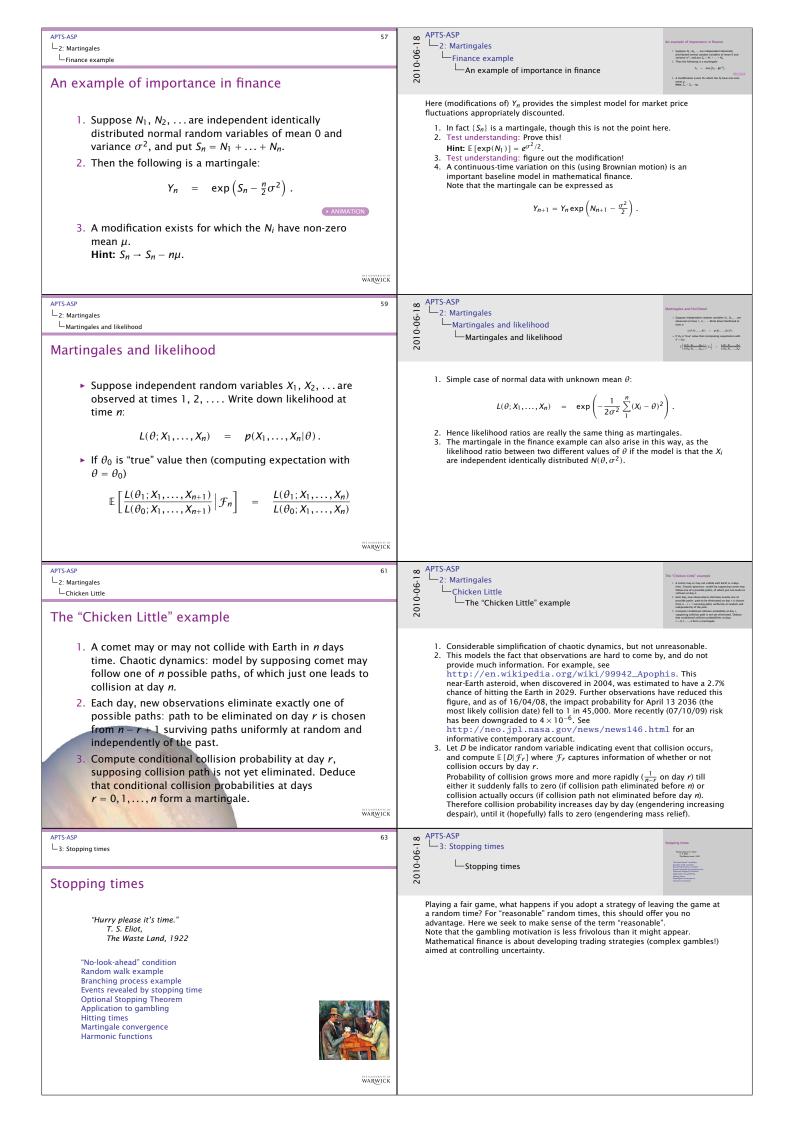
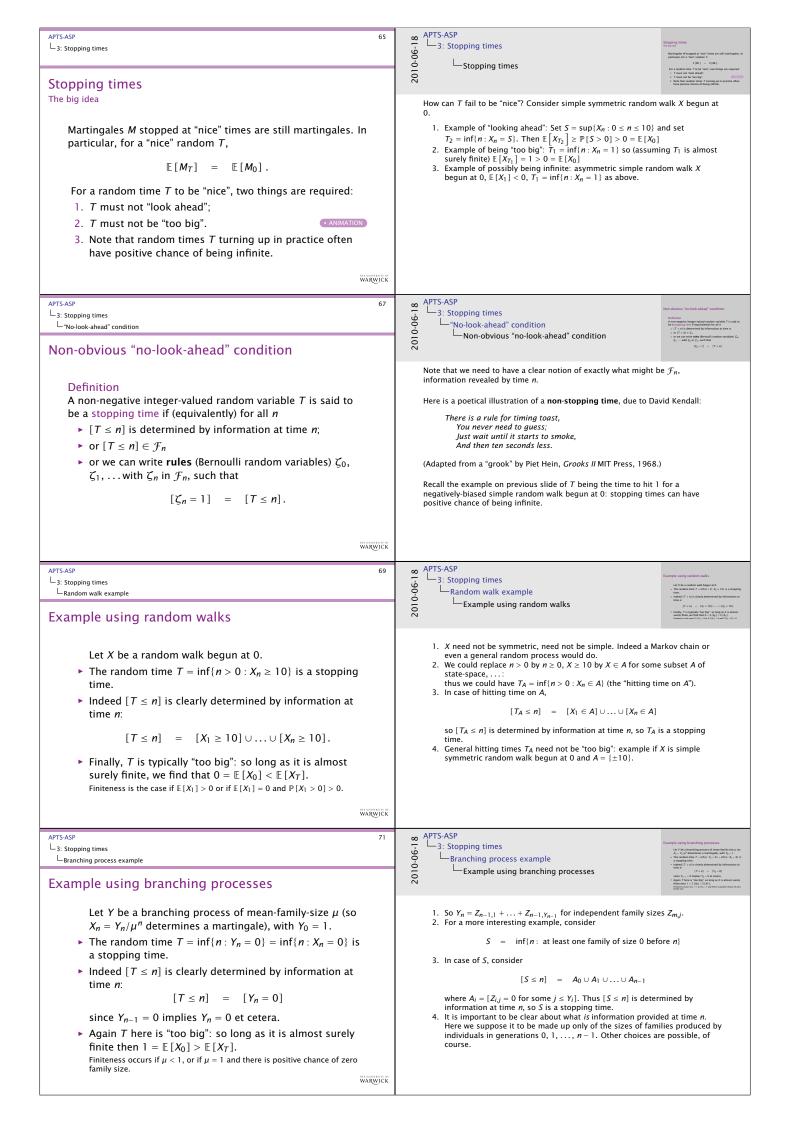

APTS-ASP 1	APTS-ASP 2
APTS Applied Stochastic Processes Wilfrid Kendall ¹ w.s.kendall@warwick.ac.uk Department of Statistics, University of Warwick 18th June 2010 ^Stephen Connor unable to take part for (happy) family reasons APTS-ASP Introduction 3	Introduction I: Markov chains and reversibility 2: Martingales 3: Stopping times 4: Counting and compensating 5: Central Limit Theorem 6: Recurrence 7: Foster-Lyapunov criteria 8: Cutoff WARWICK 8 9 9 9 9 9 9 9 9 9 9 9 9
" you never learn anything unless you are willing to take a risk and tolerate a little randomness in your life." – Heinz Pagels,	purely probabilistic concepts often cross over into the statistical world. So statisticians need to acquire some fluency in the general language of probability
 The Dreams of Reason, 1988. This module is intended to introduce students to two important notions in stochastic processes — reversibility and martingales — identifying the basic ideas, outlining the main results and giving a flavour of some significant ways in which these notions are used in statistics. These notes outline the content of the module; they represent work-in-progress and will grow, be corrected, and be modified as time passes. 	and to build their own mental map of the subject. The <i>Applied Stochastic</i> <i>Processes</i> module aims to contribute towards this end. Corrections and suggestions are of course welcome! Email w.s.kendall@warwick.ac.uk. Every image in these notes has been either constructed by the author or released into the public domain.
APTS-ASP 5	APTS-ASP
Lintroduction	Introduction Introduction Userning outcomes Introduction Userning Outcomes Introduction Userning Outcomes Introduction Introduction Introduction Intr
 Learning Outcomes After successfully completing this module an APTS student will be able to: describe and calculate with the notion of a reversible Markov chain, both in discrete and continuous time; describe the basic properties of discrete-parameter martingales and check whether the martingale property holds; recall and apply some significant concepts from martingale theory; explain how to use Foster-Lyapunov criteria to establish recurrence and speed of convergence to equilibrium for Markov chains. 	 Learning Outcomes - These outcomes interact interestingly with various topics in applied statistics. However the most important aim of this module is to help students to acquire general awareness of further ideas from probability as and when that might be useful in their further research.
APTS-ASP 7	APTS-ASP
An important instruction	 Introduction An important instruction First of all, read the preliminary notes
First of all, read the preliminary notes	The purpose of the preliminary notes is not to provide all the information you
 They provide notes and examples concerning a basic framework covering: Probability and conditional probability; Expectation and conditional expectation; Discrete-time countable-state-space Markov chains; Continuous-time countable-state-space Markov chains; Poisson processes. 	might require concerning probability, but to serve as a prompt about material you may need to revise, and to introduce and to establish some basic choices of notation.

