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Part 2
Sufficiency and conditioning

1 Use of a minimal sufficient statistic: some

principles

Here ‘sufficient statistic’ will always mean minimal sufficient statistic.

Notation:

• random vector Y

• parameter (usually vector) θ

• sometimes θ = (ψ, λ), with ψ of interest and λ nuisance

• symbol f used for pdf, pmf — conditional or marginal as indicated by

context (and sometimes explicitly by subscripts).

1.1 Inference on θ

Sufficient statistic S:

fY (y; θ) = fS(s(y); θ)fY |S(y|s)

where the second factor does not involve θ.

Implications:

• inference for θ based on fS(s; θ)
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• fY |S(y|s) eliminates θ, and provides a basis for model checking.

Idea here is that S is a substantial reduction of Y .

(At the other extreme, if the minimal sufficient statistic is S = Y , the second

factor above is degenerate and this route to model-checking is not available.)

1.2 Inference on ψ (free of λ)

Often θ = (ψ, λ), where ψ is the parameter (scalar or vector) of interest, and

λ represents one or more nuisance parameters.

Ideal situation: there exists statistic Sλ — a function of the minimal sufficient

statistic S — such that, for every fixed value of ψ, Sλ is sufficient for λ. For

then we can write

f(y;ψ, λ) = fY |Sλ
(y|sλ;ψ)fSλ

(sλ;ψ, λ),

and inference on ψ can be based on the first factor above.

This kind of factorization is not always possible. But:

• exponential families — exact;

• more generally — approximations.

1.3 Inference on model adequacy (free of θ)

How well does the assumed model fY (y; θ) fit the data?

Now θ is the ‘nuisance’ quantity to be eliminated.

Suppose that statistic T is designed to measure lack of fit. Ideally, T has

a distribution that does not involve θ: a significant value of T relative to

that distribution then represents evidence against the model (i.e., against

the family of distributions fY (y; θ)).
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Condition on the minimal sufficient statistic for θ: refer T to its conditional

distribution fT |S(t|s), which does not depend on θ.

2 Exponential families

Introduced here as the cleanest/simplest class of models in which to explore

and exemplify the above principles.

2.1 Introduction: some special types of model

Many (complicated) statistical models used in practice are built upon one or

more of these three types of family:

• transformation family;

• mixture family;

• exponential family.

Transformation families and exponential families are excellent models for the

purpose of studying general principles. (Mixture families tend to be messier,

inferentially speaking.)

Our main focus in the rest of this lecture will be on exponential families.

The other two types will be introduced briefly for completeness.

2.1.1 Transformation families

Prime examples of a transformation model are

• location model

f(y; θ) = g(y − θ)
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• scale model

f(y; θ) = θ−1g(y/θ)

• location-scale model

f(y;µ, τ) = τ−1g{(y − µ)/τ}

where in each case g(.) is a fixed function (not depending on θ).

Each such model is characterized by a specified group of transformations.

2.1.2 Mixture families

Simplest case: 2-component mixture

f(y; θ) = (1− θ)f(y; 0) + θf(y; 1) (0 ≤ θ ≤ 1),

where f(y; 0) and f(y; 1) are the specified ‘component’ distributions.

More generally: any number of components (possibly infinite), with θ index-

ing a suitable ‘mixing’ distribution.

Summation of components makes life easy in some respects (normalization

is automatic), but much harder in other ways (no factorization of the likeli-

hood).

2.1.3 Exponential families

When the parameter is the canonical parameter of an exponential family

(EF), we will call it φ instead of θ (merely to remind ourselves).

An EF interpolates between (and extrapolates beyond) component distribu-

tions on the scale of log f (cf. mixtures; interpolation on the scale of f itself).
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For example, a one-parameter EF constructed from two known components

is f(y; θ) such that

log f(y;φ) = (1− φ) log f(y; 0) + φ log f(y; 1)− k(φ)

= φ log
f(y; 1)

f(y; 0)
+ log f(y; 0)− k(φ),

where the k(φ) is needed in order to normalize the distribution. This is an

instance of the general form for an EF (see the preliminary material)

f(y;φ) = m(y) exp[sT (y)φ− k(φ)].

Some EFs are also transformation models [but not many! — indeed, it can

be shown that among univariate models there are just two families in both

classes, namely N(µ, σ2) (a location-scale family) and the Gamma family

with known ‘shape’ parameter α (a scale family)].

