\left(y \mid \widehat{\beta}, \Sigma, \Sigma_{b}\right)\left|X^{\mathrm{T}} V X\right|^{1 / 2} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\beta}=\left(X^{\mathrm{T}} V^{-1} X\right)^{-1} X^{\mathrm{T}} V^{-1} y \tag{16}
\end{equation*}
$$

is the usual generalised least squares estimator given known V.
Having first obtained $\left(\widehat{\Sigma}, \widehat{\Sigma}_{b}\right)$ by maximising (15), $\widehat{\beta}$ is obtained by plugging the resulting \widehat{V} into (16).
Note that REML maximised likelihoods cannot be used to compare different fixed effects specifications, due to the dependence of 'data' r in $f\left(r \mid \Sigma, \Sigma_{b}\right)$ on X.
APTS: Statistical Modelling
April 2008 - slide 110

Estimating random effects

A natural predictor \tilde{b} of the random effect vector b is obtained by minimising the mean squared prediction error $\mathrm{E}\left[(\tilde{b}-b)^{\mathrm{T}}(\tilde{b}-b)\right]$ where the expectation is over both b and y.
This is achieved by

$$
\begin{equation*}
\tilde{b}=\mathrm{E}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1} Z^{\mathrm{T}} \Sigma^{-1}(y-X \beta) \tag{17}
\end{equation*}
$$

giving the Best Linear Unbiased Predictor (BLUP) for b, with corresponding variance

$$
\operatorname{var}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1}
$$

The estimates are obtained by plugging in ($\widehat{\beta}, \widehat{\Sigma}, \widehat{\Sigma}_{b}$), and are shrunk towards 0 , in comparison with equivalent fixed effects estimators.

Any component, b_{k} of b with no relevant data (for example a cluster effect for an as yet unobserved cluster) corresponds to a null column of Z, and then $\tilde{b}_{k}=0$ and $\operatorname{var}\left(b_{k} \mid y\right)=\left[\Sigma_{b}\right]_{k k}$, which may be estimated if, as is usual, b_{k} shares a variance with other random effects.
APTS: Statistical Modelling
April 2008 - slide 111

Bayesian estimation: the Gibbs sampler

Bayesian estimation in LMMs (and their generalised linear model counterparts) generally proceeds using Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the posterior distribution of interest. Then, any posterior expectation can be estimated by the corresponding Monte Carlo sample mean, densities can be estimated from samples etc.
The theory and application of MCMC will be covered in a later APTS module. Here we simply describe the (most basic) Gibbs sampler.
To generate from $f\left(y_{1}, \ldots, y_{n}\right)$, (where the component $y_{i} s$ are allowed to be multivarate) the Gibbs sampler starts from an arbitrary value of y and updates components (sequentially or otherwise) by generating from the conditional distributions $f\left(y_{i} \mid y_{\backslash i}\right)$ where $y_{\backslash i}$ are all the variables other than y_{i}, set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for sampling.
APTS: Statistical Modelling
April 2008 - slide 112

Bayesian estimation for LMMs

For the LMM

$$
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto \phi(y-Z b ; X \beta, \Sigma) f(\beta) \\
f(b \mid y, \text { rest }) & \propto \phi(y-X \beta ; Z b, \Sigma) \phi\left(b ; 0, \Sigma_{b}\right) \\
f(\Sigma \mid y, \text { rest }) & \propto \phi(y-X \beta-Z b ; 0, \Sigma) f(\Sigma) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

where $\phi(y ; \mu, \Sigma)$ is a $N(\mu, \Sigma)$ p.d.f. evaluated at y.
We can exploit conditional conjugacy in the choices of $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$ making the conditionals above of known form and hence straightforward to sample from. The conditional independence $(\beta, \Sigma) \Perp \Sigma_{b} \mid b$ is also helpful.
See Practical 2 for further details.
APTS: Statistical Modelling
April 2008 - slide 113

Example: Rat growth revisited

Here, we consider the model

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right)^{\mathrm{T}} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}\right)
$$

where $\epsilon_{i j} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ and Σ_{b} is an unspecified covariance matrix. This model allows for random (cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter	Estimate	Standard error
β_{0}	156.05	$2.16(2.13)$
β_{1}	43.27	$0.73(0.72)$
$\Sigma_{00}^{1 / 2}=$ s.d. $\left(b_{0}\right)$	$10.93(10.71)$	
$\Sigma_{11}^{1 / 2}=$ s.d. $\left(b_{1}\right)$	$3.53(3.46)$	
$\operatorname{Corr}\left(b_{0}, b_{1}\right)$	$0.18(0.19)$	

As expected ML variances are smaller, but not by much.
APTS: Statistical Modelling
April 2008 - slide 114

Example: Fixed v. random effect estimates

The shrinkage of random effect estimates towards a common mean is clearly illustrated.

Random effects estimates 'borrow strength' across clusters, due to the Σ_{b}^{-1} term in (17). Extent of this is determined by cluster similarity. This is usually considered to be a desirable behaviour.
APTS: Statistical Modelling
April 2008 - slide 115

Example: Diagnostics

Normal Q-Q plots of intercept (panel 1) and slope (panel 2) random effects and residuals v. week (panel 3)

Evidence of a common quadratic effect, confirmed by AIC (1036 v. 1099) and BIC (1054 v. 1114) based on full ML fits. AIC would also include a cluster quadratic effect (BIC equivocal).
APTS: Statistical Modelling
April 2008 - slide 116

Generalised linear mixed models

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

$$
Y_{i} \stackrel{\text { ind }}{\sim} F\left(\cdot \mid \mu_{i}, \sigma^{2}\right), \quad g(\mu) \equiv\left(\begin{array}{c}
g\left(\mu_{1}\right) \tag{18}\\
\vdots \\
g\left(\mu_{n}\right)
\end{array}\right)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

where $F\left(\cdot \mid \mu_{i}, \sigma^{2}\right)$ is an exponential family distribution with $\mathrm{E}(Y)=\mu$ and $\operatorname{var}(Y)=\sigma^{2} V(\mu) / m$ for known m. Commonly (e.g. Binomial, Poisson) $\sigma^{2}=1$, and we shall assume this from here on.
It is not necessary that the distribution for the random effects b is normal, but this usually fits. It is possible (but beyond the scope of this module) to relax this.
APTS: Statistical Modelling
April 2008 - slide 117

GLMM example

A plausible GLMM for binary data in k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the toxoplasmosis data at individual level) is

$$
\begin{equation*}
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right) \tag{19}
\end{equation*}
$$

[note: no random slope here]. This fits into the general GLMM framework (18) with

$$
\begin{gathered}
X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right), \\
\beta=\left(\beta_{0}, \beta_{1}\right)^{\mathrm{T}}, \quad b=\left(b_{01}, \ldots, b_{0 k}\right)^{\mathrm{T}}, \quad \Sigma_{b}=\sigma_{b}^{2} I_{k}
\end{gathered}
$$

[or equivalent binomial representation for city data, with clusters of size 1.]
APTS: Statistical Modelling

GLMM likelihood

The marginal distribution for the observed Y in a GLMM does not usually have a convenient closed-form representation.

$$
\begin{align*}
f\left(y \mid \beta, \Sigma_{b}\right) & =\int f\left(y \mid \beta, b, \Sigma_{b}\right) f\left(b \mid \beta, \Sigma_{b}\right) \mathrm{d} b \\
& =\int f(y \mid \beta, b) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid g^{-1}([X \beta+Z b] i)\right) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b . \tag{20}
\end{align*}
$$

