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Introduction

Introduction

“. . . you never learn anything unless you are willing to take a risk and
tolerate a little randomness in your life.”

– Heinz Pagels,
The Dreams of Reason, 1988.

This module is intended to introduce students to two
important notions in stochastic processes — reversibility and
martingales — identifying the basic ideas, outlining the main
results and giving a flavour of some significant ways in which
these notions are used in statistics.

These notes outline the content of the module; they
represent work-in-progress and will grow, be corrected, and
be modified as time passes.
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Introduction

Introduction

Probability provides one of the major underlying languages of statistics, and
purely probabilistic concepts often cross over into the statistical world. So
statisticians need to acquire some fluency in the general language of probability
and to build their own mental map of the subject. The Applied Stochastic
Processes module aims to contribute towards this end.

Corrections and suggestions are of course welcome! Email
w.s.kendall@warwick.ac.uk.
Every image in these notes has been either constructed by the author or released
into the public domain.
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Learning outcomes

Learning Outcomes

After successfully completing this module an APTS student
will be able to:

ñ describe and calculate with the notion of a reversible
Markov chain, both in discrete and continuous time;

ñ describe the basic properties of discrete-parameter
martingales and check whether the martingale property
holds;

ñ recall and apply some significant concepts from
martingale theory;

ñ explain how to use Foster-Lyapunov criteria to establish
recurrence and speed of convergence to equilibrium for
Markov chains.
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Introduction
Learning outcomes

Learning Outcomes

These outcomes interact interestingly with various topics in applied statistics.
However the most important aim of this module is to help students to acquire
general awareness of further ideas from probability as and when that might be
useful in their further research.
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An important instruction

First of all, read the preliminary notes . . .

They provide notes and examples concerning a basic
framework covering:

ñ Probability and conditional probability;

ñ Expectation and conditional expectation;

ñ Discrete-time countable-state-space Markov chains;

ñ Continuous-time countable-state-space Markov chains;

ñ Poisson processes.
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Introduction
An important instruction

First of all, read the preliminary notes . . .

The purpose of the preliminary notes is not to provide all the information you
might require concerning probability, but to serve as a prompt about material
you may need to revise, and to introduce and to establish some basic choices of
notation.



APTS-ASP 9

Introduction

Some useful texts

Some useful texts (I)

“There is no such thing as a moral or an immoral book. Books are
well written or badly written.”

– Oscar Wilde (1854–1900),
The Picture of Dorian Gray, 1891, preface

The next three slides list various useful textbooks.
At increasing levels of mathematical sophistication:

1. Häggström (2002) “Finite Markov chains and algorithmic
applications”.

2. Grimmett and Stirzaker (2001) “Probability and random
processes”.

3. Breiman (1992) “Probability”.

4. Norris (1998) “Markov chains”.

5. Williams (1991) “Probability with martingales”.
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Introduction
Some useful texts

Some useful texts (I)

1. Häggström (2002) is a delightful introduction to finite state-space
discrete-time Markov chains, from point of view of computer algorithms.

2. Grimmett and Stirzaker (2001) is the standard undergraduate text on
mathematical probability. This is the book I advise my undergraduate
students to buy, because it contains so much material.

3. Breiman (1992) is a first-rate graduate-level introduction to probability.
4. Norris (1998) presents the theory of Markov chains at a more graduate level

of sophistication, revealing what I have concealed, namely the full gory
story about Q-matrices.

5. Williams (1991) provides an excellent graduate treatment for theory of
martingales: mathematically demanding.
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Some useful texts

Some useful texts (II): free on the web

1. Doyle and Snell (1984) “Random walks and electric
networks” available on web at
www.arxiv.org/abs/math/0001057.

2. Kindermann and Snell (1980) “Markov random fields and
their applications” available on web at
www.ams.org/online_bks/conm1/.

3. Meyn and Tweedie (1993) “Markov chains and stochastic
stability” available on web at
www.probability.ca/MT/.

4. Aldous and Fill (2001) “Reversible Markov Chains and
Random Walks on Graphs” only available on web at
www.stat.berkeley.edu/~aldous/RWG/book.html.

Some useful texts (II): free on the web

1. Doyle and Snell (1984) “Random walks and electric
networks” available on web at
www.arxiv.org/abs/math/0001057.

2. Kindermann and Snell (1980) “Markov random fields and
their applications” available on web at
www.ams.org/online_bks/conm1/.

3. Meyn and Tweedie (1993) “Markov chains and stochastic
stability” available on web at
www.probability.ca/MT/.

4. Aldous and Fill (2001) “Reversible Markov Chains and
Random Walks on Graphs” only available on web at
www.stat.berkeley.edu/~aldous/RWG/book.html.
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Introduction
Some useful texts

Some useful texts (II): free on the web

1. Doyle and Snell (1984) lays out (in simple and accessible terms) an
important approach to Markov chains using relationship to resistance in
electrical networks.

2. Kindermann and Snell (1980) is a sublimely accessible treatment of Markov
random fields (Markov property, but in space not time).

3. Consult Meyn and Tweedie (1993) if you need to get informed about
theoretical results on rates of convergence for Markov chains (eg, because
you are doing MCMC).