2.2 Canonical parameters, sufficient statistic

Consider a d-dimensional full EF, with canonical parameter vector φ =

(φ1, . . . , φd), and sufficient statistic S = (S1, . . . , Sd).

Clearly (from the definition of EF) the components of φ and of S are in

one-one correspondence.

Suppose now that φ = (ψ, λ), and that the corresponding partition of S is

S = (Sψ, Sλ).

It is then immediate that, for each fixed value of ψ, Sλ is sufficient for λ.

This is the ‘ideal situation’ mentioned in 1.2 above.

More specifically:

1. the distribution of S is a full EF with canonical parameter vector φ;
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2. the conditional distribution of Sψ, given that Sλ = sλ, is a full EF with

canonical parameter vector ψ.

2.3 Conditional inference on parameter of interest

The key property, of the two just stated, is the second one: the conditional

distribution of Sψ given Sλ is free of λ. This allows ‘exact’ testing of a

hypothesis of the form ψ = ψ0, since the null distribution of any test statistic

is (in principle) known — it does not involve the unspecified λ.

Tests → confidence sets.

Note that the canonical parameter vector φ can be linearly transformed to

φ′ = Lφ, say, with L a fixed, invertible d× d matrix, without disturbing the

EF property:

sTφ = [(L−1)T s]T (Lφ),

so the sufficient statistic after such a re-parameterization is (L−1)TS = S ′,

say. This allows the parameter of interest ψ to be specified as any linear

combination, or vector of linear combinations, of φ1, . . . , φd.

2.3.1 Example: 2 by 2 table of counts

Counts Rij in cells of a table indexed by two binary variables:

R00 R01 R0+

R10 R11 R1+

R+0 R+1 R++ = n

Several possible sampling mechanisms for this:
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• Individuals counted into the four cells as result of random events over

a fixed time-period. Model: Rij ∼ Poisson(µij) independently. [No

totals fixed in the model.]

• Fixed number n of individuals counted into the four cells. Model:

(R00, R01, R10, R11) ∼ Multinomial(n; π00, π01, π10, π11). [Grand total,

n, fixed in the model]

• Row variable is treatment (present/absent), column variable is binary

response. Numbers treated and untreated are fixed (R0+ = n0, R1+ =

n1, say). Model: Ri0 ∼ Binomial(ni; πi) (i = 0, 1). [Row totals fixed in

the model]

In each case the model is a full EF. Take the (canonical) parameter of interest

to be

ψ = log
µ11µ00

µ10µ01

,

where µij = E(Rij). In the pair-of-binomials model this is the log odds ratio.

In each case the relevant conditional distribution for inference on ψ turns out

to be the same. It can be expressed as the distribution of R11, say, conditional

upon the observed values of all four marginal totalsM = {R0+, R1+, R+0, R+1}:

pr(R11 = r11|M) =

(
r0+
r01

)(
r1+
r11

)
exp(r11ψ)∑(

r0+
r+1−w

)(
r1+
w

)
exp(wψ)

— a generalized hypergeometric distribution.

When ψ = 0, this reduces to the ordinary hypergeometric distribution, and

the test of ψ = 0 based on that distribution is known as Fisher’s exact test.

The practical outcome (condition on all four marginal totals for inference on

ψ) is thus the same for all 3 sampling mechanisms. But there are two distinct

sources of conditioning at work:

Conditioning by model formulation: the multinomial model conditions on n;

the pair-of-binomials model conditions on r0+ = n0, r1+ = n1.
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‘Technical’ conditioning (to eliminate nuisance parameters) applies in all

3 models; the numbers of nuisance parameters eliminated are 3, 2 and 1

respectively.

2.3.2 Example: Several 2 by 2 tables

(The Mantel-Haenszel procedure)

Extend the previous example: m independent 2 × 2 tables, with assumed

common log odds ratio ψ.

Pair-of-binomials model for each table: canonical parameters (log odds) for

table k are

φk0 = αk, φk1 = αk + ψ.

Parameters α1, . . . , αm are nuisance. Eliminate by (technical) conditioning

on all of the individual column totals, as well as conditioning (as part of the

model formulation) on all the row totals.

Resulting conditional distribution is the distribution of Sψ =
∑
Rk.11 condi-

tional upon all row and column totals — the convolution of m generalized

hypergeometric distributions.