For nested random effects structures, some simplification is possible. For example, for (19)

$$
f\left(y \mid \beta, \sigma_{b}^{2}\right) \propto \prod_{i=1}^{n} \int \frac{\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)}{\left(1+\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)\right)^{n_{k}}} \phi\left(b_{0 i} ; 0, \sigma_{b}^{2}\right) \mathrm{d} b_{0 i}
$$

a product of one-dimensional integrals.
APTS: Statistical Modelling

GLMM fitting: quadrature

Fitting a GLMM by likelihood methods requires some method for approximating the integrals involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS: Statistical computing). For example, for a one-dimensional cluster-level random intercept b_{i} we might use

$$
\begin{aligned}
& \int \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i}\right)\right) \phi\left(b_{i} \mid 0, \sigma_{b}^{2}\right) \mathrm{d} b_{i} \\
& \quad \approx \sum_{q=1}^{Q} w_{q} \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i q}\right)\right)
\end{aligned}
$$

for suitably chosen weights $\left(w_{q}, q=1, \ldots, Q\right)$ and quadrature points $\left(b_{i q}, q=1, \ldots, Q\right)$
Effective quadrature approaches use information about the mode and dispersion of the integrand (can be done adaptively).
For multi-dimensional b_{i}, quadrature rules can be applied recursively, but performance (in fixed time) diminishes rapidly with dimension.
APTS: Statistical Modelling
April 2008 - slide 120

GLMM fitting: Penalised quasi-likelihood

An alternative approach to fitting a GLMM uses penalised quasi-likelihood (PQL).
The most straightforward way of thinking about PQL is to consider the adjusted dependent variable v constructed when calculating mles for a GLM using Fisher scoring

$$
v_{i}=\left(y_{i}-\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)+\eta_{i}
$$

Now, for a GLMM,

$$
\mathrm{E}(v \mid b)=\eta=X \beta+Z b
$$

and

$$
\operatorname{var}(v \mid b)=W^{-1}=\operatorname{diag}\left(\operatorname{var}\left(y_{i}\right) g^{\prime}\left(\mu_{i}\right)^{2}\right),
$$

where W is the weight matrix used in Fisher scoring.
APTS: Statistical Modelling
April 2008 - slide 121

GLMM fitting: PQL continued

Hence, approximating the conditional distribution of z by a normal distribution, we have

$$
\begin{equation*}
v \sim N\left(X \beta+Z b, W^{-1}\right), \quad b \sim N\left(0, \Sigma_{b}\right) \tag{21}
\end{equation*}
$$

where v and W also depend on β and b.
PQL proceeds by iteratively estimating β, b and Σ_{b} for the linear mixed model (21) for v, updating v and W at each stage, based on the current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type approximation to the integral in the GLMM likelihood.
A full Laplace approximation (expanding the complete log-integrand, and evaluating the Hessian matrix at the mode) is an alternative approach, which itself is a one-point Gaussian quadrature.
APTS: Statistical Modelling
April 2008 - slide 122

GLMM fitting: discussion

Using PQL, estimates of random effects b come 'for free'. With Gaussian quadrature, some extra effort is required to compute $\mathrm{E}(b \mid y)$ - quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with caution.
$\square \quad$ It can fail badly when the normal approximation that justifies it is invalid (for example for binary observations)
\square As it does not use a full likelihood, model comparison should not be performed using PQL maximised 'likelihoods'
Likelihood inference for GLMMs remains an area of active research and vigorous debate. Recent approaches include HGLMs (hierarchical GLMs) where inference is based on the h-likelihood $f(y \mid \beta, b) f(b \mid \Sigma)$.
APTS: Statistical Modelling
April 2008 - slide 123

Bayesian estimation for GLMMs

Bayesian estimation in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

$$
Y_{i} \stackrel{\text { ind }}{\sim} F(\cdot \mid \mu), \quad g(\mu)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta)$ and $f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto f(\beta) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f(b \mid y, \text { rest }) & \propto \phi\left(b ; 0, \Sigma_{b}\right) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

For a conditionally conjugate choice of $f\left(\Sigma_{b}\right), f\left(\Sigma_{b} \mid y\right.$, rest) is straightforward to sample from. The conditionals for β and b are not generally available for direct sampling, but there are a number of ways of modifying the basic approach to account for this.
APTS: Statistical Modelling
April 2008 - slide 124

Toxoplasmosis revisited

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the individual-level model
$Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right)$

Parameter	Estimate (s.e.)		
	ML	Laplace	PQL
β_{0}	$-0.1343(1.440)$	$-0.1384(1.488)$	$-0.150(1.392)$
$\beta_{1}\left(\times 10^{6}\right)$	$5.930(745.7)$	$7.215(770.2)$	$-5.711(721.7)$
σ_{b}	0.5132	0.5209	0.4911
AIC	65.75	65.96	$' 65.98$ '

APTS: Statistical Modelling
April 2008 - slide 125

Toxoplasmosis continued

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the extended model

$$
\log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}+\beta_{1} x_{i j}^{2}+\beta_{1} x_{i j}^{3}
$$

Parameter	Estimate (s.e.)		
	ML	Laplace	PQL
β_{0}	$-335.5(136.6)$	$-335.0(136.3)$	$-330.8(140.7)$
β_{1}	$0.5238(0.2118)$	$0.5231(0.2112)$	$0.5166(0.2180)$
$\beta_{2}\left(\times 10^{4}\right)$	$-2.710(1.089)$	$-2.706(1.086)$	$-2.674(1.121)$
$\beta_{3}\left(\times 10^{8}\right)$	$4.463(1.857)$	$4.636(1.852)$	$4.583(1.910)$
σ_{b}	0.4232	0.4171	0.4508
AIC	63.84	63.97	'64.03'

So for this example, a good agreement between the different computational methods. Some evidence for the cubic model over the linear model.
APTS: Statistical Modelling
April 2008 - slide 126

Conditional independence and graphical representations

The role of conditional independence

In modelling clustered data, the requirement is often (as in the toxoplasmosis example above) to construct a model to incorporate both non-normality and dependence. There are rather few 'off-the shelf' models for dependent observations (and those that do exist, such as the multivariate normal, often require strong assumptions which may be hard to justify in practice).

The 'trick' with GLMMs was to model dependence via a series of conditionally independent sub-models for the observations y given the random effects b, with dependence induced by marginalising over the distribution of b.

De Finetti's theorem provides some theoretical justification for modelling dependent random variables as conditionally independent given some unknown parameter (which we here denote by ϕ).

APTS: Statistical Modelling
April 2008 - slide 128

De Finetti's theorem

De Finetti's theorem states (approximately) that any y_{1}, \ldots, y_{n} which can be thought of as a finite subset of an exchangeable infinite sequence of random variables $y_{1}, y_{2} \ldots$, has a joint density which can be written as

$$
f(y)=\int f(\phi) \prod_{i=1}^{n} f\left(y_{i} \mid \phi\right) \mathrm{d} \phi
$$

for some $f(\phi), f\left(y_{i} \mid \phi\right)$. Hence the y_{i} can be modelled as conditionally independent given ϕ.
An exchangeable infinite sequence is one for which any finite subsequence has a distribution which is invariant under permutation of the lablels of its components.