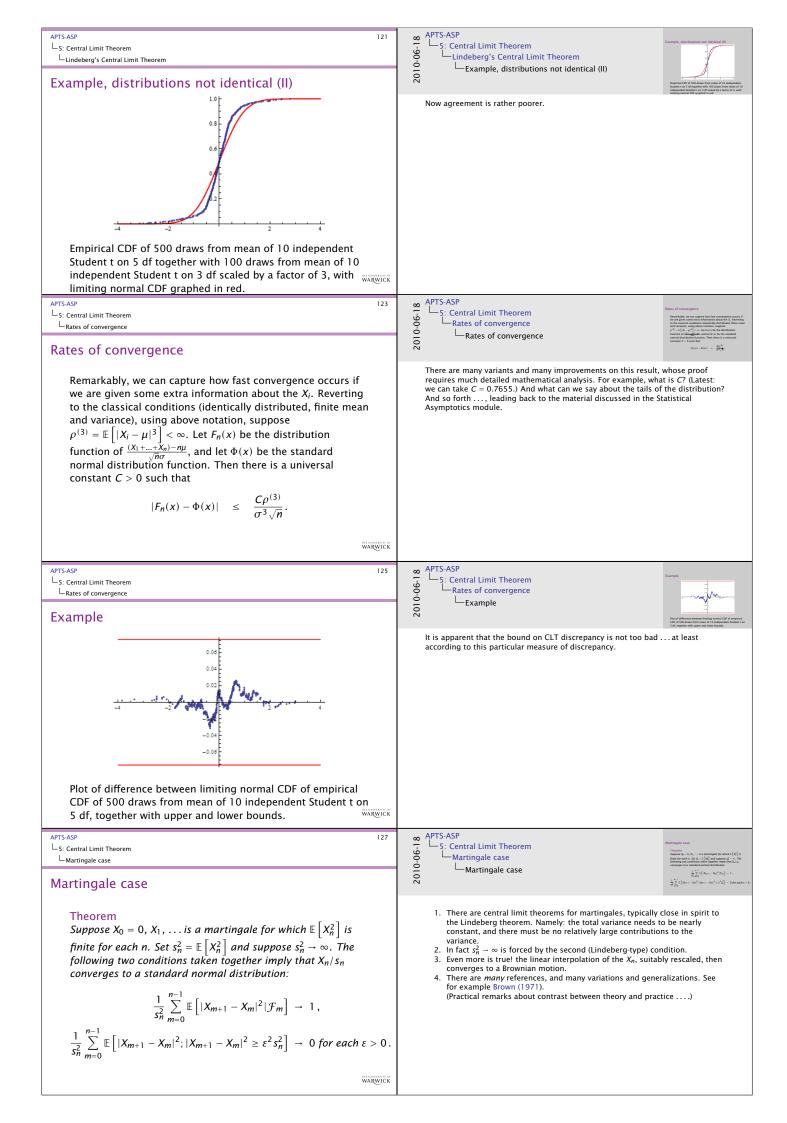
APTS-ASP 9 Lintroduction Losme useful texts	APTS-ASP
 Some useful texts (I) "There is no such thing as a moral or an immoral book. Books are well written or badly written." Oscar Wilde (1854-1900), The Picture of Dorian Gray, 1891, preface The next three slides list various useful textbooks. At increasing levels of mathematical sophistication: Häggström (2002) "Finite Markov chains and algorithmic applications". Grimmett and Stirzaker (2001) "Probability and random processes". Breiman (1992) "Probability". Norris (1998) "Markov chains". 	 Häggström (2002) is a delightful introduction to finite state-space discrete-time Markov chains, from point of view of computer algorithms. Grimmett and Stirzaker (2001) is the standard undergraduate text on mathematical probability. This is the book I advise my undergraduate students to buy, because it contains so much material. Breiman (1992) is a first-rate graduate-level introduction to probability. Norris (1998) presents the theory of Markov chains at a more graduate level of sophistication, revealing what I have concealed, namely the full gory story about Q-matrices. Williams (1991) provides an excellent graduate treatment for theory of martingales: mathematically demanding.
APTS-ASP 11 LIntroduction LSome useful texts (II): free on the web	APTS-ASP Introduction Some useful texts Some useful texts (II): free on the web
 Doyle and Snell (1984) "Random walks and electric networks" available on web at www.arxiv.org/abs/math/0001057. Kindermann and Snell (1980) "Markov random fields and their applications" available on web at www.ams.org/online_bks/conml/. Meyn and Tweedie (1993) "Markov chains and stochastic stability" available on web at www.probability.ca/MT/. Aldous and Fill (2001) "Reversible Markov Chains and Random Walks on Graphs" only available on web at www.stat.berkeley.edu/~aldous/RWG/book.html. 	 Doyle and Snell (1984) lays out (in simple and accessible terms) an important approach to Markov chains using relationship to resistance in electrical networks. Kindermann and Snell (1980) is a sublimely accessible treatment of Markov random fields (Markov property, but in space not time). Consult Meyn and Tweedie (1993) if you need to get informed about theoretical results on rates of convergence for Markov chains (<i>eg</i>, because you are doing MCMC). Aldous and Fill (2001) is the best unfinished book on Markov chains known to me (at the time of writing these notes).
APTS-ASP 13	APTS-ASP Untroduction Some useful texts Some useful texts (III): going deeper Some useful texts (III): going deeper
 Kingman (1993) "Poisson processes". Kelly (1979) "Reversibility and stochastic networks". Steele (2004) "The Cauchy-Schwarz master class". Aldous (1989) "Probability approximations via the Poisson clumping heuristic". Øksendal (2003) "Stochastic differential equations". Stoyan, Kendall, and Mecke (1987) "Stochastic geometry and its applications". 	 Here are a few of the many texts which go much further 1. Kingman (1993) gives a very good introduction to the wide circle of ideas surrounding the Poisson process. 2. We'll cover reversibility briefly in the lectures, but Kelly (1979) shows just how powerful the technique can be. 3. Steele (2004) is the book to read if you decide you need to know more about (mathematical) inequality. 4. Aldous (1989) is a book full of what <i>ought</i> to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. See www.stat.berkeley.edu/~aldous/Research/research80.html. 5. Øksendal (2003) is an accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all. 6. Stoyan et al. (1987) discusses a range of techniques used to handle probability in geometric contexts.
APTS-ASP 15 L 1: Markov chains and reversibility Markov chains and reversibility	APTS-ASP L1: Markov chains and reversibility Markov chains and reversibility Markov chains and reversibility Markow chains and reversibility
"People assume that time is a strict progression of cause to effect, but actually from a non-linear, non-subjective viewpoint, it's more like a big ball of wibbly-wobbly, timey-wimey stuff."	We begin our module with the important, simple and subtle idea of a reversible Markov chain, and the associated notion of detailed balance ; we will return to these ideas periodically through the module. This first major theme isolates a class of Markov chains for which computation of the equilibrium distribution is


APTS-ASP 17 L: Markov chains and reversibility Introduction and simplest non-trivial example Markov chains and reversibility Here is detailed balance in a nutshell: Suppose we could solve (nontrivially, please!) for $\underline{\pi}$ in $\pi_x p_{xy} = \pi_y p_{yx}$ (discrete-time) or $\pi_x q_{xy} = \pi_y q_{yx}$ (continuous-time). In both cases simple algebra then shows $\underline{\pi}$ solves the equilibrium equations. So on a prosaic level it is always worth trying this easy route; if the detailed balance equations are insoluble then revert to the more complicated equilibrium equations $\underline{\pi} \cdot \underline{P} = \underline{\pi}$, respectively $\underline{\pi} \cdot \underline{Q} = \underline{0}$. We will consider reversibility of Markov chains in both discrete and continuous time, the computation of equilibrium distributions for such chains, and discuss applications to some illustrative examples.	APTS-ASP Improve the construction and simplest non-trivial example Markov chains and reversibility Improve the construction of th
APTS-ASP 19 L 1: Markov chains and reversibility L Introduction and simplest non-trivial example Simplest non-trivial example (I)	APTS-ASP L: Markov chains and reversibility L: Introduction and simplest non-trivial example Simplest non-trivial example (I)
Consider doubly-reflected simple symmetric random walk X on {0, 1,, k}, with reflection "by prohibition": moves $0 \rightarrow -1, k \rightarrow k + 1$ are replaced by $0 \rightarrow 0, k \rightarrow k$. CANNATION 1. X is irreducible and aperiodic , so there is a unique equilibrium distribution $\underline{\pi} = (\pi_0, \pi_1,, \pi_k)$. 2. The equilibrium equations $\underline{\pi} \cdot \underline{P} = \underline{\pi}$ are solved by $\pi_i = \frac{1}{k+1}$ for all <i>i</i> . 3. Consider X in equilibrium and run backwards in time . Calculation then shows, $\mathbb{P}[X_{n-1} = x X_n = y] =$ $\pi_x \mathbb{P}[X_n = y X_{n-1} = x] / \pi_y = \mathbb{P}[X_n = y X_{n-1} = x]$ so in this case <i>by symmetry of the kernel</i> the equilibrium chain has the same transition kernel (so looks the same) whether run forwards or backwards in time.	 Test understanding: explain why X is aperiodic when <i>non-reflected</i> simple symmetric random walk has period 2. Test understanding: verify solution of equilibrium equations. Develop Markov property to deduce X₀, X₁,, X_{n-1} is conditionally independent of X_{n+1}, X_{n+2}, given X_n. Hence reversed Markov chain is <i>still</i> Markov (though not necessarily time-homogeneous in more general circumstances). Suppose the reversed chain has kernel p _{x,x}. Use definition of conditional probability to compute p _{y,x} = P[X_{n-1} = x, X_n = y]/P[X_n = y], then P[X_{n-1} = x, X_n = y]/P[X_n = y], mow substitute, using P[X_n = i] = 1/k_{x1} for all is o p _{y,x} = p_{x,y}. Symmetry of kernel p _{y,x} = p_{y,x}. The construction generalizes so the link between reversibility and detailed balance holds generally. In particular, the construction still works even if the random walk is asymmetric: the p = q = 1/2 symmetry is <i>not</i> the point here!
APTS-ASP 21 L 1: Markov chains and reversibility L Introduction and simplest non-trivial example Simplest non-trivial example (II)	APTS-ASP 1: Markov chains and reversibility Lintroduction and simplest non-trivial example Simplest non-trivial example (II)
 There is a computational aspect to this. Even in more general cases, if the π_i depend on <i>i</i> then above computations show reversibility holds if equilibrium distribution exists and equations of detailed balance hold: π_xp_{x,y} = π_yp_{y,x}. Moreover if one can solve for π_i in π_xp_{x,y} = π_yp_{y,x} then it is easy to show <u>π · P</u> = <u>π</u>. Consequently if one can solve the equations of detailed balance, and if the solution can be normalized to have unit total probability, then the result also solves the equilibrium equations. 	 Test understanding: check this. Test understanding: check this. Even in this simple example there is an evident improvement in complexity. Detailed balance involves k equations each with two unknowns, easily "chained together". The equilibrium equations involve k equations of which k - 2 involve three unknowns. In general the detailed balance equations can be solved unless "chaining together by different routes" delivers inconsistent results. Kelly (1979) goes into more detail about this. Test understanding: show detailed balance doesn't work for 3-state chain with transition probabilities ¹/₃ for 0 → 1, 1 → 2, 2 → 0 and ²/₃ for 2 → 1, 1 → 0, 0 → 2. Test understanding: show detailed balance <i>does</i> work for doubly reflected <i>asymmetric</i> simple random walk. We will see there are still major computational issues for more general Markov chains, connected with determining the normalizing constant to ensure ∑_i π_i = 1.
APTS-ASP 23	APTS-ASP 1: Markov chains and reversibility Birth, death and immigration Birth-death-immigration process 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0
The same idea works for continuous-time Markov chains: replace transition probabilities $p_{x,y}$ by rates $q_{x,y}$ and equilibrium equation $\underline{\pi} \cdot \underline{P} = \underline{\pi}$ by differentiated variant using Q-matrix: $\underline{\pi} \cdot \underline{Q} = \underline{0}$. Definition The birth-death-immigration process has transitions: • Birth $(X \to X + 1 \text{ at rate } \lambda X)$; • Death $(X \to X - 1 \text{ at rate } \mu X)$; • plus an extra Immigration term $(X \to X + 1 \text{ at rate } \alpha)$. Hence $q_{x,x+1} = \lambda x + \alpha$; $q_{x,x-1} = \mu x$. Equilibrium is derived easily from detailed balance: $\pi_x = \frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \ldots \cdot \frac{\alpha}{\mu} \cdot \pi_0$.	Reversibility here is decidedly non-trivial We need $0 \le \lambda < \mu$ and $\alpha > 0$. Note that for this population process the rates $q_{x,x\pm 1}$ make sense and are defined only for $x = 0, 1, 2,$ Detailed balance equations: $\pi_x \times \mu x = \pi_{x-1} \times (\lambda(x-1) + \alpha)$. Test understanding: check the calculations! Normalizing constant can be computed exactly when $\lambda < \mu$ via generalized Binomial theorem $\pi_0^{-1} = \sum_{x=0}^{\infty} \frac{\lambda(x-1)+\alpha}{\mu x} \cdot \frac{\lambda(x-2)+\alpha}{\mu(x-1)} \cdot \ldots \cdot \frac{\alpha}{\mu} = \left(\frac{\mu}{\mu - \lambda}\right)^{\frac{\alpha}{\lambda}}$. If the condition $\lambda < \mu$ is not satisfied then the sum does not converge and therefore there can be no equilibrium! If $\alpha = 0$ then equilibrium = extinction Poisson process: $\lambda = \mu = 0$.