In practice (justified by asymptotic arguments), the ‘exact’ conditional dis-

tribution for testing ψ = 0 — the convolution of m hypergeometrics — is

usually approximated by the normal with matching mean and variance.

2.3.3 Example: binary matched pairs

Extreme case of previous example: row totals rk.0+, rk.1+ are all 1.

Each table is a pair of independent binary observations (e.g., binary response

before and after treatment).
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Conditional upon column totals: only ‘mixed’ pairs k, with rk.+0 = rk.+1 = 1,

carry any information at all.

Conditional distribution for inference on ψ is binomial. (see exercises)

This is an example where conditional inference is a big improvement upon use

of the unconditional likelihood: e.g., the unconditional MLE ψ̂ is inconsistent

as m→∞, its limit in probability being 2ψ rather than ψ.

2.4 Conditional test of model adequacy

The principle: refer any proposed lack-of-fit statistic to its distribution con-

ditional upon the minimal sufficient statistic for the model parameter(s).

We mention here just a couple of fairly simple examples, to illustrate the

principle in action.

2.4.1 Example: Fit of Poisson model for counts

(Fisher, 1950)

Testing fit of a Poisson model.

Conditional distribution of lack-of-fit statistic given MLE (which is minimal

sufficient since the model is a full EF).

Calculation quite complicated but ‘do-able’ in this simple example.

2.4.2 Example: Fit of a binary logistic regression model

A standard lack-of-fit statistic in generalized linear models is the deviance,

which is twice the log likelihood difference between the fitted model and a

‘saturated’ model.
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In the case of independent binary responses yi the deviance statistic for a

logistic regression with maximum-likelihood fitted probabilities π̂i is

D = 2
∑{

yi log
(
yi
π̂i

)
+ (1− yi) log

(
1− yi
1− π̂i

)}
= 2

∑{
yi log yi + (1− yi) log(1− yi)− yi log

(
π̂i

1− π̂i

)
− log(1− π̂i)

}

Since y is 0 or 1, the first two terms are both zero. Since the fitted log odds

is log{π̂i/(1− π̂i)} = xTi β̂, the deviance can be written as

D = −2β̂TXTY − 2
∑

log(1− π̂i)
= −2β̂TXT π̂ − 2

∑
log(1− π̂i),

since the MLE solves XTY = XT π̂.

Hence D in this (binary-response) case is a function of β̂, which is equivalent

to the minimal sufficient statistic.

The required conditional distribution of D is thus degenerate. The deviance

statistic carries no information at all regarding lack of fit of the model.

The same applies, not much less severely, to other general-purpose lack of fit

statistics such as the ‘Pearson chi-squared’ statistic X2 =
∑

(yi− π̂)2/{π̂i(1−
π̂i)}.

This is a common source of error in applications.

The above (i.e., the case of binary response) is an extreme situation. In

logistic regressions where the binary responses are grouped, the lack-of-fit

statistics usually have non-degenerate distributions; but when the groups

are small it will be important to use (at least an approximation to) the

conditional distribution given β̂, to avoid a potentially misleading result.
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EXERCISE

For the binary matched pairs model, derive the conditional binomial distri-

bution for inference on the common log odds ratio ψ. Discuss whether it is

reasonable to discard all the data from ‘non-mixed’ pairs.
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1

Part 3

Maximum likelihood

Scalar parameter 2

Score function and MLE

Score function

Scalar parameter

Score function:

U =
∂l(θ;Y )
∂θ

— a random function of θ.

Scalar parameter 3

Score function and MLE

Score has mean zero at true θ

The score has mean zero at the true value of θ (subject to
regularity condition).

Regularity: can validly differentiate under the integral sign the
normalizing condition ∫

fY (y; θ)dy = 1

so that ∫
U(θ; y)fY (y; θ)dy = 0,

i.e.,
E[U(θ;Y ); θ] = 0.
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Scalar parameter 4

Score function and MLE

MLE

MLE

Maximum likelihood estimator (MLE): taken here to be θ̂ which
solves

U(θ̂;Y ) = 0,

(or the solution giving largest l if there is more than one)

— a random variable.

We will not discuss (here) situations where the value of θ that
maximizes the likelihood is not a solution of the score equation as
above.

Scalar parameter 5

Observed and expected information

Observed information

Observed information

Observed information measures curvature (as a function of θ) of
the log likelihood:

j(θ) = −∂U
∂θ

= − ∂
2l

∂θ2

— the [in general, random] curvature of l(θ;Y ) at θ.