4. Aldous and Fill (2001) is the best unfinished book on Markov chains known
to me (at the time of writing these notes).
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Some useful texts

Some useful texts (III): going deeper

1. Kingman (1993) “Poisson processes”.

2. Kelly (1979) “Reversibility and stochastic networks”.

3. Steele (2004) “The Cauchy-Schwarz master class”.

4. Aldous (1989) “Probability approximations via the
Poisson clumping heuristic”.

5. Øksendal (2003) “Stochastic differential equations”.

6. Stoyan, Kendall, and Mecke (1987) “Stochastic geometry
and its applications”.
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Poisson clumping heuristic”.

5. Øksendal (2003) “Stochastic differential equations”.

6. Stoyan, Kendall, and Mecke (1987) “Stochastic geometry
and its applications”.2
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Introduction

Some useful texts
Some useful texts (III): going deeper

Here are a few of the many texts which go much further

1. Kingman (1993) gives a very good introduction to the wide circle of ideas
surrounding the Poisson process.

2. We’ll cover reversibility briefly in the lectures, but Kelly (1979) shows just
how powerful the technique can be.

3. Steele (2004) is the book to read if you decide you need to know more
about (mathematical) inequality.

4. Aldous (1989) is a book full of what ought to be true; hence good for
stimulating research problems and also for ways of computing heuristic
answers. See
www.stat.berkeley.edu/~aldous/Research/research80.html.

5. Øksendal (2003) is an accessible introduction to Brownian motion and
stochastic calculus, which we do not cover at all.

6. Stoyan et al. (1987) discusses a range of techniques used to handle
probability in geometric contexts.
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1: Markov chains and reversibility

Markov chains and reversibility

“People assume that time is a strict progression of cause to effect, but
actually from a non-linear, non-subjective viewpoint, it’s more like a
big ball of wibbly-wobbly, timey-wimey . . . stuff.”

The Tenth Doctor,
Doctor Who, in the episode “Blink”, 2007

Introduction and simplest non-trivial example
Birth, death and immigration
Detailed balance definition and theorem
M/M/1 queue
Random chess
Ising model
Metropolis-Hastings sampler
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1: Markov chains and reversibility

Markov chains and reversibility

We begin our module with the important, simple and subtle idea of a reversible
Markov chain, and the associated notion of detailed balance; we will return to
these ideas periodically through the module. This first major theme isolates a
class of Markov chains for which computation of the equilibrium distribution is
relatively straightforward.
(Remember from the pre-requisites: if a chain is irreducible and
positive-recurrent then it has an equilibrium distribution π ; and if it is aperiodic
then π is also the limiting long-time empirical distribution. Moreover π · P = π .
However if there are k states then these matrix equation presents k equations
each potentially involving all k unknowns . . . a complexity issue if k is large!)



APTS-ASP 17

1: Markov chains and reversibility

Introduction and simplest non-trivial example

Markov chains and reversibility

Here is detailed balance in a nutshell:
Suppose we could solve (nontrivially, please!) for π in
πxpxy = πypyx (discrete-time) or πxqxy = πyqyx

(continuous-time). In both cases simple algebra then shows
π solves the equilibrium equations.
So on a prosaic level it is always worth trying this easy route;
if the detailed balance equations are insoluble then revert to
the more complicated equilibrium equations π · P = π ,
respectively π ·Q = 0.

We will consider reversibility of Markov chains in both
discrete and continuous time, the computation of equilibrium
distributions for such chains, and discuss applications to
some illustrative examples.
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1: Markov chains and reversibility

Introduction and simplest non-trivial example

Markov chains and reversibility

NOTICE: the trivial solution πx ≡ 0 won’t do, as we also need
∑

x πx = 1.

We will consider:

• simple symmetric random walk;

• the birth-death-immigration process;

• the M/M/1 queue;

• a discrete-time chain on a 8× 8 state space;

• Gibbs’ samplers (briefly);

• and Metropolis-Hastings samplers (briefly).

Test understanding: show the detailed balance equations (discrete-case) lead to
equilibrium equations by applying them and then

∑
x pyx = 1 to

∑
x πxpxy .
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1: Markov chains and reversibility

Introduction and simplest non-trivial example

Simplest non-trivial example (I)

Consider doubly-reflected simple symmetric random walk
X on {0,1, . . . ,k}, with reflection “by prohibition”: moves
0→ −1, k → k + 1 are replaced by 0→ 0, k → k. ANIMATION

1. X is irreducible and aperiodic, so there is a unique
equilibrium distribution π = (π0, π1, . . . , πk).

2. The equilibrium equations π · P = π are solved by

πi = 1
k+1 for all i.

3. Consider X in equilibrium and run backwards in time.
Calculation then shows, P [Xn−1 = x|Xn = y] =
πx P [Xn = y|Xn−1 = x] /πy = P [Xn = y|Xn−1 = x] so in
this case by symmetry of the kernel the equilibrium
chain has the same transition kernel (so looks the same)
whether run forwards or backwards in time.

Simplest non-trivial example (I)
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1: Markov chains and reversibility

Introduction and simplest non-trivial example

Simplest non-trivial example (I)

1. Test understanding: explain why X is aperiodic when non-reflected simple
symmetric random walk has period 2.

2. Test understanding: verify solution of equilibrium equations.
3. – Develop Markov property to deduce X0,X1, . . . ,Xn−1 is conditionally

independent of Xn+1,Xn+2, . . . given Xn. Hence reversed Markov chain
is still Markov (though not necessarily time-homogeneous in more
general circumstances). Suppose the reversed chain has kernel py ,x .