We can invoke this as an argument for treating as conditionally independent any set of variables about which our prior belief is symmetric.
APTS: Statistical Modelling
April 2008 - slide 129

Complex stochastic models

In many applications we want to model a multivariate response and/or to incorporate a complex (crossed or hierarchically nested) cluster structure amongst the observations.

The same general approach, splitting the model up into small components, with a potentially rich conditional independence structure linking them facilitates both model construction and understanding, and (potentially) computation.
APTS: Statistical Modelling
April 2008 - slide 130

Conditional independence graphs

An extremely useful tool, for model description, model interpretation, and to assist identifying efficient methods for computation is the directed acyclic graph (DAG) representing the model.
Denote by $Y=\left(Y_{1}, \ldots, Y_{\ell}\right)$ the collection of elements of the model which are considered random (given a probability distribution). Then the model is a (parametric) description of the joint distribution $f(y)$, which we can decompose as

$$
f(y)=f\left(y_{1}\right) f\left(y_{1} \mid y_{2}\right) \cdots f\left(y_{\ell} \mid y_{1}, \ldots, y_{\ell-1}\right)=\prod_{i} f\left(y_{i} \mid y_{<i}\right)
$$

where $y_{<i}=\left\{y_{1}, \ldots, y_{i-1}\right\}$. Now, for certain orderings of the variables in Y, the model may admit conditional independences, exhibited through $f\left(y_{\ell} \mid y_{1}, \ldots, y_{\ell-1}\right)$ being functionally free of y_{j} for one or more $j<i$. This is expressed as

$$
Y_{i} \Perp Y_{j} \mid Y_{<i \backslash j}
$$

where $Y_{<i \backslash j}=\left\{Y_{1}, \ldots, Y_{j-1}, Y_{j+1}, \ldots, Y_{i-1}\right\}$.
APTS: Statistical Modelling
April 2008 - slide 131

DAGs

The directed acyclic graph (DAG) representing the probability model, decomposed as

$$
f(y)=\prod_{i} f\left(y_{i} \mid y_{<i}\right)
$$

consists of a vertex (or node) for each Y_{i}, together with an directed edge (arrow) to each Y_{j} from each $Y_{i}, i<j$ such that $f\left(y_{j} \mid y_{<j}\right)$ depends on y_{i}. For example, the model

$$
f\left(y_{1}, y_{2}, y_{3}\right)=f\left(y_{1}\right) f\left(y_{2} \mid y_{1}\right) f\left(y_{3} \mid y_{2}\right)
$$

is represented by the DAG

The conditional independence of Y_{1} and Y_{3} given Y_{2} is represented by the absence of a directed edge from Y_{1} to Y_{3}.
APTS: Statistical Modelling

DAG for a GLMM

The DAG for the general GLMM

$$
Y_{i} \stackrel{\text { ind }}{\sim} F\left(\cdot \mid \mu_{i}, \sigma^{2}\right), \quad g(\mu)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

consists, in its most basic form of two nodes, one for Y and one for b :

It is generally more informative, to include the model parameters and explanatory data in the DAG. Such fixed (non-stochastic) quantities are often denoted by a different style of vertex in the DAG

APTS: Statistical Modelling
April 2008 - slide 133

DAG for a Bayesian GLMM

A Bayesian model is a full joint probability model, across both the variables treated as stochastic in a classical approach, and any unspecified model parameters. The marginal probability distribution for the parameters represents the prior (to observing data) uncertainty about these quantities.
The appropriate DAG for a Bayesian GLMM reflects this, augmenting the DAG on the previous slide to:

where $\phi_{\sigma}, \phi_{\Sigma}$ and ϕ_{β} are hyperparameters - fixed inputs into the prior distributions for σ^{2}, σ_{b} and β respectively.
APTS: Statistical Modelling
April 2008 - slide 134

DAG properties

Suppose we have a DAG representing our model for a collection of random variables $Y=\left(Y_{1}, \ldots, Y_{\ell}\right)$ where the ordering of the $Y_{i} \mathrm{~s}$ is chosen such that all edges in the DAG are from lower to higher numbered vertices. [This must be possible for an acyclic graph, but there will generally be more than one possible ordering]. Then the joint distribution for Y factorises as

$$
f(y)=\prod_{i} f\left(y_{i} \mid p a\left[y_{i}\right]\right)
$$

where $p a\left[y_{i}\right]$ represents the subset of $\left\{y_{j}, j<i\right\}$ with edges to y_{i}. Such variables are called the parents of y_{i}.
APTS: Statistical Modelling
April 2008 - slide 135

The local Markov property

A natural consequence of the DAG factorisation of the joint distribution of Y is the local Markov property for DAGS. This states that any variable Y_{i} is conditionally independent of its non-descendents, given its parents.
A descendent of Y_{i} is any variable in $\left\{Y_{j}, j>i\right\}$ which can be reached in the graph by following a sequence of edges from Y_{i} (respecting the direction of the edges).

For example, for the simple DAG above

the conditional independence of Y_{3} and Y_{1} given Y_{2} is an immediate consequence of the local Markov property.
APTS: Statistical Modelling
April 2008 - slide 136

The local Markov property - limitations

Not all useful conditional independence properties of DAG models follow immediately from the local Markov property. For example, for the Bayesian GLMM

the posterior distribution is conditional on observed Y, for which the local Markov property is unhelpful, as Y is not a parent of any other variable.

To learn more about conditional independences arising form a DAG, it is necessary to construct the corresponding undirected conditional independence graph.

APTS: Statistical Modelling
April 2008 - slide 137

Undirected graphs

An undirected conditional independence graph for Y consists of a vertex for each Y_{i}, together with a set of undirected edges (lines) between vertices such that absence of an edge between two vertices Y_{i} and Y_{j} implies the conditional independence

$$
Y_{i} \Perp Y_{j} \mid Y_{\backslash\{i, j\}}
$$

where $Y_{\backslash\{i, j\}}$ is the set of varables excluding Y_{i} and Y_{j}.
From a DAG, we can obtain the corresponding undirected conditional independence graph via a two stage process
\square First we moralise the graph by adding an (undirected) edge between ('marrying') any two vertices which have a child in common, and which are not already joined by an edge.
$\square \quad$ Then we replace all directed edges by undirected edges.
APTS: Statistical Modelling
April 2008 - slide 138

Undirected graphs: examples

APTS: Statistical Modelling
April 2008 - slide 139

Global Markov property

For an undirected conditional independence graph, the global Markov property states that any two variables, Y_{i} and Y_{j} say, are conditionally independent given any subset $Y_{\text {sep }}$ of the other variables which separate Y_{i} and Y_{j} in the graph.
We say that $Y_{\text {sep }}$ separates Y_{i} and Y_{j} in an undirected graph if any path from Y_{i} to Y_{j} via edges in the graph must pass through a variable in $Y_{\text {sep }}$.
APTS: Statistical Modelling
April 2008 - slide 140

Undirected graph for Bayesian GLMM

The DAG for the Bayesian GLMM

has corresponding undirected graph (for the stochastic vertices)

The conditional independence of $\left(\beta, \sigma^{2}\right)$ and Σ_{b} given b (and Y) is immediately obvious. APTS: Statistical Modelling

Markov equivalence

Any moral DAG (one which has no 'unmarried' parents) is Markov equivalent to its corresponding undirected graph (i.e. it encodes exactly the same conditional independence structure).