High curvature ĵ = j(θ̂) indicates a well-determined MLE.

Scalar parameter 6

Observed and expected information

Expected information

Expected information

In most models, j(θ) is random — a function of Y .

The expected information is

i(θ) = E[j(θ); θ]

= E

[
− ∂

2l

∂θ2
; θ
]

— a repeated-sampling property of the likelihood for θ; important
in asymptotic approximations.

Expected information is also known as Fisher information.
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Scalar parameter 7

Observed and expected information

The ‘information identity’

The ‘information identity’

We had: ∫
U(θ; y)fY (y; θ)dy = 0.

Differentiate again under the integral sign:∫ [
∂2l(θ;Y )
∂θ2

+ U2(θ;Y )
]
fY (y; θ)dy = 0.

That is,
i(θ) = var[U(θ;Y ); θ].

Scalar parameter 8

Optimality

Optimal unbiased estimating equation

Maximum likelihood can be thought of in various ways as optimal.
We mention two here.

The ML ‘estimating equation’

U(θ;Y ) = 0

is an example of an unbiased estimating equation (expectations of
LHS and RHS are equal).

Subject to some mild limiting conditions, unbiased estimating
equations yield consistent estimators.

It can be shown (part 6) that the ML equation U = 0 is optimal
among unbiased estimating equations for θ.

Scalar parameter 9

Optimality

Approximate sufficiency

Approximate sufficiency of {θ̂, j(θ̂)}
Consider the first two terms of a Taylor approximation of l(θ):

l(θ) ≈ l(θ̂)− 1
2

(θ − θ̂)2ĵ.

Exponentiate to get the approximate likelihood:

L(θ) ≈ m(y) exp[−1
2

(θ − θ̂)2ĵ],

where m(y) = exp[l(θ̂)].

Interpretation: the pair (θ̂, ĵ) is an approximately sufficient statistic
for θ.
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Scalar parameter 10

Parameter transformation

Re-parameterization

Suppose we change from θ to φ(θ) (a smooth 1-1 transformation).
This is just a change of the model’s coordinate system.

Then:

I φ̂ = φ(θ̂) — the MLE is unaffected;

I UΦ{φ(θ);Y } = UΘ(θ;Y ) dθdφ (by the chain rule);

I iΦ{φ(θ)} = iΘ(θ)
(
dθ
dφ

)2
[since i = var(U)]

The units of information change with the units of the parameter.

Scalar parameter 11

Large-sample approximations

Large-sample approximations

It can be shown that (a suitably re-scaled version of) the MLE
converges in distribution to a normal distribution.

For this we need some conditions:

I ‘regularity’ as before (ability to differentiate under the
∫

sign);
I for some (notional or actual) measure n of the amount of

data,
I i(θ)/n→ ī∞, say, a nonzero limit as n→∞;
I U(θ)/

√
n converges in distribution to N(0, ī∞).

Scalar parameter 12

Large-sample approximations

Asymptotic distribution of MLE

Asymptotic distribution of θ̂√
n(θ̂ − θ)→ N [0, {̄i∞(θ)}−1]

Sketch proof:

Taylor-expand U(t;Y ) around the true parameter value θ:

U(t;Y ) = U(θ;Y )− (t− θ)j(θ;Y ) + . . .

and evaluate at t = θ̂:

0 = U(θ;Y )− (θ̂ − θ)j(θ;Y ) + . . .

Now ignore the remainder term, re-arrange and multiply by
√
n:

√
n(θ̂ − θ) =

√
n
U(θ;Y )
j(θ;Y )

=
1√
nU(θ;Y )
1
nj(θ;Y )

.

The result follows from the assumptions made, and the fact [based
on a weak continuity assumption about i(θ)] that n−1j(θ)
converges in probability to ī∞.
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Scalar parameter 13

Large-sample approximations

Asymptotic distribution of MLE

√
n(θ̂ − θ)→ N [0, {̄i∞(θ)}−1]

So the MLE, θ̂, is distributed approximately as

θ̂ ∼ N [θ, i−1(θ)].

Hence approximate pivots:

θ̂ − θ√
i−1(θ)

or
θ̂ − θ√
ĵ−1

and approximate interval estimates, e.g., based on ĵ:

θ̂ ± c
√
ĵ−1,

with c from the N(0, 1) table.