APTS-ASP 25 L 1: Markov chains and reversibility Detailed balance definition and theorem	APTS-ASP L: Markov chains and reversibility Detailed balance definition and theorem Detailed balance and reversibility Detailed balance and reversibility Detailed balance and reversibility
Detailed balance and reversibility	Detailed balance and reversibility
Definition The Markov chain X satisfies detailed balance if Discrete time: there is a non-trivial solution of $\pi_x p_{x,y} = \pi_y p_{y,x}$; Continuous time: there is a non-trivial solution of $\pi_x q_{x,y} = \pi_y q_{y,x}$. Theorem The irreducible Markov chain X satisfies detailed balance and the solution { π_x } can be normalized by $\sum_x \pi_x = 1$ if and only if { π_x } is an equilibrium distribution for X and X started in equilibrium is statistically the same whether run forwards or backwards in time.	 Proof of theorem is routine: see example of random walk above. The reversibility phenomenon has surprisingly deep ramifications! Consider birth-death-immigration example above and ask yourself whether it is immediately apparent that the time-reversed process (note: both look statistically the same as the original process. (Note: both immigrations <i>and</i> births convert to deaths, and vice versa) In general, if ∑_x π_x < ∞ is not possible then we end up with an <i>invariant measure</i>.
APTS-ASP 27 L 1: Markov chains and reversibility L M/M/1 queue M/M/1 queue	APTS-ASP 1: Markov chains and reversibility M/M/1 queue M/M/1 queue M/M/1 queue
Here we have • Arrivals: $X \to X + 1$ at rate λ ; • Departures: $X \to X - 1$ at rate μ if $X > 0$. Hence detailed balance: $\mu \pi_x = \lambda \pi_{x-1}$ and therefore when $\lambda < \mu$ (stability) the equilibrium distribution is $\pi_x = \rho^x(1 - \rho)$ for $x = 0, 1,$, where $\rho = \frac{\lambda}{\mu}$ (the traffic intensity). • ANIMATION Reversibility/detailed balance is more than a computational device: consider Burke's theorem, if a stable $M/M/1$ queue is in equilibrium then people <i>leave</i> according to a Poisson process of rate λ . Hence if a stable $M/M/1$ queue feeds into another stable $\cdot/M/1$ queue then in equilibrium. WARWICK	We recall the $M/M/1$ queue example discussed in the preliminary notes. Birth-death-immigration processes and queueing processes are examples of generalized birth-death processes; only $X \to X \pm 1$ transitions, hence detailed balance equations easily solved. Note: the $M/M/1$ queue is <i>non-linear</i> . Linearity allows solution of forwards equations: we do not discuss this here. Detailed balance is also a subtle and important tool for the study of Markovian queueing networks (e.g. Kelly 1979). The argument connecting reversibility to detailed balance runs both ways. If detailed balance equations can be solved to derive equilibrium then the process is reversible if run in equilibrium. Hence a one-line proof of Burke's theorem: if queue is run backwards in time then departures become arrivals. Test understanding: use Burke's theorem for a feed-forward $\cdot/M/1$ queueing network (no loops) to show that in equilibrium each queue viewed in isolation is M/M/1. This uses the fact that independent thinnings and superpositions of Poisson processes are still Poisson
APTS-ASP 29 L 1: Markov chains and reversibility L Random chess	APTS-ASP - 1: Markov chains and reversibility - Random chess - Random chess (Aldous and Fill 2001, Ch1, Ch3§2) - Random chess (Aldous and Fill 2001, Ch1, Ch3§2) - Random chess (Aldous and Fill 2001, Ch1, Ch3§2)
 Random chess (Aldous and Fill 2001, Ch1, Ch3§2) Example (A mean Knight's tour) Place a chess Knight at the corner of a standard 8 × 8 chessboard. Move it randomly, at each move choosing uniformly from available legal chess moves independently of the past. 1. What is the equilibrium distribution? (use detailed balance) 2. Is the resulting Markov chain periodic? (what if you sub-sample at even times?) 3. What is the mean time till the Knight returns to its starting point? (inverse of equilibrium probability) 	 Now we turn to a multi-dimensional example. 1. Use π_v/d_v = π_u/d_u if u ↔ v, where d_u is the degree of u. Also use fact, there are 168 = (2 + 2 × 3 + 5 × 4 + 4 × 6 + 4 × 8) × 4/2 different edges. So total degree is 2 × 168 and equilibrium probability at corner is 2/(2 × 168). 2. Period 2 (white <i>versus</i> black). Sub-sampling at even times makes chain aperiodic on squares of one colour. 3. Inverse of equilibrium probability shows that mean return time to corner is 168.
APTS-ASP 31 L 1: Markov chains and reversibility LISINg model Gibbs' sampler for Ising model	APTS-ASP 1: Markov chains and reversibility Ising model Gibbs' sampler for Ising model $\gamma_{[L-v,k]}$ ($\gamma_{[L-v,k]}$) $\gamma_{[L-v,k]}$ ($\gamma_{[L-v,k]}$)
(i) Ising model • Pattern of spins $S_i = \pm 1$ on (finite fragment of) lattice (here <i>i</i> is typical node of lattice). • Probability mass function $\mathbb{P}[S_i = s_i \text{ all } i] \propto \begin{cases} \exp\left(J\sum\sum_{i\sim j} s_i s_j\right), \\ \exp\left(J\sum\sum_{i\sim j} s_i s_j + H\sum_i s_i \widetilde{s}_i\right) \\ \text{ if external field } \widetilde{s}_i. \end{cases}$	 Sample applications: idealized model for magnetism, simple binary image. Physics: interest in fragment expanding to fill whole lattice: cases of zero-interaction, sub-critical, critical (⁴/₂ = 2.269185), super-critical. The Ising model is the nexus for a whole variety of scientific approaches, each bringing their own rather different questions. <i>i</i> ~ <i>j</i> if <i>i</i> and <i>j</i> are lattice neighbours. Note, physics treatments use a (physically meaningful) over-parametrization <i>J</i> ~ <i>j</i>/₄, <i>H</i> ~ <i>m</i>H. The <i>H</i>∑_{<i>i</i>} <i>s</i>_i <i>s</i>_i <i>s</i>_i term can be interpreted physically as modelling an external magnetic field, or statistically as a noisy image conditioning the image. For a simulation physics view of the Ising model, see the expository article by David Landau in Kendall et al. (2005). Actually computing the normalizing constant here is <i>hard</i> in the sense of complexity theory (see for example Jerrum 2003).