Conversely, the vertices of any decomposable undirected graph (one with no chordless cycles of four or more vertices) can be numbered so that, replacing the undirected edges by directed edges from lower to higher numbered vertices produces a Markov equivalent DAG.
Such a numbering is called a perfect numbering for the graph, and is not unique.
It immediately follows that the Markov equivalence classes for DAGs can have (many) more than one member, each of which implies the same model for the data (in terms of conditional independence structure)

The class of DAGs is clearly much larger than the class of undirected graphs, and encompasses a richer range of conditional independence structures.
APTS: Statistical Modelling
April 2008 - slide 142

A genuinely complex model

In the APTS lecture, a practical example from the recent literature will be briefly discussed. APTS: Statistical Modelling

April 2008 - slide 143
3. Missing Data and Latent Variables:

Overview

1. Missing data
2. Latent variables
3. EM algorithm

APTS: Statistical Modelling
April 2008 - slide 145

Missing Data

Example 1: Birthweight and smoking

Data from the Collaborative Perinatal Project						
	Birth weight (known)				Birth weight (unknown)	
	<2500	≥ 2500	<2500	≥ 2500		
Mother smokes?	Y	4512	21009		1049	
(known)	N	3394	24132		1135	
Mother smokes? (unknown)	Y					
	N	142	464		1224	

APTS: Statistical Modelling
April 2008 - slide 147

Example 2: Political opinions

Sex	Social		ntentio	n know		Intention unknown
	class	Con.	Lab.	Lib.	Other	Con. Lab. Lib. Other
M	1	26	8	7	0	11
	2	87	37	30	6	64
	3	66	77	23	8	77
	4	14	25	15	1	12
	5	6	6	2	0	7
F	1	1	1	0	1	2
	2	63	34	32	2	68
	3	102	52	22	4	77
	4	10	32	10	2	38
	5	20	25	8	2	19

$1=$ Professional, $2=$ Managerial and technical, $3=$ Skilled, $4=$ Semi-skilled or unskilled, $5=$ Never worked.

APTS: Statistical Modelling
April 2008 - slide 148

Introduction

Missing data arises in many practical applications. Typically, our data might appear (with missing data indicated by $*$) as

Unit (i)	Variable (j)					
	1	2	3	\cdots	p	
1	y_{11}	y_{12}	y_{13}	\cdots	$y_{1 p}$	
2	y_{21}	$*$	y_{23}	\cdots	$y_{2 p}$	
3	$*$	y_{32}	$*$	\cdots	$*$	
4	$*$	y_{42}	y_{43}	\cdots	$y_{4 p}$	
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
n	$y_{n 1}$	$*$	$y_{n 3}$	\cdots	$y_{n p}$	

Variables which have missing obervations in our data frame are said to be subject to item nonresponse. When there are units with no available data whatsoever, that is referred to as unit nonresponse.
If the variables can be ordered so that, for any unit i, ($y_{i j}$ is missing $) \Rightarrow\left(y_{i k}\right.$ is missing for all $k>j$), the missing data pattern is said to be monotone (e.g. longitudinal dropout, special cases like Example 2).
APTS: Statistical Modelling
April 2008 - slide 149

Issues

Missing data creates two major problems for analysis.
Suppose that we have a model $f(y \mid \theta)$, for which the likelihood is tractable. When certain $y_{i j}$ are missing, the likelihood for inference must be based on the observed data distribution

$$
\begin{equation*}
f\left(y_{\text {obs }} \mid \theta\right)=\int f\left(y_{\text {obs }}, y_{\text {mis }} \mid \theta\right) \mathrm{d} y_{\text {mis }} \tag{22}
\end{equation*}
$$

where the subscripts obs and mis refer to observed and missing components, respectively. It is typically much more difficult to compute (22) than $f(y \mid \theta)$ for fully observed data.Even when it can be computed, the likelihood (22) is only valid for inference about θ under the assumption that the fact that certain observations are missing provides no information about θ.
APTS: Statistical Modelling
April 2008 - slide 150

Models

To formalise this, it is helpful to introduce a series of binary response indicator variables r_{1}, \ldots, r_{p}, where

$$
r_{i j}=1 \Leftrightarrow y_{i j} \text { is observed, } \quad i=1, \ldots, n ; j=1, \ldots, p
$$

We factorise the joint distribution of (y, r) into a data model for y and a (conditional) response model for r

$$
f(y, r \mid \theta, \phi)=f(y \mid \theta) f(r \mid y, \phi)
$$

Then the likelihood for the observed data, $\left(y_{\text {obs }}, r\right)$ is

$$
\begin{equation*}
f\left(y_{\mathrm{obs}}, r \mid \theta, \phi\right)=\int f\left(y_{\mathrm{obs}}, y_{\mathrm{mis}} \mid \theta\right) f\left(r \mid y_{\mathrm{obs}}, y_{\mathrm{mis}}, \phi\right) \mathrm{d} y_{\mathrm{mis}} \tag{23}
\end{equation*}
$$

In this set-up inference for θ should be based on (23), but there are situations when it is valid to ignore the missing data mechanism (and the corresponding variable r) and base inference for θ on the simpler $f\left(y_{\text {obs }} \mid \theta\right)$.
APTS: Statistical Modelling
April 2008 - slide 151

Ignorability

If $R \Perp Y_{\text {mis }} \mid Y_{\text {obs }}, \phi$ then $f\left(r \mid y_{\text {obs }}, y_{\text {mis }}, \phi\right)$ in (23) can be replaced by $f\left(r \mid y_{\text {obs }}, \phi\right)$, and (23) is simplified to:

$$
\begin{equation*}
f\left(y_{\mathrm{obs}}, r \mid \theta, \phi\right)=f\left(y_{\mathrm{obs}} \mid \theta\right) f\left(r \mid y_{\mathrm{obs}}, \phi\right) \tag{24}
\end{equation*}
$$

Hence, the likelihood for (θ, ϕ) factorises and provided that θ and ϕ are independent (in a functional sense for likelihood analysis, and in the usual stochastic sense for Bayesian analysis) inference for θ can be based on $f\left(y_{\text {obs }} \mid \theta\right)$.

Any missing data model which satisfies the two requirements above, namely $\left[R \Perp Y_{\text {mis }} \mid Y_{\text {obs }}, \phi\right]$ and $[\phi$ independent of θ] is said to be ignorable. Otherwise, it is nonignorable.
\square Missing data which satisfies $R \Perp Y_{\mathrm{mis}} \mid Y_{\mathrm{obs}}, \phi$ is said to be missing at random (MAR)
\square Missing data which satisfies the stronger condition $R \Perp Y_{\text {mis }}, Y_{\text {obs }} \mid \phi$ is said to be missing completely at random (MCAR). For MCAR data, correct (but potentially highly sub-optimal) inferences can be obtained by complete case analysis.

APTS: Statistical Modelling
April 2008 - slide 152

Inference under ignorability

For monotone missing data patterns, it may be possible to deal with $f\left(y_{\text {obs }} \mid \theta\right)$ directly.
For example, suppose that the $Y_{i}=\left(Y_{i 1}, \ldots, Y_{i p}\right)$ are conditionally independent given θ, and furthemore that

$$
f\left(y_{i} \mid \theta\right)=\prod_{j} f\left(y_{i j} \mid y_{i,<j}, \theta_{j}\right)
$$

where $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ is a partition into distinct components. Then

$$
f\left(y_{\text {obs }} \mid \theta\right)=\prod_{i} f\left(y_{i, \text { obs }} \mid \theta\right)=\prod_{i} \prod_{j=1}^{k_{i}} f\left(y_{i j} \mid y_{i,<j}, \theta_{j}\right)
$$

where k_{i} is the 'last' observed variable for unit i. Hence the likelihood for θ factorises into individual components.