Scalar parameter 14

Large-sample approximations

Three asymptotically equivalent statistics

Three asymptotically equivalent test statistics
Think of testing null hypothesis H0 : θ = θ0.

Then three possibilities, all having approximately the χ2
1

distribution under H0, are:

WE = (θ̂ − θ0)i(θ0)(θ̂ − θ0)

WU = U(θ0;Y )i−1(θ0)U(θ0;Y )

WL = 2[l(θ̂)− l(θ0)]

(the last from a quadratic Taylor approximation to l).

These typically give slightly different results (and WE depends on
the parameterization).

Scalar parameter 15

Large-sample approximations

Bayesian posterior distribution

Asymptotic normality of Bayesian posterior distribution

Provided the prior is ‘well behaved’, the posterior is approximately

N(θ̂, ĵ−1).
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Multidimensional parameter 16

Score, information, transformation

Multidimensional parameter θ

All of the above results extend straightforwardly. Score is a vector,
and information is a matrix.

Write
U(θ;Y ) = ∇l(θ;Y ).

Then
E(U) = 0

cov(U) = E(−∇∇T l) = i(θ).

The extension of the asymptotic normality argument yields

I a multivariate normal approximation for θ̂, with
variance-covariance matrix i−1(θ)

I test statistics which straightforwardly extend WE , WU and
WL.

Multidimensional parameter 17

Score, information, transformation

The information matrix transforms between parameterizations as

iΦ(φ) =
(
∂θ

∂φ

)T
iΘ(θ)

(
∂θ

∂φ

)

and its inverse transforms as

[
iΦ(φ)

]−1
=
(
∂φ

∂θ

)T [
iΘ(θ)

]−1
(
∂φ

∂θ

)
.

Multidimensional parameter 18

Nuisance parameters

Information matrix

Nuisance parameters

Suppose θ = (ψ, λ), with ψ of interest.

Then partition vector U into (Uψ, Uλ), and information matrix
(and its inverse) correspondingly:

i(θ) =
(
iψψ iψλ
iλψ iλλ

)

i−1(θ) =
(
iψψ iψλ

iλψ iλλ

)
(and similarly for observed information j)
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Multidimensional parameter 19

Nuisance parameters

Main distributional results; and profile likelihood

Large-sample results

Simplest route to inference on ψ: approximate normality,

ψ̂ ∼ N(ψ, iψψ)

— from which comes the quadratic test statistic

WE = (ψ̂ − ψ0)T
(
iψψ
)−1

(ψ̂ − ψ0)

[or perhaps use
(
jψψ
)−1

in place of
(
iψψ
)−1

].

Corresponding extensions also of WU and WL — the latter based
on the notion of profile likelihood.

Multidimensional parameter 20

Nuisance parameters

Main distributional results; and profile likelihood

Profile likelihood
Define, for any fixed value of ψ, the MLE λ̂ψ for λ.

Then the profile log likelihood for ψ is defined as

lP (ψ) = l(ψ, λ̂ψ)

— a function of ψ alone.

Clearly ψ̂ maximizes lP (ψ).

The extension of WL for testing ψ = ψ0 is then

WL = 2
[
lP (ψ̂)− lP (ψ0)

]
— which can be shown to have asymptotically the χ2 distribution
with dψ degrees of freedom under the null hypothesis.

Hence also confidence sets based on the profile (log) likelihood.

Multidimensional parameter 21

Nuisance parameters

Parameter orthogonality

Orthogonal parameterization

Take ψ as given — represents the question(s) of interest.

Can choose λ in different ways to ‘fill out’ the model. Some ways
will be better than others, especially in terms of

I stability of estimates under change of assumptions (about λ)
I stability of numerical optimization.

Often useful to arrange that ψ and λ are orthogonal, meaning that
iψλ = 0 (locally or, ideally, globally; approximately or, ideally,
exactly).

In general this involves the solution of differential equations.

In a full EF, a ‘mixed’ parameterization is always orthogonal
(exactly, globally).
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Multidimensional parameter 22

Information in a full EF

Constant information for canonical parameters

Information in a full EF

Information on the canonical parameters does not depend on Y :

i(φ) = j(φ) = ∇∇Tk(φ).

So in a full EF model it does not matter whether we use observed
or expected information for inference on φ: they are the same.