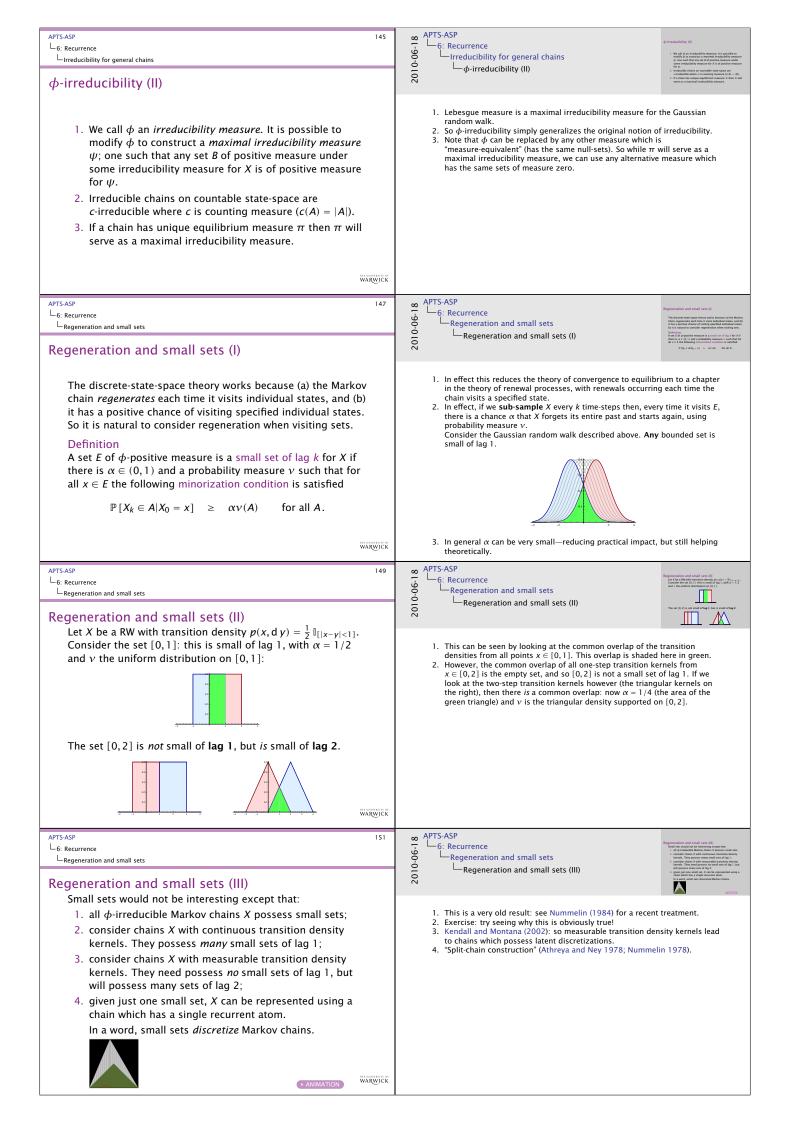
APTS-ASP 49 L_2: Martingales	∞ APTS-ASP ↓ 2: Martingales	Definition of a martingale
	 C C Definitions C C Definition of a martingale C 	Formally: Definition V is a rearrande if COV-1 < a fire all all and
Definition of a martingale	Definition of a martingale	$X_n = \mathbb{I}[X_{n+1} \mathcal{J}_n]$.
Definition of a martingale		
	It is useful to have a general definition of expectation here (see t conditional expectation in the preliminary notes).	he section on
	1. It is important that the X_n are integrable.	
Formally:	2. It is a consequence that X_n is part of the conditioning expr 3. Sometimes we expand the reference to \mathcal{F}_n :	essed by \mathcal{F}_n .
Definition	$X_n = \mathbb{E}[X_{n+1} X_n, X_{n-1},, X_1, X_n].$	
X is a martingale if $\mathbb{E}[X_n] < \infty$ (for all <i>n</i>) and	$\lambda_n = \mathbb{E} \left[\lambda_{n+1} \lambda_n, \lambda_{n-1}, \dots, \lambda_1, \lambda_0 \right].$	
$X_n = \mathbb{E}[X_{n+1} \mathcal{F}_n].$		
$X_n - \mathbb{L}[X_{n+1}] J_n]$		
WARWICK		
APTS-ASP 51	∞ APTS-ASP	
L_2: Martingales		Supermartingales and submartingales Two associated definitions Definition
Definitions	C C	(X_n) is a superstant sequence $x \in [X_{n-1}] \subseteq w$ (so an in the set $X_n \Rightarrow x \in [X_{n-1}] \mathcal{F}_n $, (and X_n forms part of conditioning expressed by \mathcal{F}_n).
Supermartingales and submartingales	20	Definition $ X_{ii}\rangle$ is a submartingale if $E[X_{ii}] < \infty$ (for all ii) and $X_{ii} < E[X_{i+1} \mathcal{J}_{ii}]$, (and Y_{ii} forms out of coefficience surgests by T_{ii})
Two associated definitions		
	 It is important that the Xn are integrable. It is now not automatic that Xn forms part of the conditioni 	ing expressed by
Definition $\{X_n\}$ is a supermartingale if $\mathbb{E}[X_n] < \infty$ (for all <i>n</i>) and	\mathcal{F}_n , and it is therefore important that this requirement is p definition.	
	2. It is important that the X_n are integrable.	avaraccad by
$X_n \geq \mathbb{E}[X_{n+1} \mathcal{F}_n],$	Again it is important that X_n forms part of the conditioning \mathcal{F}_n .	
(and X_n forms part of conditioning expressed by \mathcal{F}_n).	How to remember the difference between "sub-" and "super $\{X_n\}$ measures your fortune in a casino gambling game. The	
Definition	and "super-" is good for the casino! Wikipedia: life is a supermartingale, as one's expectations	are always no
$\{X_n\}$ is a submartingale if $\mathbb{E}[X_n] < \infty$ (for all <i>n</i>) and	greater than one's present state.	
$X_n \leq \mathbb{E}\left[X_{n+1} \mathcal{F}_n\right],$		
(and X_n forms part of conditioning expressed by \mathcal{F}_n).		
WARWICK		
APTS-ASP 53	∞ APTS-ASP	Examples of supermartingales and submartingales
-2: Martingales		 Consider asymmetric simple random walk: supermartingale if jumps have negative expectation,
Definitions		submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Creatifer Thankerso's manipula based on assembaric
	 Definitions Examples of supermartingales and submartingales 	submaningale if jumps have positive expectation. 1. This holds were if the walk is subgood on fitter teams to 0. 1. Consider Thackarry's matricipals have do a symmetric random walk. This is a submaningable have may also a submaningable depending on whether jumps have registrix or positive expectation. 4. Consider baseching process [Y ₀] and consider Y ₀ on its non-interact of Y ₁ (y ²). This is a supersynthemic if y < 1.
	 Definitions Examples of supermartingales and submartingales 	submarrigale if jumps have positive negetation. 2. This holds of the walk is stopped of fort network to 10. 3. Consider Thatking's naturegals have do as a memory of the stopped of the stopped of the stopped of the negative or positive negetation. 4. Conside Thatking posess (17), and consider 17, on its the stopped of
	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+1}]$	
Loefinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation,	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
Loefinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation.	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+1}]$	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 L Definitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 L Definitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {<i>Y_n</i>} and consider <i>Y_n</i> on its own instead of <i>Y_n/µⁿ</i>. This is a supermartingale if <i>µ</i> < 1 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {<i>Y_n</i>} and consider <i>Y_n</i> on its own instead of <i>Y_n/µⁿ</i>. This is a supermartingale if <i>µ</i> < 1 (sub-critical case), a submartingale if <i>µ</i> > 1 (super-critical 	Test understanding: check all these examples. In each case the general procedure is as follows: compare $\mathbb{E}[X_{n+}]$ Note that all martingales are automatically both sub- and superm	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {<i>Y_n</i>} and consider <i>Y_n</i> on its own instead of <i>Y_n/µⁿ</i>. This is a supermartingale if <i>µ</i> < 1 (sub-critical case), a submartingale if <i>µ</i> > 1 (super-critical case), a martingale if <i>µ</i> = 1 (critical case). 	Test understanding: check all these examples. In each case the general procedure is as follows: compare E [X _{n+} Note that all martingales are automatically both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are th	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/µⁿ. This is a supermartingale if µ < 1 (sub-critical case), a submartingale if µ > 1 (super-critical case), a martingale if µ = 1 (critical case). 	Test understanding: check all these examples. In each case the general procedure is as follows: compare E [X _{n+} Note that all martingales are automatically both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are th	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/µⁿ. This is a supermartingale if µ < 1 (sub-critical case), a submartingale if µ > 1 (super-critical case), a martingale if µ = 1 (critical case). 	Test understanding: check all these examples. In each case the general procedure is as follows: compare E [X _{n+} Note that all martingales are automatically both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are th	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/µⁿ. This is a supermartingale if µ < 1 (sub-critical case), a submartingale if µ > 1 (super-critical case), a martingale if µ = 1 (critical case). 	Test understanding: check all these examples. In each case the general procedure is as follows: compare E [X _{n+} Note that all martingales are automatically both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/μⁿ. This is a supermartingale if μ < 1 (sub-critical case), a submartingale if μ > 1 (super-critical case), a martingale if μ = 1 (critical case). 	Test understanding: check all these examples. In each case the general procedure is as follows: compare E [X _{n+} Note that all martingales are automatically both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are the <i>only</i> processes to be both sub- and supern moreover they are th	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/μⁿ. This is a supermartingale if μ < 1 (sub-critical case), a submartingale if μ > 1 (super-critical case), a martingale if μ = 1 (critical case). 	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/μⁿ. This is a supermartingale if μ < 1 (sub-critical case), a submartingale if μ > 1 (super-critical case), a martingale if μ = 1 (critical case). 	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
 LDEFINITIONS Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/μⁿ. This is a supermartingale if μ < 1 (sub-critical case), a submartingale if μ > 1 (super-critical case), a martingale if μ = 1 (critical case). 	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
Lefinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process { Y_n } and consider Y_n on its own instead of Y_n/μ^n . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). WATE-ASP 55 Large martingale examples More martingale examples More martingale examples More martingale examples Martingale examples Martingale examples Martingale examples Martingale examples More martingale examples (1 - p) % (1 - p) % Martingale examples % (1 - p)	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
LDEFinitions Examples of supermartingales and submartingales Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, This holds even if the walk is stopped on first return to 0. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. Consider branching process {Y_n} and consider Y_n on its own instead of Y_n/µⁿ. This is a supermartingale if µ < 1 (sub-critical case), a submartingale if µ > 1 (super-critical case), a martingale if µ = 1 (critical case). APTS-ASP L2: Martingales More martingale examples More martingale examples So the deam of time n, with X ₀ = 0. Then \$	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
Lefinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process { Y_n } and consider Y_n on its own instead of Y_n/μ^n . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). WATE-ASP 55 Large martingale examples More martingale examples More martingale examples More martingale examples Martingale examples Martingale examples Martingale examples Martingale examples More martingale examples (1 - p) % (1 - p) % Martingale examples % (1 - p)	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
L-Definitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process { <i>Y_n</i> } and consider <i>Y_n</i> on its own instead of <i>Y_n/µⁿ</i> . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). More martingale examples 55 More martingale examples 55 More martingale examples 55 1. Repeatedly toss a coin, with probability of heads equal to <i>p</i> : each Head earns £1 and each Tail loses £1. Let <i>X_n</i> denote your fortune at time <i>n</i> , with $X_0 = 0$. Then $\left(\frac{1-p}{p}\right)^{X_n}$ defines a martingale. 2. A shuffled pack of cards contains <i>b</i> black and <i>r</i> red cards. The pack is placed face down, and cards are turned over one at a time. Let <i>B_n</i> denote the number of black cards left <i>just before</i> the <i>nth</i> card is turned over:	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
L-Definitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process { Y_n } and consider Y_n on its own instead of Y_n/μ^n . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). More martingale examples More martingale examples 55 1. Repeatedly toss a coin, with probability of heads equal to p : each Head earns £1 and each Tail loses £1. Let X_n denote your fortune at time n , with $X_0 = 0$. Then $\left(\frac{1-p}{p}\right)^{X_n}$ defines a martingale. 2. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards are turned over one at a time. Let B_n denote the number of black cards left <i>just before</i> the n^{th} card is turned over:	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
LDEfinitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process {Y _n } and consider Y _n on its own instead of Y _n /µ ⁿ . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). WINNER More martingale examples 55 More martingale examples 55 More martingale examples 56 1. Repeatedly toss a coin, with probability of heads equal to p: each Head earns £1 and each Tail loses £1. Let X _n denote your fortune at time n, with X ₀ = 0. Then $\left(\frac{1-p}{p}\right)^{X_n}$ defines a martingale. 2. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards are turned over one at a time. Let B _n denote the number of black cards left <i>just before</i> the n th card is turned over: $\frac{B_n}{r+b-(n-1)}$,	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and
L-Definitions Examples of supermartingales and submartingales 1. Consider asymmetric simple random walk: supermartingale if jumps have negative expectation, submartingale if jumps have positive expectation. 2. This holds even if the walk is stopped on first return to 0. 3. Consider Thackeray's martingale based on asymmetric random walk. This is a supermartingale or a submartingale depending on whether jumps have negative or positive expectation. 4. Consider branching process { Y_n } and consider Y_n on its own instead of Y_n/μ^n . This is a supermartingale if $\mu < 1$ (sub-critical case), a submartingale if $\mu > 1$ (super-critical case), a martingale if $\mu = 1$ (critical case). More martingale examples More martingale examples 55 1. Repeatedly toss a coin, with probability of heads equal to p : each Head earns £1 and each Tail loses £1. Let X_n denote your fortune at time n , with $X_0 = 0$. Then $\left(\frac{1-p}{p}\right)^{X_n}$ defines a martingale. 2. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards are turned over one at a time. Let B_n denote the number of black cards left <i>just before</i> the n^{th} card is turned over:	APTS-ASP	$[1 \mathcal{F}_n]$ to X_n . nartingales, and