– Use definition of conditional probability to compute
py ,x = P [Xn−1 = x , Xn = y] /P [Xn = y],

– then P [Xn−1 = x , Xn = y] /P [Xn = y] = P [Xn−1 = x]px,y/P [Xn = y].
– now substitute, using P [Xn = i] = 1

k+1 for all i so py ,x = px,y .
– Symmetry of kernel (px,y = py ,x ) then shows backwards kernel py ,x is

same as forwards kernel py ,x = py ,x .
The construction generalizes . . . so the link between reversibility and
detailed balance holds generally. In particular, the construction still works
even if the random walk is asymmetric: the p = q = 1

2 symmetry is not the
point here!
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1: Markov chains and reversibility

Introduction and simplest non-trivial example

Simplest non-trivial example (II)

There is a computational aspect to this.

1. Even in more general cases, if the πi depend on i then
above computations show reversibility holds if
equilibrium distribution exists and equations of
detailed balance hold: πxpx,y = πypy ,x .

2. Moreover if one can solve for πi in πxpx,y = πypy ,x then
it is easy to show π · P = π .

3. Consequently if one can solve the equations of detailed
balance, and if the solution can be normalized to have
unit total probability, then the result also solves the
equilibrium equations.

Simplest non-trivial example (II)

There is a computational aspect to this.

1. Even in more general cases, if the πi depend on i then
above computations show reversibility holds if
equilibrium distribution exists and equations of
detailed balance hold: πxpx,y = πypy ,x .

2. Moreover if one can solve for πi in πxpx,y = πypy ,x then
it is easy to show π · P = π .

3. Consequently if one can solve the equations of detailed
balance, and if the solution can be normalized to have
unit total probability, then the result also solves the
equilibrium equations.
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1: Markov chains and reversibility

Introduction and simplest non-trivial example

Simplest non-trivial example (II)

1. Test understanding: check this.
2. Test understanding: check this.
3. Even in this simple example there is an evident improvement in complexity.

Detailed balance involves k equations each with two unknowns, easily
“chained together”. The equilibrium equations involve k equations of which
k − 2 involve three unknowns.
In general the detailed balance equations can be solved unless “chaining
together by different routes” delivers inconsistent results. Kelly (1979) goes
into more detail about this.
Test understanding: show detailed balance doesn’t work for 3-state chain
with transition probabilities 1

3 for 0→ 1, 1→ 2, 2→ 0 and 2
3 for 2→ 1,

1→ 0, 0→ 2.
Test understanding: show detailed balance does work for doubly reflected
asymmetric simple random walk.
We will see there are still major computational issues for more general
Markov chains, connected with determining the normalizing constant to
ensure

∑
i πi = 1.
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1: Markov chains and reversibility

Birth, death and immigration

Birth-death-immigration process
The same idea works for continuous-time Markov chains:
replace transition probabilities px,y by rates qx,y and
equilibrium equation π · P = π by differentiated variant
using Q-matrix: π ·Q = 0.

Definition
The birth-death-immigration process has transitions:

ñ Birth (X → X + 1 at rate λX );
ñ Death (X → X − 1 at rate µX );
ñ plus an extra Immigration term (X → X + 1 at rate α).

Hence qx,x+1 = λx +α; qx,x−1 = µx. ANIMATION

Equilibrium is derived easily from detailed balance:

πx = λ(x−1)+α
µx · λ(x−2)+α

µ(x−1) · . . . · αµ ·π0 .

Birth-death-immigration process
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1: Markov chains and reversibility

Birth, death and immigration

Birth-death-immigration process

Reversibility here is decidedly non-trivial . . . . We need 0 ≤ λ < µ and α > 0.
Note that for this population process the rates qx,x±1 make sense and are defined
only for x = 0,1,2, . . ..
Detailed balance equations:

πx × µx = πx−1 × (λ(x − 1)+α) .

Test understanding: check the calculations!
Normalizing constant can be computed exactly when λ < µ via generalized
Binomial theorem

π−1
0 =

∞∑
x=0

λ(x−1)+α
µx · λ(x−2)+α

µ(x−1) · . . . · αµ =
(

µ
µ − λ

)α
λ
.

If the condition λ < µ is not satisfied then the sum does not converge and
therefore there can be no equilibrium!
If α = 0 then equilibrium = extinction . . . .

Poisson process: λ = µ = 0.
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1: Markov chains and reversibility

Detailed balance definition and theorem

Detailed balance and reversibility

Definition
The Markov chain X satisfies detailed balance if

Discrete time: there is a non-trivial solution of
πxpx,y = πypy ,x ;

Continuous time: there is a non-trivial solution of
πxqx,y = πyqy ,x .

Theorem
The irreducible Markov chain X satisfies detailed balance
and the solution {πx} can be normalized by

∑
x πx = 1 if and

only if {πx} is an equilibrium distribution for X and X
started in equilibrium is statistically the same whether run
forwards or backwards in time.

Detailed balance and reversibility

Definition
The Markov chain X satisfies detailed balance if

Discrete time: there is a non-trivial solution of
πxpx,y = πypy ,x ;

Continuous time: there is a non-trivial solution of
πxqx,y = πyqy ,x .