Otherwise, methods for inference in the presence of an ignorable missing data mechanism typically exploit the fact the full data analysis, based on $f(y \mid \theta)$ is tractable (assuming that it is!)
APTS: Statistical Modelling
April 2008 - slide 153

Gibbs sampler

For Bayesian analysis, this typically involves generating a sequence of values $\left\{\theta^{t}, y_{\text {mis }}^{t}, t=1, \ldots\right\}$ from the joint posterior distribution $f\left(\theta, y_{\text {mis }} \mid y_{\text {obs }}\right)$ using a Gibbs sampler iteratively sampling
\square the model-based conditional for $Y_{\text {mis }} \mid \theta, y_{\text {obs }}$.
\square the complete data posterior conditional for $\theta \mid Y_{\text {mis }}, y_{\text {obs }}$
Often, both of these are convenient for sampling.
The subsample $\left\{\theta^{t}, t=1, \ldots\right\}$ may then be considered as being drawn from the marginal posterior for $\theta \mid y_{\text {obs }}$, as required.
This is sometimes referred to as data augmentation.
APTS: Statistical Modelling
April 2008 - slide 154

EM algorithm

For maximum likelihood, it is often the case that a corresponding iterative algorithm can be constructed by taking the Gibbs sampler steps above and replacing generation from conditionals with (i) taking expectation (for $Y_{\text {mis }}$) and (ii) likelihood maximisation (for θ), respectively.
\square for the current θ^{t} construct the expected \log-likelihood $\mathrm{E}\left[\log f\left(Y_{\text {mis }}, y_{\text {obs }} \mid \theta\right) \mid y_{\text {obs }}, \theta^{t}\right]$
\square maximise this expected log-likelihood w.r.t. θ to obtain θ^{t+1}
This is the EM algorithm, of which more details will be presented shortly. The maximisation (M) step is generally straightforward, and for many models, so is the expectation (E) step.

For examples of both the Gibbs sampler and EM algorithm applied to Example 1, see Practical 3.
APTS: Statistical Modelling
April 2008 - slide 155

Nonignorable models

If considered appropriate, then a nonignorable missing data mechanism can be incorporated in $f(y, r \mid \theta, \phi)$. A selection model utilises the decomposition

$$
f(y, r \mid \theta, \phi)=f(y \mid \theta) f(r \mid y, \phi) .
$$

where a nonignorable model incorporates dependence of R on $Y_{\text {mis }}$.
Alternatively, a pattern mixture model decomposes $f(y, r \mid \theta, \phi)$ as

$$
f(y, r \mid \theta, \phi)=f(y \mid r, \theta) f(r \mid \phi) .
$$

Pattern mixture models tend to be less intuitively appealing, but may be easier to analyse (particularly for monotone missing data patterns).

Under either specification, inference must be based on the observed data likelihood

$$
f\left(y_{\mathrm{obs}}, r \mid \theta, \phi\right)=\int f\left(y_{\mathrm{obs}}, y_{\mathrm{mis}}, r \mid \theta, \phi\right) \mathrm{d} y_{\mathrm{mis}} .
$$

Gibbs sampling or EM can be used for computation, but convergence may be slow.
APTS: Statistical Modelling
April 2008 - slide 156

A simple selection model

Consider the selection model

$$
Y \sim N\left(\theta_{1}, \theta_{2}\right), \quad P(R=1 \mid Y=y)=\frac{\exp \left(\phi_{0}+\phi_{1} y\right)}{1+\exp \left(\phi_{0}+\phi_{1} y\right)}
$$

An example of $f(y \mid r=1)$, the marginal density for $y_{\text {obs }}$ is

for $\left(\theta_{1}, \theta_{2}, \phi_{0}, \phi_{1}\right)=(0,1,0,2)$.
The selection effect is quite subtle and will clearly be hard to estimate accurately.
APTS: Statistical Modelling
April 2008 - slide 157

Nonignorable model issues

In the previous example, it will be impossible to distinguish, on the basis of observed data only, between the proposed selection model, and an ignorable model where the population distribution of y is naturally slightly skewed.
Generally, nonignorable model inferences are sensitive to model assumptions, and there exist alternative models which cannot be effectively compared on the basis of fit to observed data alone.

Furthermore, inferences from alternative, equally well-fitting models may be very different, as the following (artificial) example illustrates.

	y_{2} (Observed)		y_{2} (Missing)	
y_{1}	A	B	A	B
1	6	18		
2	3	9		16
3	3	27		8

APTS: Statistical Modelling
April 2008 - slide 158

Sensitivity example

Missing data estimates based on the ignorable model $R_{2} \Perp Y_{2} \mid Y_{1}$

	y_{2} (Observed)		y_{2} (Missing)	
y_{1}	A	B	A	B
1	6	18	4	12
2	3	9	2	6
3	3	27	1	9

Missing data estimates based on the nonignorable model $R_{2} \Perp Y_{1} \mid Y_{2}$

	y_{2} (Observed)		y_{2} (Missing)	
y_{1}	A	B	A	B
1	6	18	14	2
2	3	9	7	1
3	3	27	7	3

Potentially very different inferences for the marginal distribution of y_{2}.
Pragmatic approaches are based on investigating sensitivity to a range of missing data assumptions.

Basic idea

\square Many statistical models simplify when written in terms of unobserved latent variable U in addition to the observed data Y. The latent variable

- may really exist, for example, when $Y=I(U>c)$ for some continuous U ('do you earn less than $£ c$ per year?');
- may be imaginary—something called IQ is said to underlie scores on intelligence tests, but is IQ just a cultural construct? ("Mismeasure of man" debate ...);
- may just be a mathematical/computational device (e.g. in MCMC or EM algorithms).

Examples include random effects models, use of hidden variables in probit regression, mixture models.

APTS: Statistical Modelling
April 2008 - slide 161

Galaxy data

Velocities ($\mathrm{km} /$ second) of 82 galaxies in a survey of the Corona Borealis region. The error is thought to be less than $50 \mathrm{~km} /$ second.

9172	9350	9483	9558	9775	10227	10406	16084	16170	18419
18552	18600	18927	19052	19070	19330	19343	19349	19440	19473
19529	19541	19547	19663	19846	19856	19863	19914	19918	19973
19989	20166	20175	20179	20196	20215	20221	20415	20629	20795
20821	20846	20875	20986	21137	21492	21701	21814	21921	21960
22185	22209	22242	22249	22314	22374	22495	22746	22747	22888
22914	23206	23241	23263	23484	23538	23542	23666	23706	23711
24129	24285	24289	24366	24717	24990	25633	26960	26995	32065
32789	34279								

APTS: Statistical Modelling
April 2008 - slide 162

Galaxy data

APTS: Statistical Modelling
April 2008 - slide 163

Mixture density

Natural model for such data is a p-component mixture density

$$
f(y ; \theta)=\sum_{r=1}^{p} \pi_{r} f_{r}(y ; \theta), \quad 0 \leq \pi_{r} \leq 1, \sum_{r=1}^{p} \pi_{r}=1,
$$

where π_{r} is the probability that Y comes from the r th component and $f_{r}(y ; \theta)$ is its density conditional on this event.
$\square \quad$ Can represent this using indicator variables U taking a value in $1, \ldots, p$ with probabilities π_{1}, \ldots, π_{p} and indicating from which component Y is drawn.
\square Widely used class of models, often with number of components p unknown.
\square Aside: such models are non-regular for likelihood inference:

- non-identifiable under permutation of components;
- setting $\pi_{r}=0$ eliminates parameters of f_{r};
- maximum of likelihood can be $+\infty$, achieved for several θ

APTS: Statistical Modelling
April 2008 - slide 164

Other latent variable models

$\square \quad$ Let $[U], D$ denote discrete random variables, and $(U), X$ continuous ones. Then in notation for graphical models:

- $[U] \rightarrow X$ or $[U] \rightarrow D$ denotes finite mixture models, hidden Markov models, changepoint models, etc.;
- $(U) \rightarrow D$ denotes data coarsening (censoring, truncation, ...);
- $\quad(U) \rightarrow X$ or $(U) \rightarrow D$ denotes variance components and other hierarchical models.