$$\frac{1}{1 + \alpha} \frac{1}{1 + \alpha} \frac{1$$

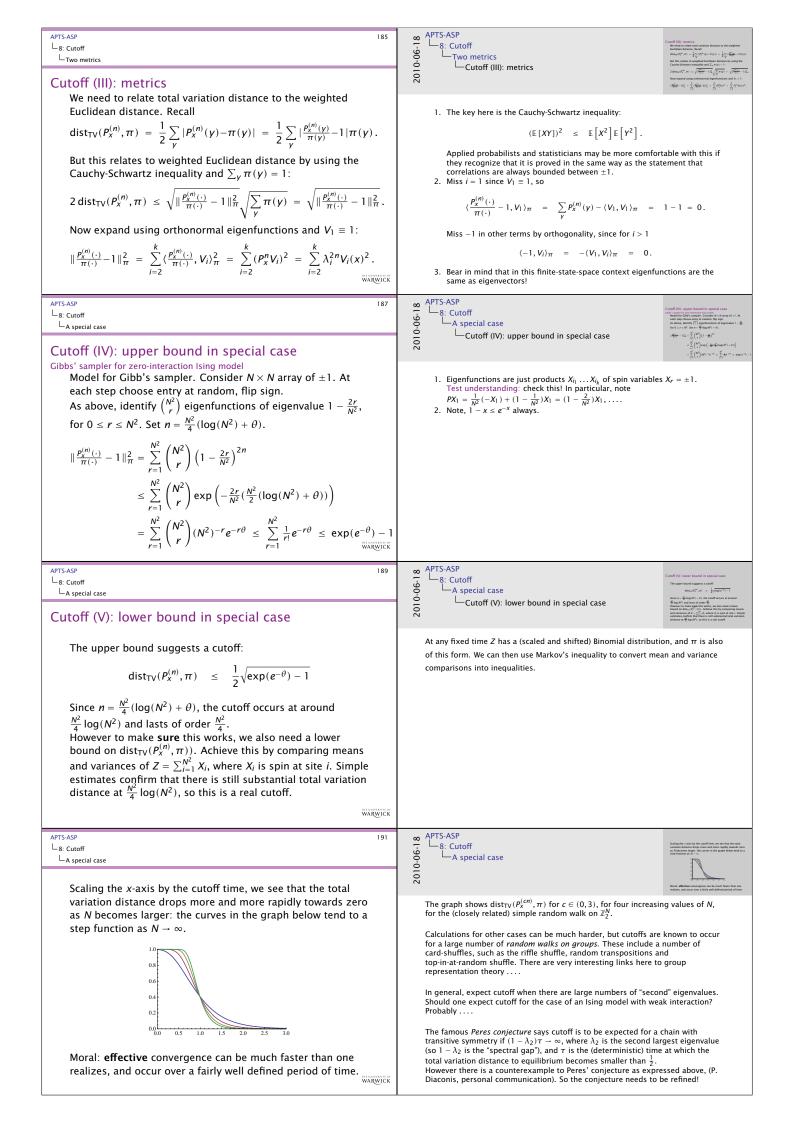
APTS-ASP 81 - 3: Stopping times - Martingale convergence	APTS-ASP - 3: Stopping times - Martingale convergence - Martingale
Martingale convergence	
Theorem Suppose X is a non-negative supermartingale. Then $Z = \lim X_n$ exists, moreover $\mathbb{E}[Z \mathcal{F}_n] \leq X_n$. Theorem Suppose X is a bounded martingale (or, more generally, uniformly integrable). Then $Z = \lim X_n$ exists, moreover $\mathbb{E}[Z \mathcal{F}_n] = X_n$. Theorem Suppose X is a martingale and $\mathbb{E}[X_n^2] \leq K$ for some fixed constant K. Then one can prove directly that $Z = \lim X_n$ exists, moreover $\mathbb{E}[Z \mathcal{F}_n] = X_n$.	1. Consider symmetric simple random walk begun at 1 and <i>stopped at</i> 0: $X_n = Y_{\min\{n,T\}}$ if $T = \inf\{n : Y_n = 0\}$ and Y is symmetric simple random walk. Clearly X_n is non-negative; clearly $X_n = Y_{\min\{n,T\}} - Z = 0$, since Y will eventually hit 0; clearly $0 = \mathbb{E}[Z \mathcal{F}_n] \le X_n$ since $X_n \ge 0$. 2. Thus symmetric simple random walk Y begin at 0 and stopped at ± 10 must converge to a limiting value Z. Evidently $Z = \pm 10$. Moreover since $\mathbb{E}[Z \mathcal{F}_n] = Y_n$ we deduce $\mathbb{P}[Z = 10 \mathcal{F}_n] = \frac{Y_{n+1}0}{20}$. 3. Sketch argument: from martingale property $0 \le \mathbb{E}\left[(X_{m+n} - X_n)^2 \mathcal{F}_n\right] = \mathbb{E}\left[X_{m+n}^2 \mathcal{F}_n\right] - X_n^2$; hence $\mathbb{E}\left[X_n^2\right]$ is non-decreasing; hence it converges to a limiting value; hence $\mathbb{E}\left[(X_{m+n} - X_n)^2\right]$ tends to 0.
APTS-ASP 83	APTS-ASP
- Martingale convergence	$ \begin{array}{c} \text{APTS-ASP} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
Birth-death process revisited Y is a discrete-time birth-death process <i>absorbed at zero</i> :	\sim a non-space hardward model and \sim [47]. \sim \sim \sim \sim \sim \sim \sim \sim \sim \sim
$p_{k,k+1} = \frac{\lambda}{\lambda + \mu}, p_{k,k-1} = \frac{\mu}{\lambda + \mu}, \text{for } k > 0, \text{ with } 0 < \lambda < \mu.$	 This is the discrete-time analogue of the birth-death-immigration process of Section 1 with α = 0 (so no immigration). Test understanding: show that Y is a supermartingale, and use the SLLN to show that Y_n → 0 almost surely as n → ∞. In Section 1 we computed the supermark the sup
This is a non-negative supermartingale and so lim Y_n exists. Now let $T = \inf\{n : Y_n = 0\}$: $T < \infty$ a.s. Then	equilibrium distribution and concluded that
$X_{n} = Y_{n \wedge T} + \left(\frac{\mu - \lambda}{\mu + \lambda}\right) (n \wedge T)$	$\pi_0^{-1} = \left(rac{\mu}{\mu-\lambda} ight)^{\overline{\lambda}}$,
$(\mu + \lambda)$ is a non-negative (super)martingale converging to $Z = \frac{\mu - \lambda}{\mu + \lambda} T$.	 and so with α = 0 the equilibrium distribution is simply extinction of the process, in agreement with what you have just shown. 3. Here we have written n ∧ T for min{n, T}. 4. Test understanding: show that X is a martingale. 5. Markov's inequality then implies that
Thus $\mathbb{E}\left[\mathcal{T} \right] \leq \left(\frac{\mu + \lambda}{\mu - \lambda} \right) X_0 .$	$\mathbb{P}\left[T > k ight] \leq \left(rac{\mu + \lambda}{\mu - \lambda} ight) rac{X_0}{k} .$
APTS-ASP 85	APTS-ASP J: Stopping times Martingale convergence Likelihood revisited
Likelihood revisited	N Electrimodal resisticad the definition and the second se
Suppose i.i.d. random variables $X_1, X_2,$ are observed at times 1, 2,, and suppose the common density is $f(\theta; x)$. Recall that, if the "true" value of θ is θ_0 , then $M_n = \frac{L(\theta_1; X_1,, X_n)}{L(\theta_0; X_1,, X_n)}$ is a martingale, with $\mathbb{E}[M_n] = 1$ for all $n \ge 1$. The SLLN and Jensen's inequality show that $\frac{1}{n} \log M_n \to -c \text{ as } n \to \infty,$ moreover if $f(\theta_0; \cdot)$ and $f(\theta_1; \cdot)$ differ as densities then $c > 0$, and so $M_n \to 0$.	 Remember that the expectation is computed using θ = θ₀. Jensen's inequality for <i>concave</i> functions is opposite to that for convex functions: if ψ is concave then E[ψ(X)] ≤ ψ (E[X]). Moreover if X is non-deterministic and ψ is strictly concave then the inequality is strict. The rate of convergence of M_n is exponential if the difference between θ₀ and θ₁ is identifiable. Note that this is in keeping with hypothesis testing: as more information is gathered, so we would expect the evidence against θ₁ to accumulate, and the likelihood ratio to tend to zero.
APTS-ASP 87 L 3: Stopping times	APTS-ASP J3: Stopping times
	 3: Stopping times 4: Harmonic functions 4: Martingales and bounded harmonic functions 4: Transformed water device and the second sec
Martingales and bounded harmonic functions Consider a discrete state-space Markov chain X with 	 Audit routing and participation of the second second
transition kernel p_{ij} . Suppose $f(i)$ is a bounded harmonic function: a function for which $f(i) = \sum_j f(j) p_{ij}$. Then $f(X)$ is a bounded martingale, hence must converge as time increases to infinity. The simplest example: consider simple random walk X absorbed at boundaries $a < b$. Then $f(x) = \frac{x-a}{b-a}$ is a bounded harmonic function, and can be shown to satisfy $f(x) = \mathbb{P}[X \text{ hits } b \text{ before } a X_0 = x]$. Another example: given branching process Y and family	 The terminology supermartingale/submartingale was actually chosen to mirror the potential-theoretic terminology superharmonic/subharmonic. Use martingale convergence theorem and optional stopping theorem. We'd like to say, therefore f(y) = ℙ [Y becomes extinct Y₀ = y]. Since ζ ≤ 1, it follows f is bounded, so this follows as before. Further significant examples come from, for example, multidimensional random walk absorbed at boundary of a geometric region.
size generating function $G(s)$, suppose ζ is smallest non-negative root of $\zeta = G(\zeta)$. Set $f(\gamma) = \zeta^{\gamma}$. Check this is a non-negative martingale (and therefore harmonic).	

APTS-ASP 89 L 4: Counting and compensating	APTS-ASP -4: Counting and compensating Counting and compensating Counting and compensating Counting and compensating
Counting and compensating "It is a law of nature we overlook, that intellectual versatility is the compensation for change, danger, and trouble." H. G. Wells, The Time Machine, 1896 Simplest example: Poisson process Compensators Examples Variance of compensated counting processes Counting processes and Poisson processes	We can now make a connection between martingales and Markov chains. We start with the Poisson process, viewed as a process used for counting incidents, and show how martingales can be used to describe much more general counting processes.
Compensation of population processes	
APTS-ASP 91 L 4: Counting and compensating L simplest example: Poisson process Simplest example: Poisson process	APTS-ASP 4: Counting and compensating Simplest example: Poisson process Simplest example: Poisson process 1: Simplest example: Poisson process
Consider birth-death-immigration process from above, with birth and death rates set to zero: $\lambda = \mu = 0$. The result is a Poisson process of rate α as described before: Definition A continuous-time Markov chain N is a Poisson process of rate $\alpha > 0$ if the only transitions are $N \rightarrow N + 1$ of rate α . Theorem If N is Poisson process of rate α then $\mathbb{P}[N_t = k] = \mathbb{P}[Poisson(\alpha t) = k] = \frac{(\alpha t)^k}{k!}e^{-\alpha t}$. The times of transitions are often referred to as incidents.	 This has a claim to be the simplest possible continuous-time Markov chain. Its state-space is <i>very</i> reducible, so it does not supply good examples for questions of equilibrium! In one approach to stochastic processes this serves as a fundamental building block for more complicated processes. Times between consecutive incidents are independent Exponential(<i>α</i>). Thence a whole wealth of distributional relationships between Exponential, Poisson, and indeed Gamma, Geometric, Hypergeometric, A more general result is suggestive about how to generalize to Poisson point patterns: if A ⊂ [0, ∞) has length measure a then P[k incidents in A] = P[Poisson(αa) = k]. A significant converse: given a random point pattern such that P[No incidents in A] = exp(-αa) for any A of length measure a, the point pattern marks the incidents of a Poisson counting process of rate α.
APTS-ASP 93 L 4: Counting and compensating L Simplest example: Poisson process Poisson process directions	APTS-ASP 4: Counting and compensating Simplest example: Poisson process Poisson process directions 4: Poisson process directions
 There are ways to extend the Poisson process idea: view as a pattern of points: Slivnyak's theorem: condition on t being a transition / incident. Then remaining incidents form transitions of Poisson process of same rate. PASTA principle: if a Markov chain has "arrivals" following a Poisson distribution, then in statistical equilibrium Poisson Arrivals See Time Averages. How to make points "interact"? Generalize to Poisson patterns of geometric objects. view as counting process and generalize: varying "hazard rate"; relate to martingales? 	 Slivnyak's theorem generalizes directly to Poisson point patterns. The trick is, of course, to make sense of conditioning on an event of probability 0. PASTA: That is to say, at "just before" the arrival time, the probability that the system is in state k is πk the equilibrium probability. Easy consequence of Slivnyak's theorem. The following is crucial for calculations for Poisson patterns of geometric objects: the chance of seeing no object of given kind in given region is exp(-μ) where μ is mean number of such objects. The hazard rate here is "infinitesimal chance of seeing an incident right now given that one hasn't seen anything since the last incident". For Poisson processes the times between incidents are exponentially distributed, with rate parameter α say. If the time since the last incident is u then this is f(u)/F(u) for f(u) = αexp(-αu) and F(u) = exp(-αu). Hence the hazard rate is αexp(-αu)/exp(-αu) = α. This suggests generalizations if the times between incidents are no longer exponentially distributed.
APTS-ASP 95 L 4: Counting and compensating L Compensators Hazard rate and compensators	APTS-ASP 4: Counting and compensating Compensators Hazard rate and compensators Compensators Hazard rate and compensators Compensators
Starting point: if N is Poisson process of rate α then • ("mean") $N_t - \alpha t$ determines a martingale; • ("variance") $(N_t - \alpha t)^2 - \alpha t$ determines a martingale; Consider processes which "count" incidents: Definition A counting process is a continuous-time process—not necessarily Markov—changing by single jumps of +1. Try to subtract something to turn it into a martingale. Definition We say $\int_0^t \ell(s) ds$ compensates a counting process N if • the (possibly random) $\ell(s)$ is in \mathcal{F}_s ; • $N_t - \int_0^t \ell(s) ds$ determines a martingale.	 Calculation based on E [N_{t+s} - N_s]F_s] = αt. Calculation based on Var [N_{t+s} - N_s]F_s] = αt. Later we will also consider population processes counting births +1 and deaths -1. It is possible to make a more general definition which replaces ∫₀^t ℓ(s) d s by a non-decreasing process Λ_t - but then we have to require "Λ_t ∈ F_{t-}". It can then be shown that compensators always exist and are essentially unique. Compensators generalize the notion of hazard rate.