Theorem
The irreducible Markov chain X satisfies detailed balance
and the solution {πx} can be normalized by

∑
x πx = 1 if and

only if {πx} is an equilibrium distribution for X and X
started in equilibrium is statistically the same whether run
forwards or backwards in time.
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1: Markov chains and reversibility

Detailed balance definition and theorem
Detailed balance and reversibility

1. Proof of theorem is routine: see example of random walk above.
2. The reversibility phenomenon has surprisingly deep ramifications! Consider

birth-death-immigration example above and ask yourself whether it is
immediately apparent that the time-reversed process in equilibrium should
look statistically the same as the original process. (Note: both
immigrations and births convert to deaths, and vice versa . . . .)

3. In general, if
∑

x πx <∞ is not possible then we end up with an invariant
measure.
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1: Markov chains and reversibility

M/M/1 queue

M/M/1 queue

Here we have

ñ Arrivals: X → X + 1 at rate λ;

ñ Departures: X → X − 1 at rate µ if X > 0.

Hence detailed balance: µπx = λπx−1 and therefore when
λ < µ (stability) the equilibrium distribution is πx = ρx(1−ρ)
for x = 0,1, . . ., where ρ = λ

µ (the traffic intensity). ANIMATION

Reversibility/detailed balance is more than a computational
device: consider Burke’s theorem, if a stable M/M/1 queue is
in equilibrium then people leave according to a Poisson
process of rate λ.
Hence if a stable M/M/1 queue feeds into another stable ·/M/1 queue then in
equilibrium the second queue on its own behaves as an M/M/1 queue in
equilibrium.

M/M/1 queue

Here we have

ñ Arrivals: X → X + 1 at rate λ;

ñ Departures: X → X − 1 at rate µ if X > 0.

Hence detailed balance: µπx = λπx−1 and therefore when
λ < µ (stability) the equilibrium distribution is πx = ρx(1−ρ)
for x = 0,1, . . ., where ρ = λ

µ (the traffic intensity). ANIMATION

Reversibility/detailed balance is more than a computational
device: consider Burke’s theorem, if a stable M/M/1 queue is
in equilibrium then people leave according to a Poisson
process of rate λ.
Hence if a stable M/M/1 queue feeds into another stable ·/M/1 queue then in
equilibrium the second queue on its own behaves as an M/M/1 queue in
equilibrium.
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1: Markov chains and reversibility

M/M/1 queue

M/M/1 queue

We recall the M/M/1 queue example discussed in the preliminary notes.
Birth-death-immigration processes and queueing processes are examples of
generalized birth-death processes; only X → X ± 1 transitions, hence detailed
balance equations easily solved.
Note: the M/M/1 queue is non-linear. Linearity allows solution of forwards
equations: we do not discuss this here.
Detailed balance is also a subtle and important tool for the study of Markovian
queueing networks (e.g. Kelly 1979).
The argument connecting reversibility to detailed balance runs both ways. If
detailed balance equations can be solved to derive equilibrium then the process
is reversible if run in equilibrium. Hence a one-line proof of Burke’s theorem: if
queue is run backwards in time then departures become arrivals.
Test understanding: use Burke’s theorem for a feed-forward ·/M/1 queueing
network (no loops) to show that in equilibrium each queue viewed in isolation is
M/M/1. This uses the fact that independent thinnings and superpositions of
Poisson processes are still Poisson . . . .
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1: Markov chains and reversibility

Random chess

Random chess (Aldous and Fill 2001, Ch1, Ch3§2)

Example (A mean Knight’s tour)
Place a chess Knight at the corner of a
standard 8× 8 chessboard. Move it randomly,
at each move choosing uniformly from
available legal chess moves independently of
the past.

1. What is the equilibrium distribution?
(use detailed balance)

2. Is the resulting Markov chain periodic?
(what if you sub-sample at even times?)

3. What is the mean time till the Knight
returns to its starting point?
(inverse of equilibrium probability)

ANIMATION

Random chess (Aldous and Fill 2001, Ch1, Ch3§2)

Example (A mean Knight’s tour)
Place a chess Knight at the corner of a
standard 8× 8 chessboard. Move it randomly,
at each move choosing uniformly from
available legal chess moves independently of
the past.

1. What is the equilibrium distribution?
(use detailed balance)

2. Is the resulting Markov chain periodic?
(what if you sub-sample at even times?)

3. What is the mean time till the Knight
returns to its starting point?
(inverse of equilibrium probability)

ANIMATION
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1: Markov chains and reversibility

Random chess
Random chess (Aldous and Fill 2001, Ch1, Ch3§2)

Now we turn to a multi-dimensional example.

1. Use πv/dv = πu/du if u ↔ v, where du is the degree of u. Also use fact,
there are 168 = (2+ 2× 3+ 5× 4+ 4× 6+ 4× 8)× 4/2 different edges. So
total degree is 2× 168 and equilibrium probability at corner is 2/(2× 168).

2. Period 2 (white versus black). Sub-sampling at even times makes chain
aperiodic on squares of one colour.

3. Inverse of equilibrium probability shows that mean return time to corner is
168.
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model
(I) Ising model

ñ Pattern of spins Si = ±1 on (finite fragment of) lattice
(here i is typical node of lattice).

ñ Probability mass function

P [Si = si all i] ∝


exp

(
J
∑∑

i∼j sisj

)
,

exp
(
J
∑∑

i∼j sisj + H
∑

i si s̃i

)
if external field s̃i .

Gibbs’ sampler for Ising model
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(here i is typical node of lattice).

