
APTS Stat Comp Assessment 2010

APTS does not conduct assessments. The material here is intended to provide the basis for assessment
by student’s home departments, but it is assumed that those departments will decide locally how much
of the assessment it is appropriate to use, as well as on the level expected (in particular, the last part,
9., is only for those requiring something quite challenging). So, before starting the assessment, discuss
which parts of the assessment you should complete, with your advisor/supevisor. The work should take
up to half a week.

The data frame loaded into R by the command:

alg <- read.table("http://www.maths.bath.ac.uk/~sw283/MA40198/algae.dat")

gives the population of cells in a laboratory Chemostat (cell.pop) at a series of times (hours) from
the start of the experiment. One possible model for the counts is that the population, Nt, is growing
according to the dynamic model:

Nt+1 = Nt exp{∆r(1−Nt/K) + et} (1)

where the ‘process errors’, et, are i.i.d. N(0, σ2
e); N0, r, K and σ2

e are unknown parameters; ∆ is a
timestep. Assume that ∆ is 2 hours, and that the index t counts the number of timesteps taken. The
cell.pop data (y, say) is observed with error, and not at regular intervals, so the model is completed by
the further assumption

y(τ) = n(τ) + ετ

where the ετ are i.i.d. N(0, σ2), τ is continuous time and n(τ) is the piecewise linear interpolant of the
Nt. This introduces a further parameter σ2.

The aim of this assignment is to estimate the 5 parameters of this model, using some of the methods
covered in the statistical computing course. Initial values of r = .07, K = 1000, N0 = 5, σ = 20 and
σe = 0.05 can easily be found from the raw data.

1. The R routine, srick, given below, iterates (1), for given r, K, N0 and et. It then computes (half)
the sum of squares, S, of differences between the data in y and the model predicted population
at the observation times in t.y. In addition, the routine evaluates the first derivative vector, and
Hessian matrix, of S, w.r.t. the elements of e.

Derive the derivative expressions used in srick.

2. Test the gradient and Hessian produced by srick, numerically. Fix any errors you find.

3. Write down the joint p.d.f. of the cell population data vector, y, and the vector of ‘process errors’,
e. Write an R routine to evaluate the log of this joint p.d.f. and its gradient vector and Hessian
matrix w.r.t. the elements of e, via a call to srick.

4. Write an R routine to evaluate the log likelihood of the model parameter vector

θT = (log r, log K, log N0, log σ, log σe),

using a Laplace approximation (why is a log parameterization appropriate here?). Within this
function, you should write your own Newton iteration loop to find the process error values, êy,
which maximize the joint p.d.f. given the data. Make sure that this loop deals with indefinite
Hessians appropriately, and includes a step halving loop, in case the initial Newton direction fails.

5. Check that the initial values, given above, are sensible, both graphically, and using your log-
likelihood function.

6. Use optim with Nelder - Mead as the optimizer, to estimate the model parameters.
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7. Does the model fit appear sensible?

8. Estimate approximate 95% confidence intervals for the parameters, if this appears to be sensible.

9. Extra part: Replace the Laplace approximate log likelihood with an importance sampling estimate
of the log likelihood, using a ‘Laplace proposal’. Re-estimate the parameters using the new ap-
proximation. To get this to work, you will need to use the same set of underlying standard normal
random deviates each time the importance sampling estimator is used with new parameter values.

srick <- function(r,K,n0,e,y,t.y,dt=2)
{ n.e <- length(e)

N <- rep(n0,n.e+1)
dss.de <- dN.de <- rep(0,n.e)
dss.dee <- dN.dee <- matrix(0,n.e,n.e)
n.y <- length(y)
mu <- y*0
if (dt*n.e < t.y[n.y]) stop("data longer than simulation")
ss <- t1 <- 0
k <- 1 ## counter for data
for (t in 1:n.e) {

t0 <- t1; t1 <- t1 + dt
dN.dee0 <- dN.dee;dN.de0 <- dN.de ## derivs at interval start
exp.rNKe <- exp(dt*r*(1-N[t]/K)+e[t])
N[t+1] <- N[t]* exp.rNKe
## start second derivatives...
dN.dee <- dN.dee * exp.rNKe*(1-N[t]*r*dt/K) +
dN.de%*%t(dN.de) * exp.rNKe *(N[t]*r*dt/K-2)*r*dt/K

## first derivatives...
dN.de <- dN.de * exp.rNKe * (1 - N[t]*r*dt/K)
dN.de[t] <- N[t+1]

## Complete second derivatives...
dN.dee[,t] <- dN.dee[t,] <- dN.de
dN.dee[t,t] <- N[t+1]

## Now get rss and derivs...
while (t.y[k]>t0&&t.y[k]<=t1) {
b <- (t.y[k]-t0)/dt
mu[k] <- N[t]*(1-b) + N[t+1]*b ## E(y) by linear interp
ss <- ss + .5 * (y[k] - mu[k])^2
dmu.de <- dN.de0*(1-b) + dN.de*b
dss.de <- dss.de - (y[k]-mu[k])*dmu.de
dmu.dee <- dN.dee0*(1-b) + dN.dee*b
dss.dee <- dss.dee - (y[k] - mu[k]) * dmu.dee +

dmu.de%*%t(dmu.de)
k <- k + 1
if (k>n.y) break;

}
if (k>n.y) break;

}
list(dss.dee=dss.dee,dss.de=dss.de,N=N,ss = ss,mu=mu)

}
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