Binary regression: $U \sim \mathcal{N}\left(x^{\mathrm{T}} \beta, 1\right)$ and observed response $Y=I(U \geq 0)$, gives probit regression model, log likelihood contribution

$$
Y \log \Phi\left(x^{\mathrm{T}} \beta\right)+(1-Y) \log \left\{1-\Phi\left(x^{\mathrm{T}} \beta\right)\right\}
$$

and similarly if different continuous distribution is chosen for U (logistic, extreme-value, ...).
APTS: Statistical Modelling
April 2008 - slide 165

EM algorithm

Aim to use observed value y of Y for inference on θ when we cannot easily compute

$$
f(y ; \theta)=\int f(y \mid u ; \theta) f(u ; \theta) d u
$$

$\square \quad$ The complete-data log likelihood

$$
\begin{equation*}
\log f(y, u ; \theta)=\log f(y ; \theta)+\log f(u \mid y ; \theta) \tag{25}
\end{equation*}
$$

is based on (U, Y), whereas the observed-data log likelihood is

$$
\ell(\theta)=\log f(y ; \theta)
$$

Take expectation in (25) with respect to $f\left(u \mid y ; \theta^{\prime}\right)$ to get

$$
\begin{equation*}
\mathrm{E}\left\{\log f(Y, U ; \theta) \mid Y=y ; \theta^{\prime}\right\}=\ell(\theta)+\mathrm{E}\left\{\log f(U \mid Y ; \theta) \mid Y=y ; \theta^{\prime}\right\} \tag{26}
\end{equation*}
$$

or equivalently $Q\left(\theta ; \theta^{\prime}\right)=\ell(\theta)+C\left(\theta ; \theta^{\prime}\right)$.
APTS: Statistical Modelling
April 2008 - slide 167

EM algorithm II

Fix θ^{\prime} and consider how $Q\left(\theta ; \theta^{\prime}\right)$ and $C\left(\theta ; \theta^{\prime}\right)$ depend on θ.
$\square \quad$ Note that $C\left(\theta^{\prime} ; \theta^{\prime}\right) \geq C\left(\theta ; \theta^{\prime}\right)$, with equality only when $\theta=\theta^{\prime}$ (Jensen's inequality).
\square Thus

$$
\begin{equation*}
Q\left(\theta ; \theta^{\prime}\right) \geq Q\left(\theta^{\prime} ; \theta^{\prime}\right) \text { implies } \ell(\theta)-\ell\left(\theta^{\prime}\right) \geq C\left(\theta^{\prime} ; \theta^{\prime}\right)-C\left(\theta ; \theta^{\prime}\right) \geq 0 \tag{27}
\end{equation*}
$$

\square Under mild smoothness conditions, $C\left(\theta ; \theta^{\prime}\right)$ has a stationary point at $\theta=\theta^{\prime}$, so if $Q\left(\theta ; \theta^{\prime}\right)$ is stationary at $\theta=\theta^{\prime}$, so too is $\ell(\theta)$.
\square Hence EM algorithm: starting from an initial value θ^{\prime} of θ,

1. compute $Q\left(\theta ; \theta^{\prime}\right)=\mathrm{E}\left\{\log f(Y, U ; \theta) \mid Y=y ; \theta^{\prime}\right\}$; then
2. with θ^{\prime} fixed, maximize $Q\left(\theta ; \theta^{\prime}\right)$ over θ, giving θ^{\dagger}, say; and
3. check if the algorithm has converged, using $\ell\left(\theta^{\dagger}\right)-\ell\left(\theta^{\prime}\right)$ if available, or $\left|\theta^{\dagger}-\theta^{\prime}\right|$, or both. If not, set $\theta^{\prime}=\theta^{\dagger}$ and go to 1 .
Steps 1 and 2 are the expectation (E) and maximization (M) steps.
$\square \quad$ The M -step ensures that $Q\left(\theta^{\dagger} ; \theta^{\prime}\right) \geq Q\left(\theta^{\prime} ; \theta^{\prime}\right)$, so (27) implies that $\ell\left(\theta^{\dagger}\right) \geq \ell\left(\theta^{\prime}\right)$: the log likelihood never decreases.

APTS: Statistical Modelling
April 2008 - slide 168

Convergence

If $\ell(\theta)$ has

- only one stationary point, and if $Q\left(\theta ; \theta^{\prime}\right)$ eventually reaches a stationary value at $\widehat{\theta}$, then $\widehat{\theta}$ must maximize $\ell(\theta)$;
- otherwise the algorithm may converge to a local maximum of the log likelihood or to a turning point.The EM algorithm never decreases the log likelihood so is more stable than Newton-Raphson-type algorithms.
$\square \quad$ Rate of convergence depends on closeness of $Q\left(\theta ; \theta^{\prime}\right)$ and $\ell(\theta)$:

$$
-\frac{\partial^{2} \ell(\theta)}{\partial \theta \partial \theta^{\mathrm{T}}}=\mathrm{E}\left\{\left.-\frac{\partial^{2} \log f(y, U ; \theta)}{\partial \theta \partial \theta^{\mathrm{T}}} \right\rvert\, Y=y ; \theta\right\}-\mathrm{E}\left\{\left.-\frac{\partial^{2} \log f(U \mid y ; \theta)}{\partial \theta \partial \theta^{\mathrm{T}}} \right\rvert\, Y=y ; \theta\right\}
$$

or $J(\theta)=I_{c}(\theta ; y)-I_{m}(\theta ; y)$, giving the missing information principle: the observed information equals the complete-data information minus the missing information.
$\square \quad$ Rate of convergence slow if largest eigenvalue of $I_{c}(\theta ; y)^{-1} I_{m}(\theta ; y) \approx 1$; this occurs if the missing information is a high proportion of the total.

APTS: Statistical Modelling
April 2008 - slide 169

(Toy) Example: Negative binomial model

Conditional on $U=u, Y \sim \operatorname{Poiss}(u)$ and U is gamma with mean θ and variance θ^{2} / ν. Suppose $\nu>0$ known and make inference for θ.