ñ Probability mass function

P [Si = si all i] ∝


exp

(
J
∑∑

i∼j sisj

)
,

exp
(
J
∑∑

i∼j sisj + H
∑
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)
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model

1. Sample applications: idealized model for magnetism, simple binary image.
Physics: interest in fragment expanding to fill whole lattice: cases of
zero-interaction, sub-critical, critical ( kT

J = 2.269185), super-critical.
The Ising model is the nexus for a whole variety of scientific approaches,
each bringing their own rather different questions.

2. i ∼ j if i and j are lattice neighbours.
Note, physics treatments use a (physically meaningful)
over-parametrization J → J

kT , H →mH.
The H

∑
i si s̃i term can be interpreted physically as modelling an external

magnetic field, or statistically as a noisy image conditioning the image.
For a simulation physics view of the Ising model, see the expository article
by David Landau in Kendall et al. (2005).

3. Actually computing the normalizing constant here is hard in the sense of
complexity theory (see for example Jerrum 2003).
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model
(II) Gibbs’ sampler (or heat-bath)

ñ Consider Markov chain with states which are Ising
configurations on an n× n lattice, moving as follows:

ñ Set s to be a given configuration, with s(i) obtained by
flipping spin i,

ñ Choose a site i in the lattice at random;
ñ Compute the conditional probability P

[
s
∣∣∣{s(i), s}] of

current configuration given configuration at other sites;
ñ Flip the current value of Si with probability

P
[
s(i)

∣∣∣{s(i), s}], otherwise leave unchanged.

ñ Simple general calculations show,∑
i

1
n2 P

[
s(i)

]
× P

[
s
∣∣∣{s(i), s}] = P

[
s
]

so chain has Ising model as equilibrium distribution.
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model

A particular example of the Gibbs’ sampler in the special context of Ising models.

1. View configurations as vectors of ±1’s listing spins at different sites.
2. {s(i), s} is the event that we see configuration s except perhaps at state i.

3. In case of the Ising model, noting that s(i)i = −si ,

P
[
s
∣∣∣{s(i), s}] ∝

exp
(
J
∑

j:j∼i sisj

)
exp

(
J
∑

j:j∼i sisj

)
+ exp

(
−J
∑

j:j∼i sisj

) .
Obvious changes if external field.

4. This is really a completely general computation!
Note that the equilibrium equations are complicated: n2 equations, each
with n2 terms on left-hand side.

5. General pattern for Gibbs sampler: update individual random variables
sequentially using conditional distributions given all other random
variables.

6. Conditional distributions, so ratios, so normalizing constants cancel out.
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model
(III) Detailed balance

ñ Detailed balance calculations provide a much easier
justification: merely check

1
n2 P

[
s(i)

]
×P

[
s
∣∣∣{s(i), s}] = 1

n2 P
[
s
]×P [s(i)∣∣∣{s(i), s}] .

ñ Here is an animation of a Gibbs’ sampler producing an
Ising model conditioned by a noisy image, produced by
systematic scans: 128× 128, with 8 neighbours. Noisy
image to left, draw from Ising model to right.

ANIMATION
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1: Markov chains and reversibility

Ising model

Gibbs’ sampler for Ising model

1. Test understanding: check the detailed balance calculations.

This also works for processes obtained from:

– systematic scans

– coding (“simultaneous updates on alternate colours of a chessboard”)

but not for wholly simultaneous updates.
2. The example is taken from a discussion of “perfect simulation”, but that is

another story! See

www.warwick.ac.uk/go/wsk/ising-animations

for more on perfect sampling for the Ising model.
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1: Markov chains and reversibility

Metropolis-Hastings sampler

Metropolis-Hastings

1. An important alternative to the Gibbs’ sampler, even
more closely connected to detailed balance:

ñ Suppose Xn = x;
ñ Pick y using a transition probability kernel q(x, y) (the

proposal kernel);
ñ accept the proposed transition x → y with probability

α(x, y) = min

{
1,
π(y)q(y , x)
π(x)q(x, y)

}
.

ñ if transition accepted, set Xn+1 = y;
otherwise set Xn+1 = x.

2. If π satisfies detailed balance then π is an equilibrium
distribution. ANIMATION
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1: Markov chains and reversibility

Metropolis-Hastings sampler

Metropolis-Hastings

1. Actually the Gibbs’ sampler is a special case of the Metropolis-Hastings
sampler.

2. Test understanding: write down the transition probability kernel for X .
Test understanding: check that π solves the detailed balance equations.

3. Common variations on choice of proposal kernel:

– independence sampler: q(x, y) = f (y);
– random-walk sampler: q(x, y) = f (y − x);
– Langevin sampler: replace random-walk shift by shift depending on

grad logπ .

4. Slice sampler: example of Metropolis-Hastings sampler used to deliver a
uniform draw from region under the graph of a probability density function.

5. Ratio π(x)/π(y), so normalizing constants cancel out.
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2: Martingales

Martingales

“One of these days . . . a guy is going to come up to you and show you
a nice brand-new deck of cards on which the seal is not yet broken,
and this guy is going to offer to bet you that he can make the Jack of
Spades jump out of the deck and squirt cider in your ear. But, son, do
not bet this man, for as sure as you are standing there, you are going
to end up with an earful of cider.”