Multidimensional parameter 23

Information in a full EF

Orthogonality of mixed parameterization

Full EF: Orthogonality of mixed parameterization

If φ = (φ1, φ2) and the parameter (possibly vector) of interest is
ψ = φ1, then choosing

λ = η2 = E[s2(Y )]

makes the interest and nuisance parameters (φ1, η2) orthogonal.

This follows straight from the transformation rule, for
re-parameterization (φ1, φ2)→ (φ1, η2).

Example: The model Y ∼ N(µ, σ2) is a full 2-parameter EF, with
φ1 = 1/(2σ2), φ2 = −µ/σ2 and (s1, s2) = (y2, y). Hence
µ = E[s2(Y )] is orthogonal to φ1 (and thus orthogonal to σ2).

Multidimensional parameter 24

Information in a full EF

Orthogonality of mixed parameterization

Exercise

Let Y1, . . . , Yn have independent Poisson distributions with mean
µ. Obtain the maximum likelihood estimate of µ and its variance

(a) from first principles

(b) by the general results of asymptotic theory.

Suppose now that it is observed only whether each observation is
zero or non-zero.

I What now are the maximum likelihood estimate of µ and its
asymptotic variance?

I At what value of µ is the ratio of the latter to the former
variance minimized?

I In what practical context might these results be relevant?
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1

Part 6

Estimating equations

Non-likelihood inference 2

Introduction

Non-likelihood inference

Sometimes inference based on likelihood is not possible (e.g., for
computational reasons, or because a full probability model cannot
be specified).

Sometimes inference based on likelihood may be regarded as not
desirable (e.g., worries about impact of failure of tentative
‘secondary’ assumptions).

Various non-likelihood approaches, including

I ‘pseudo likelihoods’ — typically designed either for
computational simplicity or robustness to failure of (some)
assumptions

I ‘estimating equations’ approaches (includes ‘quasi likelihood’)

Non-likelihood inference 3

Estimating equations

Estimating equations

Consider scalar θ.

Define estimator θ∗ as solution to

g(θ∗;Y ) = 0

— an estimating equation, with the ‘estimating function’ g chosen
to that the equation is unbiased:

E[g(θ;Y ); θ] = 0

for all possible values of θ. (cf. score equation for MLE)

Unbiasedness of the estimating equation results (subject to limiting
conditions) in a consistent estimator θ∗.
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Non-likelihood inference 4

Estimating equations

Examples

Examples
Two extremes:

1. Model is fully parametric, Y ∼ fY (y; θ). Then the choice
g(θ;Y ) = U(θ;Y ) results in an unbiased estimating equation.
There may be many others (e.g., based on moments).

2. Model is ‘semi-parametric’ perhaps specified in terms of some
moments. For example, the specification

E(Y ) = m(θ)

for some given function m may be all that is available, or all that is
regarded as reliable: in particular, the full distribution of Y is not
determined by θ.

In this case, with Y a scalar rv, the equation

g(θ;Y ) = Y −m(θ) = 0

is (essentially) the only unbiased estimating equation available.

Non-likelihood inference 5

Estimating equations

Properties

Properties

Assume ‘standard’ limiting conditions. (as for MLE)

Then a similar asymptotic argument to the one used for the MLE
yields the large-sample normal approximation

θ∗ ∼ N
(
θ,

E(g2)
[E(g′)]2

)
.

Note that the asymptotic variance is invariant to trivial scaling
g(θ;Y )→ ag(θ;Y ) for constant a — as it should be, since θ∗ is
invariant.

Non-likelihood inference 6

Estimating equations

Lower bound

Lower bound on achievable variance

(Godambe, 1960)

For unbiased estimating equation g = 0,

E(g2)
[E(g′)]2

≥ 1
E(U2)

= i−1(θ),

where U = ∂ log f/∂θ.

Equality if g = U .

This comes from the Cauchy-Schwarz inequality; it generalizes the
Cramér-Rao lower bound for the variance of an unbiased estimator.
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Non-likelihood inference 7

Estimating equations

An illustration

A simple illustration

Suppose that counts Yi (i = 1, . . . , n) are made in time intervals ti.

Suppose it is suspected that the counts are over-dispersed relative
to the Poisson distribution. The actual distribution is not known,
but it is thought that roughly var(Yi) = φE(Yi) (with φ > 1).

Semi-parametric model:

1. E(Yi) = tir(xi; θ) = µi
2. var(Yi) = φµi.

The first assumption here defines the parameter of interest: θ
determines the rate (r) of occurrence at all covariate settings xi.