APTS-ASP 97 4: Counting and compensating Examples	APTS-ASP 4: Counting and compensating Examples Example: random sample of lifetimes
Example: random sample of lifetimes Suppose X_1, \ldots, X_n are independent and identically	 A plane fully space space space A plane fully space space space Resolves to showing the following is a martingale:
distributed non-negative random variables (lifetimes) with common density f .	$\mathbb{I}_{[X_i \leq t]} - \int_0^{\min\{t, X_i\}} h(u) \mathrm{d} u .$
 Set P[X_i > t] = 1 - ∫₀^t f(s) d s = exp (-∫₀^t h(s) d s). Counting process N_t = #{i : X_i ≤ t} increases by +1 jumps in continuous time. 	Key calculation: the expectation of the above is $\mathbb{P}[X_i \le t] - \int_0^t h(u) \mathbb{P}[X_i > u] du,$
• Observe: • $N_t - \int_0^t h(s)(n - N_s) ds$ is a martingale. • $(N_t - \int_0^t h(s)(n - N_s) ds)^2 - \int_0^t h(s)(n - N_s) ds$ is a martingale. WARWICK	 which vanishes if we substitute in P [X_i > u] = exp (- ∫_u^a h(s) d s). This of course is computation of an absolute probability: Test understanding: make changes to get the relevant conditional probability calculation. 2. This follows most directly by noting independence of the l[X_i≤r] - ∫₀^{min(t,X_i)} h(s) d s. However it is actually true for a more general reason see later.
APTS-ASP 99 4: Counting and compensating	APTS-ASP 4: Counting and compensating
Example: pure birth process	Example in the birth process Example in the birth process
Example (Pure birth process) If the pure birth process N makes transitions $N \rightarrow N + 1$ at rate λN then $N_t - \int_0^t \lambda N_s ds$ is a martingale. Here again one can check that the expression of variance type $(N_t - \int_0^t \lambda N_s ds)^2 - \int_0^t \lambda N_s ds$ also determines a martingale.	 A direct proof can be obtained by computing the distribution of N_t given N₀. Alternatively here is a plausibility argument: in a small period of time [t, t + Δt) it is most likely no transition will occur; the chance of one transition is about λN_tΔt, and the chance of more is infinitesimal. So the conditional mean increment is λN_tΔt which is exactly matched by the compensator. The measure-theoretic approach to martingales makes sense of this plausibility argument, at the same time showing how it generalizes to its proper full scope. Direct computations would permit a direct proof; but a similar plausibility argument also applies. The conditional variance of the increment is about λN_tΔt, again matching the compensator.
APTS-ASP 101	∞ APTS-ASP
L4: Counting and compensating LVariance of compensated counting process	4: Counting and compensating Variance of compensated counting process Variance of compensated counting process Variance of compensated counting process (w-[new]-[new]-newman
Variance of compensated counting process	N Bernar prod. or fraction longing apparent
The above expression of variance type holds more generally: Theorem Suppose N is a counting process compensated by $\int \ell(s) ds$. Then $\left(N_t - \int_0^t \ell(s) ds\right)^2 - \int_0^t \ell(s) ds$ is a martingale.	 The key point of the rigorous proof, which we omit, is that "Λ_t = ∫₀^t ℓ(s) d s ∈ 𝔅_t-". But again one can argue plausibly, starting with the comment that the increment over (t, t + Δt) has conditional expectation ∫_t^{t+Δt} ℓ(s) d s and takes values 0 or 1. Hence we can deduce the conditional probability of a +1-jump as being ∫_t^{t+Δt} ℓ(s) d s, and so argue as above.
Rigorous proof, or heuristic limiting argument	
WARWICK	
APTS-ASP 103 4: Counting and compensating Counting processes and Poisson processes	APTS-ASP 4: Counting and compensating Counting processes and Poisson processes Counting processes and Poisson processes Counting processes and Poisson processes Counting processes and Poisson processes Counting processes and Poisson processes
 Counting processes and Poisson processes The compensator of a counting process can be used to tell whether the counting process is Poisson: Theorem Suppose N is a counting process which has compensator αt. Then N is a Poisson process of rate α. Better still, counting processes with compensators approximating αt are approximately Poisson of rate α. Here is a nice way to see this: 	 Registree is a plausibility argument: the increment over (t, t + Δt) has conditional probability αΔt, hence is approximately independent of past; hence Nt is approximately the sum of many Bernoulli random variables each of the same small mean, hence is approximately approximately Poisson Begs the question, is N_T(t) a counting process? (Yes, but needs proof.) There is an amazing multivariate generalization of this time-change result, related to Cox's proportional hazards model. If the compensator approximates <i>α</i>t then it is immediate that <i>τ</i>(t) approximates <i>t</i>, and hence good approximation results can be derived!
Theorem Suppose N is a counting process with compensator $\Lambda = \int \ell(s) ds$. Consider the random time change $\tau(t) = \inf\{s : \Lambda_s = t\}$. Then the time-changed counting process $N_{\tau(t)}$ is Poisson of unit rate. The above gives a good pay-off for this theory.	

APTS-ASP 129 L 5: Central Limit Theorem L Martingale case	APTS-ASP 5: Central Limit Theorem Martingale case Convergence to Brownian motion
Convergence to Brownian motion Plot of $X_1/\sqrt{n},, X_n/\sqrt{n}$ for $n = 10, 100, 1000, 10000.$	If paths weren't continuous, then the compensated Poisson process would produce another example of a process with independent increments and these mean and variance properties! In fact any random walk with jumps of zero mean and finite variance also converges to Brownian motion under central-limit scaling. There are also similar theorems for martingales Classical probability deals well with central limit theorems and discrete-time martingales. If we want to deal well with continuous-time processes such as Brownian motion then stochastic calculus becomes very useful. From what we have said here, it should be plain that such continuous-time processes can be viewed as particular limits of discrete-time processes.
and Var $[B_{t+s} - B_s] = t$, continuous paths.	
APTS-ASP 131	APTS-ASP 6: Recurrence Recurrence Recurrence
Recurrence	50
	We have a theory of recurrence for discrete state space Markov chains. But what if the state space is not discrete? and how can we describe speed of convergence?
"A bad penny always turns up" Old English proverb. Speed of convergence Irreducibility for general chains Regeneration and small sets Harris-recurrence Examples	
WARWICK	
APTS-ASP 133 L 6: Recurrence	APTS-ASP G: Recurrence Motivation from MCMC Motivation from MCMC
	Construction from MACC Construction fro
6: Recurrence	Notication from MCMC
 └-6: Recurrence Motivation from MCMC Given a probability density p(x) of interest, for example a Bayesian posterior, we could address the question of drawing from p(x) by using for example Gaussian random-walk Metropolis-Hastings. Thus proposals are normal, mean the current location x, fixed variance-covariance matrix. Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain X which has transition mechanism which mixes a density with staying at the start-point. Evidently the chain almost surely <i>never</i> visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply 	P0000 Centerence
 Le: Recurrence Motivation from MCMC Given a probability density <i>p(x)</i> of interest, for example a Bayesian posterior, we could address the question of drawing from <i>p(x)</i> by using for example Gaussian random-walk Metropolis-Hastings. Thus proposals are normal, mean the current location <i>x</i>, fixed variance-covariance matrix. Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain <i>X</i> which has transition mechanism which mixes a density with staying at the start-point. Evidently the chain almost surely <i>never</i> visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply 	P0000 Centerence
 └-6: Recurrence Motivation from MCMC Given a probability density p(x) of interest, for example a Bayesian posterior, we could address the question of drawing from p(x) by using for example Gaussian random-walk Metropolis-Hastings. Thus proposals are normal, mean the current location x, fixed variance-covariance matrix. Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain X which has transition mechanism which mixes a density with staying at the start-point. Evidently the chain almost surely <i>never</i> visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply 	Ferrer Grapheneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
 └6: Recurrence Motivation from MCMC Given a probability density p(x) of interest, for example a Bayesian posterior, we could address the question of drawing from p(x) by using for example Gaussian random-walk Metropolis-Hastings. Thus proposals are normal, mean the current location x, fixed variance-covariance matrix. Using the Hastings ratio to accept/reject proposals, we end up with a Markov chain X which has transition mechanism which mixes a density with staying at the start-point. Evidently the chain almost surely <i>never</i> visits specified points other than its starting point. Thus it can never be irreducible in the classical sense, and the discrete-chain theory cannot apply 	P0000 Centerence