Frank Loesser,
Guys and Dolls musical, 1950, script

Simplest possible example
Thackeray’s martingale
Populations
Definitions
More martingale examples
Finance example
Martingales and likelihood
Chicken Little
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2: Martingales

Martingales

This is the second major theme of these notes: martingales are a class of
random processes which are closely linked to ideas of conditional expectation.
Briefly, martingales model your fortune if you are playing a fair game. (There are
associated notions of “supermartingale”, for a game unfair to you, and
“submartingale”, for a game fair to you.)
But martingales can do so much more!
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2: Martingales

Simplest possible example

Martingales pervade modern probability

1. We say the random process X is a martingale if it
satisfies the martingale property:

E [Xn+1|Xn,Xn−1, . . .] =
E
[
Xn plus jump at time n|Xn,Xn−1, . . .

] = Xn .

2. Simplest possible example: simple symmetric random
walk X0 = 0,X1,X2, . . .. The martingale property follows
from independence and distributional symmetry of
jumps.

3. For convenience and brevity, we often replace
E [. . . |Xn,Xn−1, . . .] by E [. . . |Fn] and think of
“conditioning on Fn” as “conditioning on all events which
can be determined to have happened by time n”.
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2: Martingales

Simplest possible example

Martingales pervade modern probability

We use X as a convenient abbreviation for the stochastic process {Xn : n ≥ 0}, et
cetera.

1. For a conversation with the inventor, see
www.dartmouth.edu/~chance/Doob/conversation.html.

2. Expected future level of X is current level.
3. We use Fn notation without comment in future, usually representing

conditioning by X0, X1, . . . , Xn (if X is martingale in question). Sometimes
further conditioning will be added; but Fn+1 always represents at least as
much conditioning as Fn. Crucially, the “Tower property” of conditional
expectation then applies:

E [E [Z|Fn+1] |Fn] = E [Z|Fn] .

Test understanding: deduce

E [Xn+k|Fn] = Xn .

4. There is an extensive theory about the notion of a filtration of σ -algebras
(also called σ -fields), {Fn : n ≥ 0}. We avoid going into details . . . .
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2: Martingales

Simplest possible example

University Boat Race results over 190 years

Could this represent a martingale?

University Boat Race results over 190 years

Could this represent a martingale?
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2: Martingales

Simplest possible example

University Boat Race results over 190 years

WSK first became aware of the boat race in about 1970, at which time the
martingale property would have seemed not to apply.

There is now a much more satisfactory balance (especially for WSK, who studied
at Oxford!), but one might still doubt the validity of the martingale property here
. . .
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2: Martingales

Thackeray’s martingale

Thackeray’s martingale
1. MARTINGALE:

ñ spar under the bowsprit of a sailboat;
ñ a harness strap that connects the nose piece to the girth;

prevents the horse from throwing back its head.

2. MARTINGALE in gambling:
The original sense is given in the OED: “a system in gambling which

consists in doubling the stake when losing in the hope of eventually

recouping oneself.” The oldest quotation is from 1815 but the nicest is

from 1854: Thackeray in The Newcomes I. 266 “You have not played as yet?

Do not do so; above all avoid a martingale if you do.”

3. Result of playing Thackeray’s martingale system and
stopping on first win: ANIMATION

set fortune at time n to be Mn.
If X1 = −1, . . . , Xn = −n then
Mn = −1− 2− . . .− 2n−1 = 1− 2n, otherwise Mn = 1.
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2: Martingales

Thackeray’s martingale

Thackeray’s martingale

1. This is the “doubling” strategy.
The equestrian meaning resembles the probabilistic definition to some
extent.

2. Another nice quotation is the following:

“I thought there was something of wild talent in him, mixed with
a due leaven of absurdity, – as there must be in all talent, let
loose upon the world, without a martingale.”

Lord Byron, Letter 401. to Mr Moore. Dec. 9. 1820,
writing about an Irishman Muley Moloch.

3. Notice how Thackeray’s martingale is really based on a simple symmetric
random walk.
Test understanding: compute the expected value of Mn from first
principles.

4. Test understanding: what should be the value of E
[
M̃n

]
if M̃ is computed

as for M but stopping play if M hits level 1− 2N? (Think about this, but note
that a satisfactory answer has to await discussion of optional stopping
theorem in next section.)
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2: Martingales

Populations

Martingales and populations

1. Consider a branching process Y : population at time n is
Yn, where Y0 = 1 (say) and Yn+1 is the sum
Zn,1 + . . .+ Zn,Yn of Yn independent copies of a
non-negative integer-valued family-size r.v. Z .

2. Suppose E [Z] = µ <∞. Then Xn = Yn/µn defines a
martingale.

3. Suppose E
[
sZ
] = G(s). Let Hn = Y0 + . . .+ Yn be total of

all populations up to time n. Then sHn/(G(s)Hn−1) defines
a martingale.

4. In all these examples we can use E [. . . |Fn], representing
conditioning by all Zm,i for m ≤ n.
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2: Martingales

Populations

Martingales and populations

1. New Yorker’s definition of branching process (to be read out aloud in
strong New York accent): “You are born. You live a while. You have a
random number of kids. You die. Your children are completely independent
of you, but behave in exactly the same way.”
The formal definition requires the Zn,i to be independent of Y0, . . . , Yn.

2. Test understanding: check this example. Note, X measures relative
deviation from the deterministic Malthusian model of growth.

3. Test understanding: check this example. What interpretation can you put
on sHn ?

4. Indeed, we can also generalize to general Y0.
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2: Martingales

Definitions

Definition of a martingale

Formally:

Definition
X is a martingale if E [|Xn|] <∞ (for all n) and

Xn = E [Xn+1|Fn] .