EM algorithm for negative binomial example. Left panel: observed-data log likelihood $\ell(\theta)$ (solid) and functions $Q\left(\theta ; \theta^{\prime}\right)$ for $\theta^{\prime}=1.5,1.347$ and 1.028 (dots, from right). The blobs show the values of θ that maximize these functions, which correspond to the first, fifth and fortieth iterations of the EM algorithm. Right: convergence of EM algorithm (dots) and Newton-Raphson algorithm (solid). The panel shows how successive EM iterations update θ^{\prime} and $\widehat{\theta}$. Notice that the EM iterates always increase $\ell(\theta)$, while the Newton-Raphson steps do not.
APTS: Statistical Modelling
April 2008 - slide 170

Note: Negative binomial example

For a toy example, suppose that conditional on $U=u, Y$ is a Poisson variable with mean u, and that U is gamma with mean θ and variance θ^{2} / ν. Inference is required for θ with the shape parameter $\nu>0$ supposed known. Here (25) equals

$$
y \log u-u-\log y!+\nu \log \nu-\nu \log \theta+(\nu-1) \log u-\nu u / \theta-\log \Gamma(\nu),
$$

and hence (26) equals

$$
Q\left(\theta ; \theta^{\prime}\right)=(y+\nu-1) \mathrm{E}\left(\log U \mid Y=y ; \theta^{\prime}\right)-(1+\nu / \theta) \mathrm{E}\left(U \mid Y=y ; \theta^{\prime}\right)-\nu \log \theta
$$

plus terms that depend neither on U nor on θ.
The E-step, computation of $Q\left(\theta ; \theta^{\prime}\right)$, involves two expectations, but fortunately $\mathrm{E}\left(\log U \mid Y=y ; \theta^{\prime}\right)$ does not appear in terms that involve θ and so is not required. To compute $\mathrm{E}\left(U \mid Y=y ; \theta^{\prime}\right)$, note that Y and U have joint density

$$
f(y \mid u) f(u ; \theta)=\frac{u^{y}}{y!} e^{-u} \times \frac{\nu^{\nu} u^{\nu-1}}{\theta^{\nu} \Gamma(\nu)} e^{-\nu u / \theta}, \quad y=0,1, \ldots, u>0, \quad \theta>0
$$

so the marginal density of Y is

$$
f(y ; \theta)=\int_{0}^{\infty} f(y \mid u) f(u ; \theta, \nu) d u=\frac{\Gamma(y+\nu) \nu^{\nu}}{\Gamma(\nu) y!} \frac{\theta^{y}}{(\theta+\nu)^{y+\nu}}, \quad y=0,1, \ldots
$$

Hence the conditional density $f\left(u \mid y ; \theta^{\prime}\right)$ is gamma with shape parameter $y+\nu$ and mean $\mathrm{E}\left(U \mid Y=y ; \theta^{\prime}\right)=(y+\nu) /\left(1+\nu / \theta^{\prime}\right)$, and we can take

$$
Q\left(\theta ; \theta^{\prime}\right) \equiv-(1+\nu / \theta)(y+\nu) /\left(1+\nu / \theta^{\prime}\right)-\nu \log \theta,
$$

where we have ignored terms independent of both θ and θ^{\prime}.
The M-step involves maximization of $Q\left(\theta ; \theta^{\prime}\right)$ over θ for fixed θ^{\prime}, so we differentiate with respect to θ and find that the maximizing value is

$$
\begin{equation*}
\theta^{\dagger}=\theta^{\prime}(y+\nu) /\left(\theta^{\prime}+\nu\right) \tag{28}
\end{equation*}
$$

In this example, therefore, the EM algorithm boils down to choosing an initial θ^{\prime}, updating it to θ^{\dagger} using (28), setting $\theta^{\prime}=\theta^{\dagger}$ and iterating to convergence.
APTS: Statistical Modelling
April 2008 - note 1 of slide 170

Example: Mixture model

Consider earlier p-component mixture density $f(y ; \theta)=\sum_{r=1}^{p} \pi_{r} f_{r}(y ; \theta)$, for which likelihood contribution from (y, u) would be $\prod_{r}\left\{f_{r}(y ; \theta) \pi_{r}\right\}^{I(u=r)}$, giving contribution

$$
\log f(y, u ; \theta)=\sum_{r=1}^{p} I(u=r)\left\{\log \pi_{r}+\log f_{r}(y ; \theta)\right\}
$$

to the complete-data log likelihood.
\square Must compute the expectation of $\log f(y, u ; \theta)$ over

$$
\begin{equation*}
w_{r}\left(y ; \theta^{\prime}\right)=\operatorname{Pr}\left(U=r \mid Y=y ; \theta^{\prime}\right)=\frac{\pi_{r}^{\prime} f_{r}\left(y ; \theta^{\prime}\right)}{\sum_{s=1}^{p} \pi_{s}^{\prime} f_{s}\left(y ; \theta^{\prime}\right)}, \quad r=1, \ldots, p, \tag{29}
\end{equation*}
$$

the weight attributable to component r if y has been observed.
$\square \quad$ The expected value of $I(U=r)$ with respect to (29) is $w_{r}\left(y ; \theta^{\prime}\right)$, so the expected value of the log likelihood based on a random sample $\left(y_{1}, u_{1}\right), \ldots,\left(y_{n}, u_{n}\right)$ is

$$
\begin{aligned}
Q\left(\theta ; \theta^{\prime}\right) & =\sum_{j=1}^{n} \sum_{r=1}^{p} w_{r}\left(y_{j} ; \theta^{\prime}\right)\left\{\log \pi_{r}+\log f_{r}\left(y_{j} ; \theta\right)\right\} \\
& =\sum_{r=1}^{p}\left\{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right)\right\} \log \pi_{r}+\sum_{r=1}^{p} \sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right) \log f_{r}\left(y_{j} ; \theta\right) .
\end{aligned}
$$

APTS: Statistical Modelling
April 2008 - slide 171

Example: Galaxy data

$$
\begin{array}{cccccc}
p & 1 & 2 & 3 & 4 & 5 \\
\widehat{\ell} & -240.42 & -220.19 & -203.48 & -202.52 & -192.42
\end{array}
$$

Fitted mixture model with $p=4$ normal components:

APTS: Statistical Modelling
April 2008 - slide 172

Galaxy data

AIC and BIC for the normal mixture models fitted to the galaxy data. BIC is minimised for $p=3$ components, and AIC for $p=5$ components.
APTS: Statistical Modelling

Note: Mixture model

Mixture models arise when an observation Y is taken from a population composed of distinct subpopulations, but it is unknown from which of these Y is taken. If the number p of subpopulations is finite, Y has a p-component mixture density

$$
f(y ; \theta)=\sum_{r=1}^{p} \pi_{r} f_{r}(y ; \theta), \quad 0 \leq \pi_{r} \leq 1, \sum_{r=1}^{p} \pi_{r}=1
$$

where π_{r} is the probability that Y comes from the r th subpopulation and $f_{r}(y ; \theta)$ is its density conditional on this event. An indicator U of the subpopulation from which Y arises takes values $1, \ldots, p$ with probabilities π_{1}, \ldots, π_{p}. In many applications the components have a physical meaning, but sometimes a mixture is used simply as a flexible class of densities. For simplicity of notation below, let θ contain all unknown parameters including the π_{r}.
If the value u of U were known, the likelihood contribution from (y, u) would be $\prod_{r}\left\{f_{r}(y ; \theta) \pi_{r}\right\}^{I(u=r)}$, giving contribution

$$
\log f(y, u ; \theta)=\sum_{r=1}^{p} I(u=r)\left\{\log \pi_{r}+\log f_{r}(y ; \theta)\right\}
$$

to the complete-data log likelihood. In order to apply the EM algorithm we must compute the expectation of $\log f(y, u ; \theta)$ over the conditional distribution

$$
\begin{equation*}
\operatorname{Pr}\left(U=r \mid Y=y ; \theta^{\prime}\right)=\frac{\pi_{r}^{\prime} f_{r}\left(y ; \theta^{\prime}\right)}{\sum_{s=1}^{p} \pi_{s}^{\prime} f_{s}\left(y ; \theta^{\prime}\right)}, \quad r=1, \ldots, p \tag{30}
\end{equation*}
$$