APTS-ASP 137 L 6: Recurrence L Speed of convergence to equilibrium (I)	APTS-ASP 6: Recurrence Speed of convergence Measuring speed of convergence to equilibrium (I) Measuring speed of convergence to equilibrium (I)
Total variation distance Speed of convergence of a Markov chain X to equilibrium can be measured as discrepancy between two probability measures: $\mathcal{L}(X_t X_0 = x)$ (distribution of X_t) and π (equilibrium measure). Simple possibility: total variation distance. Let X be state-space, for $A \subseteq X$ maximize discrepancy between $\mathcal{L}(X_t X_0 = x)$ (A) = $\mathbb{P}[X_t \in A X_0 = x]$ and $\pi(A)$: dist _{TV} ($\mathcal{L}(X_t X_0 = x), \pi$) = $\sup_{A \subseteq X} \{\mathbb{P}[X_t \in A X_0 = x] - \pi(A)\}$. Alternative expression in case of discrete state-space: dist _{TV} ($\mathcal{L}(X_t X_0 = x), \pi$) = $\frac{1}{2}\sum_{y \in X} \mathbb{P}[X_t = y X_0 = x] - \pi_y $. (Many other possible measures of distance)	$\int \mathcal{L}(X_t X_0 = x) (A) \text{ is probability that } X_t \text{ belongs to } A.$ 2. Test understanding: why is it not necessary to consider $ \mathbb{P}[X_t \in A X_0 = x] - \pi(A) ?$ (Hint: consider $\mathbb{P}[X_t \in A^c X_0 = x] - \pi(A^c).)$ 3. Test understanding: prove this by considering $A = \{y : \mathbb{P}[X_t = y X_0 = x] > \pi_y\}.$ 4. It is not even clear that total variation is best notion: in the case of MCMC one might consider a spectral approach (which we will pick up again when we come to consider cutoff): $\sup_{f: \int f(x) ^2 \pi(dx) < \infty} \left(\mathbb{E}[f(X_t) X_0 = x] - \int f(x)\pi(dx) \right)^2.$ 5. Nevertheless the concept of total variation isolates a desirable kind of rapid convergence.
APTS-ASP 139 L6: Recurrence LSpeed of convergence	APTS-ASP 6: Recurrence Speed of convergence Measuring speed of convergence to equilibrium (II) Measuring speed of convergence to equilibrium (II)
Measuring speed of convergence to equilibrium (II)Uniform ergodicityDefinitionThe Markov chain X is uniformly ergodic if its distribution converges to equilibrium in total variation uniformly in the starting point $X_0 = x$: for some fixed $C > 0$ and for fixed $\gamma \in (0, 1)$, $\sup_{x \in X} \operatorname{dist}_{TV}(\mathcal{L}(X_n X_0 = x), \pi) \leq C \gamma^n$.In theoretical terms, for example when carrying out MCMC, this is a very satisfactory property. No account need be taken of the starting point, and accuracy improves in proportion to the length of the simulation.	 In fact this is a consequence of the apparently weaker assertion, as n → ∞ so sup dist_{TV}(L(X_t X₀ = x), π) → 0. x∈X Much depends on size of C and on how small is y. Typically theoretical estimates of C and y are very conservative. Other things being equal(!), given a choice, consider choosing a uniformly ergodic Markov chain for your MCMC algorithm.
APTS-ASP141L6: RecurrenceLspeed of convergenceMeasuring speed of convergence to equilibrium (III)Geometric ergodicityDefinitionThe Markov chain X is geometrically ergodic if its distribution converges to equilibrium in total variation for some $C(x) > 0$ depending on the starting point x and for fixed $y \in (0,1)$, $dist_{TV}(\mathcal{L}(X_t X_0 = x), \pi) \leq C(x)y^n$.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} APTS-ASP \\ \hline & G: Recurrence \\ & Speed of convergence \\ & Measuring speed of convergence to equilibrium (III) \\ \end{array \end{array} \\ \begin{array}{c} \begin{array}{c} Multiple of the set o$
L _{6: Recurrence} L _{Speed of convergence} Measuring speed of convergence to equilibrium (III) Geometric ergodicity Definition The Markov chain X is geometrically ergodic if its distribution converges to equilibrium in total variation for some $C(x) > 0$ depending on the starting point x and for fixed $y \in (0, 1)$,	Big 6: Recurrence Speed of convergence Measuring speed of convergence to equilibrium (III) Masser and the second sec
L _{6: Recurrence} L _{Speed of convergence} Convergence to equilibrium (III) Geometric ergodicity Definition The Markov chain X is geometrically ergodic if its distribution converges to equilibrium in total variation for some $C(x) > 0$ <i>depending on the starting point</i> x and for fixed $y \in (0,1)$, $dist_{TV}(\mathcal{L}(X_t X_0 = x), \pi) \le C(x)y^n$. Here account does need to be taken of the starting point, but still accuracy improves in proportion to the length of the simulation.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
Le: Recurrence Lspeed of convergence to equilibrium (III) Geometric ergodicity Definition The Markov chain X is geometrically ergodic if its distribution converges to equilibrium in total variation for some $C(x) > 0$ depending on the starting point x and for fixed $y \in (0,1)$, $dist_{TV}(\mathcal{L}(X_t X_0 = x), \pi) \leq C(x)y^n$. Here account does need to be taken of the starting point, but still accuracy improves in proportion to the length of the simulation. APTS-ASP Lirreducibility for general chains 143	10000 6: Recurrence Speed of convergence Measuring speed of convergence to equilibrium (III) Maximum (Maximum (



APTS-ASP 153 L-6: Recurrence L-Harris-recurrence	APTS-ASP G: Recurrence Harris-recurrence Harris-recurrence Harris-recurrence G: Securrence Harris-recurrence
Harris-recurrence	Harris-recurrence Constant of the detection of the detect
Now it is evident what we should mean by recurrence for non-discrete state spaces. Suppose X is ϕ -irreducible and ϕ is a maximal irreducibility measure. Definition X is $(\phi$ -)recurrent if, for ϕ -almost all starting points x and any subset B with $\phi(B) > 0$, when started at x the chain X is almost sure eventually to hit B. Definition X is Harris-recurrent if we can drop " ϕ -almost" in the above.	 So the irreducibility measure is used to focus attention on sets rather than points. And in fact we don't even then need φ to be maximal.
APTS-ASP 155 L-6: Recurrence	APTS-ASP 6: Recurrence
L _{Examples}	$ \begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ $
 Examples of φ-irreducibility Random walks with continuous jump densities. And in fact measurable jump densities suffice. Chains with continuous or even measurable transition densities with exception that chain may stay put. Vervaat perpetuities: X_{n+1} = U^α_{n+1}(X_n + 1) where U₁, U₂, are independent Uniform(0, 1). Volatility models: X_{n+1} = X_n + σ_nZ_{n+1} σ_{n+1} = f(σ_n, U_{n+1}) for suitable f, and independent Gaussian Z_{n+1}, U_{n+1}. 	<text><list-item></list-item></text>
APTS-ASP 157 - 7: Foster-Lyapunov criteria	APTS-ASP T 7: Foster-Lyapunov criteria
	7: Foster-Lyapunov criteria Foster-Lyapunov criteria Foster-Lyapunov criteria
Foster-Lyapunov criteria "Even for the physicist the description in plain language will be the criterion of the degree of understanding that has been reached." Werner Heisenberg, Physics and philosophy: The revolution in modern science, 1958 Renewal and regeneration Positive recurrence Geometric ergodicity Examples	Geometric and uniform ergodicity make sense for general Markov chains: how to find out whether they hold? and how to find out whether equilibrium distributions exist? We want simple criteria, and we can capture these using the language of martingales.
APTS-ASP 159 L-7: Foster-Lyapunov criteria	APTS-ASP
Renewal and regeneration	 F: Foster-Lyapunov criteria Fisteria Fis
Suppose <i>C</i> is a small set for ϕ -recurrent <i>X</i> , with lag 1: $\mathbb{P}[X_1 \in A X_0 = x \in C] \geq \alpha \nu(A).$ Identify regeneration events : <i>X</i> regenerates at $x \in C$ with probability α and then makes transition with distribution ν ; otherwise it makes transition with distribution $\frac{p(x, \cdot) - \alpha \nu(\cdot)}{1 - \alpha}$. The regeneration events occur as a renewal sequence . Set $p_k = \mathbb{P}[\text{next regeneration at time } k \text{ regeneration at time } 0].$ If the renewal sequence is non-defective (if $\sum_k p_k = 1$) and positive-recurrent (if $\sum_k kp_k < \infty$) then there exists a stationary version. This is the key to equilibrium theory whether for discrete or continuous state-space.	 If lag is k > 1 then sub-sample every k steps! This is a coupling construction, linked to the split-chain construation (Athreya and Ney 1978; Nummelin 1978) and the Murdoch and Green (1998) approach to CFTP. This is just the appropriate compensating distribution

APTS-ASP 161 L 7: Foster-Lyapunov criteria L Positive recurrence	APTS-ASP -7: Foster-Lyapunov criteria - Positive recurrence - Pos
Positive recurrence	Positive recurrence Positive recurrence Comparison of the second of the s
The Foster-Lyapunov criterion for positive recurrence of a ϕ -irreducible Markov chain X on a state-space X: Theorem (Foster-Lyapunov criterion for positive recurrence) Given $\Lambda : X \to [0, \infty)$, positive constants a, b, c, and a small set $C = \{x : \Lambda(x) \le c\} \subseteq X$ with $\mathbb{E}[\Lambda(X_{n+1}) \mathcal{F}_n] \le \Lambda(X_n) - a + b\mathbb{I}_{[X_n \in C]};$ then $\mathbb{E}[\mathcal{T}_A X_0 = x] < \infty$ for any A with $\phi(A) > 0$, where $\mathcal{T}_A = \inf\{n \ge 0 : X_n \in A\}$ is the time when X first hits A, and moreover X has an equilibrium distribution.	 In words, we can find a non-negative Λ(X) such that Λ(X_n) + an determines a supermartingale until Λ(X) becomes small enough for X to belong to a small set! We can re-scale Λ so that a = 1. In fact if the criterion holds then it can be shown, any sub-level set of Λ is small. It is evident from the verbal description that reflected simple asymmetric random walk (negatively biased) is an example for which the criterion applies.
APTS-ASP 163 L 7: Foster-Lyapunov criteria	APTS-ASP 7: Foster-Lyapunov criteria
Positive recurrence	-7: Foster-Lyapunov criteria Mode an exercise quark data of participation Sketch of proof Sketch of proof
Sketch of proof	N * + endedding game characteria farged share the representation (2 - c) Supplementary:
1. $Y_n = \Lambda(X_n) + an$ is non-negative supermartingale up to time $T = \inf\{m \ge 0 : X_m \in C\} > n$: $\mathbb{E}[Y_{\min\{n+1,T\}} \mathcal{F}_n, T > n] \le (\Lambda(X_n) - a) + a(n+1) = Y_n$. Hence $Y_{\min\{n,T\}}$ converges. 2. So $\mathbb{P}[T < \infty] = 1$ (otherwise $\Lambda(X) > c, c + an < Y_n \neq 0$). Moreover $\mathbb{E}[Y_T X_0] \le \Lambda(X_0)$ so $c + a \mathbb{E}[T] \le \Lambda(X_0)$. 3. Now use finiteness of <i>b</i> to show $\mathbb{E}[T^* X_0] < \infty$, where T^* first regeneration in <i>C</i> . 4. ϕ -irreducibility: positive chance of hitting <i>A</i> before first regeneration in <i>C</i> . Hence $\mathbb{E}[T_A X_0] < \infty$.	 There is a stationary version of the renewal process of successive regenerations on <i>C</i>. One can construct a "bridge" of <i>X</i> conditioned to regenerate on <i>C</i> at time 0, and then to regenerate again on <i>C</i> at time <i>n</i>. Hence one can sew these together to form a stationary version of <i>X</i>, which therefore has the property that <i>X</i>_t has the equilibrium distribution for all time <i>t</i>.
APTS-ASP 165 L-7: Foster-Lyapunov criteria	APTS-ASP
	-7: Foster-Lyapunov criteria - Numera -9 -Positive recurrence -0 -A converse
A converse Suppose on the other hand that $\mathbb{E}[T X_0] < \infty$ for all starting points X_0 , where C is some small set and T is the first time for X to return to C . The Foster-Lyapunov criterion for positive recurrence follows for $\Lambda(x) = \mathbb{E}[T X_0 = x]$ if $\mathbb{E}[T X_0]$ is bounded on C .	 φ-irreducibility then follows automatically. Indeed, (supposing lag 1 for simplicity)
APTS-ASP 167 L 7: Foster-Lyapunov criteria	APTS-ASP 7: Foster-Lyapunov criteria
└─7: Foster-Lyapunov criteria └─Geometric ergodicity	 F: Foster-Lyapunov criteria Geometric ergodicity Geometric ergodicity Geometric ergodicity Geometric ergodicity
Geometric ergodicity	C Berlin State (1997) and (1997)
The Foster-Lyapunov criterion for geometric ergodicity of a ϕ -irreducible Markov chain X on a state-space X: Theorem (Foster-Lyapunov criterion for geometric ergodicity) Given $\Lambda : X \to [1, \infty)$, positive constants $\gamma \in (0, 1)$, $b, c \ge 1$, and a small set $C = \{x : \Lambda(x) \le c\} \subseteq X$ with $\mathbb{E}[\Lambda(X_{n+1}) \mathcal{F}_n] \le \gamma \Lambda(X_n) + b\mathbb{I}_{[X_n \in C]};$ then $\mathbb{E}[\gamma^{-T_A} X_0 = x] < \infty$ for any A with $\phi(A) > 0$, where $T_A = \inf\{n \ge 0 : X_n \in A\}$ is the time when X first hits A, and moreover (under suitable periodicity conditions) X is geometrically ergodic.	 In words, we can find a Λ(X) ≥ 1 such that Λ(X_n)/yⁿ determines a supermartingale until Λ(X) becomes small enough for X to belong to a small set! We can rescale Λ so that b = 1. The criterion for positive-recurrence is implied by this criterion. We can enlarge C and alter b so that the criterion holds simultaneously for all E [Λ(X_{n+m}) F_n].