Definition of a martingale
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Xn = E [Xn+1|Fn] .
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2: Martingales

Definitions
Definition of a martingale

It is useful to have a general definition of expectation here (see the section on
conditional expectation in the preliminary notes).

1. It is important that the Xn are integrable.
2. It is a consequence that Xn is part of the conditioning expressed by Fn.
3. Sometimes we expand the reference to Fn:

Xn = E [Xn+1|Xn,Xn−1, . . . ,X1,X0] .
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2: Martingales

Definitions

Supermartingales and submartingales

Two associated definitions

Definition
{Xn} is a supermartingale if E [|Xn|] <∞ (for all n) and

Xn ≥ E [Xn+1|Fn] ,

(and Xn forms part of conditioning expressed by Fn).

Definition
{Xn} is a submartingale if E [|Xn|] <∞ (for all n) and

Xn ≤ E [Xn+1|Fn] ,

(and Xn forms part of conditioning expressed by Fn).
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2: Martingales

Definitions
Supermartingales and submartingales

1. It is important that the Xn are integrable.
It is now not automatic that Xn forms part of the conditioning expressed by
Fn, and it is therefore important that this requirement is part of the
definition.

2. It is important that the Xn are integrable.
Again it is important that Xn forms part of the conditioning expressed by
Fn.
How to remember the difference between “sub-” and “super-”? Suppose
{Xn} measures your fortune in a casino gambling game. Then “sub-” is bad
and “super-” is good for the casino!
Wikipedia: life is a supermartingale, as one’s expectations are always no
greater than one’s present state.
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2: Martingales

Definitions

Examples of supermartingales and submartingales

1. Consider asymmetric simple random walk:
supermartingale if jumps have negative expectation,
submartingale if jumps have positive expectation.

2. This holds even if the walk is stopped on first return to 0.

3. Consider Thackeray’s martingale based on asymmetric
random walk. This is a supermartingale or a
submartingale depending on whether jumps have
negative or positive expectation.

4. Consider branching process {Yn} and consider Yn on its
own instead of Yn/µn. This is a supermartingale if µ < 1
(sub-critical case), a submartingale if µ > 1 (super-critical
case), a martingale if µ = 1 (critical case).
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2: Martingales

Definitions
Examples of supermartingales and submartingales

Test understanding: check all these examples.
In each case the general procedure is as follows: compare E [Xn+1|Fn] to Xn.

Note that all martingales are automatically both sub- and supermartingales, and

moreover they are the only processes to be both sub- and supermartingales.
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2: Martingales

More martingale examples

More martingale examples
1. Repeatedly toss a coin, with probability of heads equal to

p: each Head earns £1 and each Tail loses £1. Let Xn

denote your fortune at time n, with X0 = 0. Then(
1− p

p

)Xn

defines a martingale.

2. A shuffled pack of cards contains b black and r red
cards. The pack is placed face down, and cards are
turned over one at a time. Let Bn denote the number of
black cards left just before the nth card is turned over:

Bn

r + b − (n− 1)
,

the proportion of black cards left just before the nth card
is revealed, defines a martingale.

More martingale examples
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2: Martingales

More martingale examples

More martingale examples

Test understanding: check both of these examples.
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2: Martingales

Finance example

An example of importance in finance

1. Suppose N1, N2, . . . are independent identically
distributed normal random variables of mean 0 and
variance σ2, and put Sn = N1 + . . .+Nn.

2. Then the following is a martingale:

Yn = exp
(
Sn − n

2σ
2
)
.

ANIMATION

3. A modification exists for which the Ni have non-zero
mean µ.
Hint: Sn → Sn − nµ.
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2: Martingales

Finance example

An example of importance in finance

Here (modifications of) Yn provides the simplest model for market price
fluctuations appropriately discounted.

1. In fact {Sn} is a martingale, though this is not the point here.
2. Test understanding: Prove this!

Hint: E [exp(N1)] = eσ
2/2.

3. Test understanding: figure out the modification!
4. A continuous-time variation on this (using Brownian motion) is an

important baseline model in mathematical finance.
Note that the martingale can be expressed as

Yn+1 = Yn exp
(

Nn+1 − σ2

2

)
.
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2: Martingales

Martingales and likelihood

Martingales and likelihood

ñ Suppose independent random variables X1, X2, . . . are
observed at times 1, 2, . . . . Write down likelihood at
time n:

L(θ;X1, . . . ,Xn) = p(X1, . . . ,Xn|θ) .
ñ If θ0 is “true” value then (computing expectation with
θ = θ0)

E
[

L(θ1;X1, . . . ,Xn+1)
L(θ0;X1, . . . ,Xn+1)

∣∣∣Fn

]
= L(θ1;X1, . . . ,Xn)

L(θ0;X1, . . . ,Xn)
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2: Martingales

Martingales and likelihood

Martingales and likelihood

1. Simple case of normal data with unknown mean θ:

L(θ;X1, . . . ,Xn) = exp

− 1
2σ2

n∑
1

(Xi − θ)2
 .

2. Hence likelihood ratios are really the same thing as martingales.
3. The martingale in the finance example can also arise in this way, as the

likelihood ratio between two different values of θ if the model is that the Xi
are independent identically distributed N(θ,σ2).
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2: Martingales

Chicken Little

The “Chicken Little” example

1. A comet may or may not collide with Earth in n days
time. Chaotic dynamics: model by supposing comet may
follow one of n possible paths, of which just one leads to
collision at day n.