The second assumption is more ‘tentative’.

Non-likelihood inference 8

Estimating equations

An illustration

Hence restrict attention to estimating equations unbiased under
only assumption 1: don’t require assumption 2 for unbiasedness, in
case it is false.

Use assumption 2 to determine an optimal choice of g, among all
those such that g = 0 is unbiased under assumption 1.

Consider now the simplest case: r(xi, θ) = θ (constant rate).

Non-likelihood inference 9

Estimating equations

An illustration

The possible unbiased (under 1.) estimating equations are then

g(θ;Y ) =
n∑
1

ai(Yi − tiθ) = 0

for some choice of constants a1, . . . , an.

Using both assumptions 1 and 2 we have that

E(g2)
[E(g′)]2

=
∑
a2
iφtiθ

(
∑
aiti)

2

— which is minimized when ai = constant.

The resulting estimator is θ∗ =
∑
Yi/
∑
ti (total count / total

exposure)

— which is ‘quasi Poisson’ in the sense that it is the same as if we
had assumed the counts to be Poisson-distributed and used MLE.
(But standard error would be inflated by an estimate of

√
φ.)

— a specific (simple) instance of the method of ‘quasi likelihood’.
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Non-likelihood inference 10

Estimating equations

Generalizations

Some generalizations:

I vector parameter
I working variance → working variance/correlation structure:

quasi-likelihood → ‘generalized estimating equations’
I estimating equations designed specifically for outlier

robustness

etc., etc.
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Some suggested reading/reference material

Books

Cox, D. R. (2006).  Principles of Statistical Inference.  CUP.  
Closest book to the APTS lectures.

Cox, D. R and Hinkley, D. V. (1974).  Theoretical Statistics.  Chapman and Hall.
An older and more detailed account of similar material.

Young, G. A. and Smith, R. L. (2005).  Essentials of Statistical Inference.  CUP.   
A broad, concise introduction, including some decision analysis.

Lehmann, E. L. and Romano, J. P.  (2004, 3rd ed).  Testing Statistical Hypotheses. Springer.
Lehmann, E. L. and Casella, G. C. (2001, 2nd ed).  Theory of Point Estimation.  Springer.

Much detailed mathematical material on estimation and testing.

Jeffreys, H. (1961, 3rd ed.). Theory of Probability.  OUP.
A detailed development of objective Bayesian theory.

Savage, L. J. (1954).  The Foundations of Statistics.  Wiley.
Pioneering account of the personalistic Bayesian view.

O'Hagan, A. and Forster, J. J. (2004).  Kendall's Advanced Theory of Statistics: Bayesian Inference.  Arnold.
Thorough treatment of current Bayesian approaches. 

DeGroot, M. H. (1970).  Optimal Statistical Decisions.  Wiley.
A good discussion of the principles and methods of decision analysis.

Edwards, A. W. F. (1972).  Likelihood.  CUP.
Statistical theory based solely on likelihood.

Davison, A. C. (2003).  Statistical Models.  CUP.
Especially chapters 3, 4, 7, 11, 12.  Recommended book also for APTS module Statistical Modelling.

McCullagh, P. and Nelder, J. A. (1989, 2nd ed.).  Generalized Linear Models.  Chapman and Hall.
An authoritative account of the generalized linear model (links with the APTS module Statistical 
Modelling).

Papers

Fisher, R. A.  (1950).  The significance of deviations from expectation in a Poisson series.  Biometrics 6, 17-24.
Conditional test of lack of fit: as in part 2.

Cox, D. R (1958).  Some problems connected with statistical inference.  Ann. Math. Statist. 29, 357-372.
A discussion of conditioning and the relations between various approaches.

Lindley, D. V. and Smith, A. F. M. (1972).  Bayes estimates for the linear model (with discussion). J. Roy. Stat. Soc. B 
34, 1-41.

Influential paper on hierarchical Bayesian analysis.

Cox, D. R. and Reid, N.  (1987).  Parameter orthogonality and approximate conditional inference (with discussion).  J.  
Roy. Stat. Soc. B 49, 1-39.

Orthogonality (as in part 3).

McCullagh, P. (1991).  Quasi-likelihood and estimating functions.  Pages 265-286 in: Hinkley DV, Reid N and Snell EJ 
(eds.), Statistical Theory and Modelling, in Honour of Sir David Cox FRS.  Chapman and Hall.

Review of the theory of estimating equations.
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