APTS-ASP 169 L 7: Foster-Lyapunov criteria	APTS-ASP L_7: Foster-Lyapunov criteria
⊂ /: Foster-Lyapunov criteria └ Geometric ergodicity	Geometric ergodicity
Sketch of proof	Stath of proof Stath of proof Comparing the state of the state o
 Y_n = Λ(X_n)/yⁿ defines non-negative supermartingale up to time T when X first hits C: 𝔅 [Y_{min{n+1,T}} 𝔅_n, 𝔅 > n] ≤ 𝔅 × Λ(X_n)/𝔅ⁿ⁺¹ = Y_n. Hence Y_{min{n,T}} converges. P [T < ∞] = 1, for otherwise Λ(X) > c and so Y_n > c/𝔅ⁿ does not converge. Moreover 𝔅 [𝔅^{-T}] ≤ Λ(X₀). Finiteness of <i>b</i> shows 𝔅 [𝔅^{-T*} 𝔅₀] < ∞, where T* is time of regeneration in C. From φ-irreducibility there is positive chance of hitting A before regeneration in C. Hence 𝔅 [𝔅^{-TA} 𝔅₀] < ∞. 	 Geometric ergodicity follows by a coupling argument which I do not specify here. The constant γ here provides an upper bound on the constant γ used in the definition of geometric ergodicity. However it is not necessarily a very good bound!
APTS-ASP 171 - 7: Foster-Lyapunov criteria	APTS-ASP 7: Foster-Lyapunov criteria
Geometric ergodicity	Geometric ergodicity
Two converses	 AFT13-K3PF Foster-Lyapunov criteria Geometric ergodicity Two converses Two converses Converses
 Suppose on the other hand that E [y^{-T} X₀] < ∞ for all starting points X₀ (and fixed y ∈ (0, 1)), where C is some small set and T is the first time for X to return to C. The Foster-Lyapunov criterion for geometric ergodicity then follows for Λ(x) = E [y^{-T} X₀ = x] if E [y^{-T} X₀] is bounded on C. Uniform ergodicity follows if the Λ function is bounded above. But more is true. Strikingly, For Harris-recurrent Markov chains the existence of a geometric Foster-Lyapunov condition is equivalent to the property of geometric ergodicity. 	1. This was used in Kendall 2004 to provide perfect simulation <i>in principle</i> . The Markov inequality can be used to convert the condition on $\Lambda(X)$ into the existence of a Markov chain on $[0, \infty)$ whose exponential dominates $\Lambda(X)$. The chain in question turns out to be a kind of queue (in fact, $D/M/1$). For $y \ge e^{-1}$ the queue will not be recurrent; however one can sub-sample X to convert the situation into one in which the dominating queue will be positive-recurrent.
APTS-ASP 173	∞ APTS-ASP
-7: Foster-Lyapunov criteria	7: Foster-Lyapunov criteria
-Examples	Construction of the second secon
Examples	Examples
1. General reflected random walk: $X_{n+1} = \max\{X_n + Z_{n+1}, 0\}$ with independent Z_{n+1} of continuous density $f(z)$, $\mathbb{E}[Z_{n+1}] < 0$, $\mathbb{P}[Z_{n+1} > 0] > 0$. Then (a) X is Lebesgue-irreducible on $[0, \infty)$; (b) Foster-Lyapunov criterion for positive recurrence applies. Similar considerations often apply to Metropolis-Hastings Markov chains based on random walks. 2. Reflected Simple Asymmetric Random Walk: $X_{n+1} = \max\{X_n + Z_{n+1}, 0\}$ with independent Z_{n+1} such that $\mathbb{P}[Z_{n+1} = -1] = q = 1 - p = 1 - \mathbb{P}[Z_{n+1} = +1] > \frac{1}{2}$. (a) X is counting-measure-irreducible on non-negative integers; (b) Foster-Lyapunov criterion for geometric ergodicity applies. Aim for $\mathbb{E}[e^{aZ_{n+1}}] < 1$ for some positive a.	 It is instructive to notice that the criteria continue to apply to a considerable variety of appropriately modified Markov chains. 1. (a) E[Z_{n+1}] < 0 so by SLLN 1/n(Z₁ + + X_n) → -∞, so X hits 0 for any X₀. P[Z_{n+1} > 0] > 0 so f(z) > 0 for a < z < a(1 + 1/m), some a, m > 0. So if X₀ = 0 then density of X_n is positive on (na, na + m/ma). If A ⊂ (ma, ∞) is of positive measure then one of A ∩ (na, na + m/ma). If (n ≥ m) is of positive measure then one of A ∩ (na, na + m/ma). E[Z_{n+1}] < 0 so f(z) > 0 for -b - 1/k < z < -b, some b, k > 0. Start X at some x in (nb - 1/k, nb) (positive density over (max{0, x - nb}, x - nb + m/m) which includes (0, m-1/k). By choosing n large enough, we now see we can get anywhere. (b) Test understanding: Check Foster-Lyapunov criterion for positive regulative for Δ(x) = x. 2. (a) Test understanding: this is the same as ordinary irreducibility for discrete-state-space Markov chains! (b) Test understanding: the foster-Lyapunov criterion for geometric ergodicity for Λ(x) = e^{ax} for small positive a.
APTS-ASP 175	APTS-ASP
└─7: Foster-Lyapunov criteria └─Examples	- - Sector Lyapunov criteria 90 - Examples 1000000000000000000000000000000000000
Reflected Simple asymmetric random walk (II)	80 APTIS-ASP 90 -7: Foster-Lyapunov criteria -2: Examples -2: Examples - Reflected Simple asymmetric random walk (II) -2: Examples - Reflected Simple asymmetric random walk (II) -2: Examples - Construction of the second of the sec
	The web start of a constraint of the start o
► Positive recurrence criterion: check for $\Lambda(x) = x$, $C = \{0\}$: $\mathbb{E}[\Lambda(X_1) X_0 = x_0] = \begin{cases} \Lambda(x_0) - (q - p) & \text{if } x_0 \notin C, \\ 0 + p & \text{if } x_0 \in C. \end{cases}$	One may ask, does this kind of argument show that <i>all</i> positive-recurrent random walks can be shown to be geometrically ergodic simply by moving from $\Lambda(x) = x$ to $\Lambda(x) = e^{\alpha x}$? The answer is no, essentially because there exist random walks whose jump distributions have negative mean but fail to have exponential moments
• Geometric ergodicity criterion: check for $\Lambda = e^{ax}$, $C = \{0\} = \Lambda^{-1}(\{1\})$:	
$\mathbb{E}\left[\Lambda(X_1) X_0 = x_0\right] = \begin{cases} \Lambda(x_0) \times (pe^a + qe^{-a}) & \text{if } x_0 \notin C, \\ 1 \times (p + qe^{-a}) & \text{if } x_0 \in C. \end{cases}$	
This works when $pe^{a} + qe^{-a} < 1$; equivalently when $0 < a < \log(q/p)$ (solve the quadratic in e^{a} !).	

$$\frac{1}{12} \frac{1}{12} \frac$$

APTS-ASP 193 L-8: Cutoff	APTS-ASP 194
La special case	LA special case
Aldous, D. J. (1989). Probability approximations via the Poisson clumping heuristic, Volume 77 of Applied Mathematical Sciences. New York: Springer-Verlag. Aldous, D. J. and J. A. Fill (2001). Reversible Markov Chains and Random Walks on Graphs. Unpublished. Athreya, K. B. and P. Ney (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493–501. Bayer, D. and P. Diaconis (1992). Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313. Breiman, L. (1992). Probability, Volume 7 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Corrected reprint of the 1968 original. WAREVICK Arts-ASP Scuoff A special case Jerrum, M. (2003). Counting, sampling and integrating: algorithms and complexity. Lectures in Mathematics ETH Zurich. Basel: Birkhauser Verlag. Kelly, F. P. (1979). Reversibility and stochastic networks. Chichester: John Wiley & Sons Ltd. Wiley Series in Probability and Mathematical Statistics. Kendall, W. S. (2004). Geometr	LA special case Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist. 42, 59–66. Doyle, P. G. and J. L. Snell (1984). Random walks and electric networks, Volume 22 of Carus Mathematical Monographs. Washington, DC: Mathematical Association of America. Fleming, I. (1953). Casino Royale. Jonathan Cape. Grimmett, G. R. and D. R. Stirzaker (2001). Probability and random processes (Third ed.). New York: Oxford University Press. Häggström, O. (2002). Finite Markov chains and algorithmic applications, Volume 52 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press. Vargerick Lassecial case Kindermann, R. and J. L. Snell (1980). Markov random fields and their applications, Volume 1 of Contemporary Mathematics. Providence, R.I.: American Mathematical Society. Kingman, J. F. C. (1993). Poisson processes, Volume 3 of Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press. Oxford Science Publications. Mery, S. P. and R. L. Tweedie (1993). Markov chains and stochastic stability. Communications and Stochastic stabi
Markov chain Monte Carlo: Innovations and Applications. Number 7 in IMS Lecture Notes. Singapore: World Scientific.	Kuraoch, D. J. and P. J. Green (1998). Exact sampling from a continuous state space. Scand. J. Statist. 25(3), 483–502.
Kendall, W. S. and G. Montana (2002). Small sets and Markov transition densities. Stochastic Process. Appl. 99(2), 177–194. WARWICK	Norris, J. R. (1998). Markov chains, Volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. Reprint of 1997 original.
APTS-ASP 197	APTS-ASP 198
└─8: Cutoff └─A special case	└─8: Cutoff └─A special case
 Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43(4), 309-318. Nummelin, E. (1984). General irreducible Markov chains and nonnegative operators, Volume 83 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press. Øksendal, B. (2003). Stochastic differential equations (Sixth ed.). Universitext. Berlin: Springer-Verlag. An introduction with applications. Pemantle, R. (1989). Randomization time for the overhand shuffle. J. Theoret. Probab. 2(1), 37-49. Steele, J. M. (2004). The Cauchy-Schwarz master class. MAA Problem Books Series. Washington, DC: Mathematical Association of America. An introduction to the art of mathematical inequalities. 	Stoyan, D., W. S. Kendall, and J. Mecke (1987). Stochastic geometry and its applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Chichester: John Wiley & Sons Ltd. With a foreword by D. G. Kendall. Williams, D. (1991). Probability with martingales. Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.
APTS-ASP 199	
<pre>L8: Cutoff LA special case Photographs used in text Police phone box en.wikipedia.org/wiki/Image: Earls_Court_Police_Box.jpg The standing martingale en.wikipedia.org/wiki/Image:Hunterhorse.jpg Boat Race: en.wikipedia.org/wiki/Image: Boat_Race_Finish_2008Oxford_winners.jpg Impact site of fragment G of Comet Shoemaker-Levy 9 on Jupiter en.wikipedia.org/wiki/Image: Impact_site_of_fragment_G.gif The cardplayers en.wikipedia.org/wiki/Image:Paul_C%C3% A9zanne%2C_Les_joueurs_de_carte_%281892-95%29.jpg Chinese abacus en.wikipedia.org/wiki/Image:Boulier1.JPG Error function en.wikipedia.org/wiki/Image:Error_Function.svg Boomerang en.wikipedia.org/wiki/Image:Boomerang.jpg</pre>	