This probability can be regarded as the weight attributable to component r if y has been observed; for compactness below we denote it by $w_{r}\left(y ; \theta^{\prime}\right)$. The expected value of $I(U=r)$ with respect to (29) is $w_{r}\left(y ; \theta^{\prime}\right)$, so the expected value of the log likelihood based on a random sample $\left(y_{1}, u_{1}\right), \ldots,\left(y_{n}, u_{n}\right)$ is

$$
\begin{aligned}
Q\left(\theta ; \theta^{\prime}\right) & =\sum_{j=1}^{n} \sum_{r=1}^{p} w_{r}\left(y_{j} ; \theta^{\prime}\right)\left\{\log \pi_{r}+\log f_{r}\left(y_{j} ; \theta\right)\right\} \\
& =\sum_{r=1}^{p}\left\{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right)\right\} \log \pi_{r}+\sum_{r=1}^{p} \sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right) \log f_{r}\left(y_{j} ; \theta\right)
\end{aligned}
$$

The M step of the algorithm entails maximizing $Q\left(\theta ; \theta^{\prime}\right)$ over θ for fixed θ^{\prime}. As the π_{r} do not usually appear in the component density f_{r}, the maximizing values π_{r}^{\dagger} are obtained from the first term of Q, which corresponds to a multinomial log likelihood. Thus $\pi_{r}^{\dagger}=n^{-1} \sum_{j} w_{r}\left(y_{j} ; \theta^{\prime}\right)$, the average weight for component r.
Estimates of the parameters of the f_{r} are obtained from the weighted log likelihoods that form the second term of $Q\left(\theta ; \theta^{\prime}\right)$. For example, if f_{r} is normal with mean μ_{r} and variance σ_{r}^{2}, simple calculations give the weighted estimates

$$
\mu_{r}^{\dagger}=\frac{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right) y_{j}}{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right)} \quad \sigma_{r}^{2 \dagger}=\frac{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right)\left(y_{j}-\mu_{r}^{\dagger}\right)^{2}}{\sum_{j=1}^{n} w_{r}\left(y_{j} ; \theta^{\prime}\right)}, \quad r=1, \ldots, p
$$

Given initial values of $\left(\pi_{r}, \mu_{r}, \sigma_{r}^{2}\right) \equiv \theta^{\prime}$, the EM algorithm simply involves computing the weights $w_{r}\left(y_{j} ; \theta^{\prime}\right)$ for these initial values, updating to obtain $\left(\pi_{r}^{\dagger}, \mu_{r}^{\dagger}, \sigma_{r}^{2 \dagger}\right) \equiv \theta^{\dagger}$, and checking convergence using the \log likelihood, $\left|\theta^{\dagger}-\theta^{\prime}\right|$, or both. If convergence is not yet attained, θ^{\prime} is replaced by θ^{\dagger} and the cycle repeated.
APTS: Statistical Modelling
April 2008 - note 1 of slide 173

Note: Galaxy data

We illustrate these calculations using the data above on the velocities at which 82 galaxies in the Corona Borealis region are moving away from our own galaxy. It is thought that after the Big Bang the universe expanded very fast, and that as it did so galaxies formed because of the local attraction of matter. Owing to the action of gravity they tend to cluster together, but there seem also to be 'superclusters' of galaxies surrounded by voids. If galaxies are indeed super-clustered the distribution of their velocities estimated from the red-shift in their light-spectra would be multimodal, and unimodal otherwise. The data given are from sections of the northern sky carefully sampled to settle whether there are superclusters.
Cursory examination of the data strongly suggests clustering. In order to estimate the number of clusters we fit mixtures of normal densities by the EM algorithm with initial values chosen by eye. The maximized log likelihood for $p=2$ is -220.19 , found after 26 iterations. In fact this is the highest of several local maxima; the global maximum of $+\infty$ is found by centering one component of the mixture at any of the y_{j} and letting the corresponding $\sigma_{r}^{2} \rightarrow \infty$. Only the local maxima yield sensible fits, the best of which is found using randomly chosen initial values. The number of iterations needed depends on these and on the number of components, but is typically less than 40 . This procedure gives maximized log likelihoods $-240.42,-203.48,-202.52$ and -192.42 for fits with $p=1,3,4$ and 5. The latter gives a single component to the two observations around 16,000 and so does not seem very sensible. Standard likelihood asymptotics do not apply here, but evidently there is little difference between the 3- and 4-component fits, the second of which is shown in the figure. Both fits have three modes, and the evidence for clustering is very strong.
An alternative is to apply a Newton-Raphson algorithm directly to the log likelihood $\ell(\theta)$ based on the mixture density, but if this is to be reliable the model must be reparametrized so that the parameter space is unconstrained. The effect of the spikes in $\ell(\theta)$ can be reduced by replacing $f_{r}(y ; \theta)$ by $F_{r}(y+h ; \theta)-F_{r}(y-h ; \theta)$, where h is the degree of rounding of the data, here $50 \mathrm{~km} /$ second.

APTS: Statistical Modelling
April 2008 - note 2 of slide 173

Exponential family

Suppose the complete-data log likelihood is from an exponential family:

$$
\log f(y, u ; \theta)=s(y, u)^{\mathrm{T}} \theta-\kappa(\theta)+c(y, u)
$$

For EM algorithm, need expected value of $\log f(y, u ; \theta)$ with respect to $f\left(u \mid y ; \theta^{\prime}\right)$. Final term can be ignored, so M-step involves maximizing

$$
Q\left(\theta ; \theta^{\prime}\right)=\mathrm{E}\left\{s(y, U)^{\mathrm{T}} \theta \mid Y=y ; \theta^{\prime}\right\}-\kappa(\theta)
$$

or equivalently solving for θ the equation

$$
\mathrm{E}\left\{s(y, U) \mid Y=y ; \theta^{\prime}\right\}=\frac{d \kappa(\theta)}{d \theta}
$$

$\square \quad$ Likelihood equation for θ based on the complete data is $s(y, u)=d \kappa(\theta) / d \theta$, so the EM algorithm replaces $s(y, u)$ by its conditional expectation $\mathrm{E}\left\{s(y, U) \mid Y=y ; \theta^{\prime}\right\}$ and solves the likelihood equation. Thus a routine to fit the complete-data model can readily be adapted for missing data if the conditional expectations are available.

APTS: Statistical Modelling
April 2008 - slide 174

Comments

Often E-step requires numerical approximation:

- simulation from conditional distribution of U given Y;
- importance sampling;
- Markov chain algorithm;M-step can be performed using Newton-Raphson or similar algorithm, using first and second loglikelihood derivatives (exercise)-may need to be performed in parts, rather than overallCan obtain standard errors using these derivatives (exercise)
\square In Bayesian analysis, may often be helpful to include latent variables, either
- because they have useful interpretation in terms of model-all parameters are hidden variables, because unobservable in practice
- to simplify MCMC algorithm—Gibbs sampler is 'Bayesian equivalent' of EM algorithm (exercise)

APTS: Statistical Modelling