2. Each day, new observations eliminate exactly one of
possible paths: path to be eliminated on day r is chosen
from n− r + 1 surviving paths uniformly at random and
independently of the past.

3. Compute conditional collision probability at day r,
supposing collision path is not yet eliminated. Deduce
that conditional collision probabilities at days
r = 0,1, . . . ,n form a martingale.
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2: Martingales

Chicken Little
The “Chicken Little” example

1. Considerable simplification of chaotic dynamics, but not unreasonable.
2. This models the fact that observations are hard to come by, and do not

provide much information. For example, see
http://en.wikipedia.org/wiki/99942_Apophis. This
near-Earth asteroid, when discovered in 2004, was estimated to have a 2.7%
chance of hitting the Earth in 2029. Further observations have reduced this
figure, and as of 16/04/08, the impact probability for April 13 2036 (the
most likely collision date) fell to 1 in 45,000. More recently (07/10/09) risk
has been downgraded to 4× 10−6. See
http://neo.jpl.nasa.gov/news/news146.html for an
informative contemporary account.

3. Let D be indicator random variable indicating event that collision occurs,
and compute E [D|Fr] where Fr captures information of whether or not
collision occurs by day r.
Probability of collision grows more and more rapidly ( 1

n−r on day r) till
either it suddenly falls to zero (if collision path eliminated before n) or
collision actually occurs (if collision path not eliminated before day n).
Therefore collision probability increases day by day (engendering increasing
despair), until it (hopefully) falls to zero (engendering mass relief).
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3: Stopping times

Stopping times

“Hurry please it’s time.”
T. S. Eliot,
The Waste Land, 1922

“No-look-ahead” condition
Random walk example
Branching process example
Events revealed by stopping time
Optional Stopping Theorem
Application to gambling
Hitting times
Martingale convergence
Harmonic functions

Stopping times

“Hurry please it’s time.”
T. S. Eliot,
The Waste Land, 1922

“No-look-ahead” condition
Random walk example
Branching process example
Events revealed by stopping time
Optional Stopping Theorem
Application to gambling
Hitting times
Martingale convergence
Harmonic functions2

0
1

0
-0

6
-1

8 APTS-ASP
3: Stopping times

Stopping times

Playing a fair game, what happens if you adopt a strategy of leaving the game at
a random time? For “reasonable” random times, this should offer you no
advantage. Here we seek to make sense of the term “reasonable”.
Note that the gambling motivation is less frivolous than it might appear.
Mathematical finance is about developing trading strategies (complex gambles!)
aimed at controlling uncertainty.
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3: Stopping times

Stopping times
The big idea

Martingales M stopped at “nice” times are still martingales. In
particular, for a “nice” random T ,

E [MT ] = E [M0] .

For a random time T to be “nice”, two things are required:

1. T must not “look ahead”;

2. T must not be “too big”. ANIMATION

3. Note that random times T turning up in practice often
have positive chance of being infinite.
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3: Stopping times

Stopping times

How can T fail to be “nice”? Consider simple symmetric random walk X begun at
0.

1. Example of “looking ahead”: Set S = sup{Xn : 0 ≤ n ≤ 10} and set

T2 = inf{n : Xn = S}. Then E
[
XT2

]
≥ P [S > 0] > 0 = E [X0]

2. Example of being “too big”: T1 = inf{n : Xn = 1} so (assuming T1 is almost
surely finite) E

[
XT1

] = 1 > 0 = E [X0]
3. Example of possibly being infinite: asymmetric simple random walk X

begun at 0, E [X1] < 0, T1 = inf{n : Xn = 1} as above.
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“No-look-ahead” condition

Non-obvious “no-look-ahead” condition

Definition
A non-negative integer-valued random variable T is said to
be a stopping time if (equivalently) for all n

ñ [T ≤ n] is determined by information at time n;

ñ or [T ≤ n] ∈ Fn

ñ or we can write rules (Bernoulli random variables) ζ0,
ζ1, . . . with ζn in Fn, such that

[ζn = 1] = [T ≤ n] .
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3: Stopping times

“No-look-ahead” condition
Non-obvious “no-look-ahead” condition

Note that we need to have a clear notion of exactly what might be Fn,
information revealed by time n.

Here is a poetical illustration of a non-stopping time, due to David Kendall:

There is a rule for timing toast,
You never need to guess;
Just wait until it starts to smoke,
And then ten seconds less.

(Adapted from a “grook” by Piet Hein, Grooks II MIT Press, 1968.)

Recall the example on previous slide of T being the time to hit 1 for a
negatively-biased simple random walk begun at 0: stopping times can have
positive chance of being infinite.
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Random walk example

Example using random walks

Let X be a random walk begun at 0.

ñ The random time T = inf{n > 0 : Xn ≥ 10} is a stopping
time.

ñ Indeed [T ≤ n] is clearly determined by information at
time n:

[T ≤ n] = [X1 ≥ 10]∪ . . .∪ [Xn ≥ 10] .

ñ Finally, T is typically “too big”: so long as it is almost
surely finite, we find that 0 = E [X0] < E [XT ].
Finiteness is the case if E [X1] > 0 or if E [X1] = 0 and P [X1 > 0] > 0.
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3: Stopping times

Random walk example

Example using random walks

1. X need not be symmetric, need not be simple. Indeed a Markov chain or
even a general random process would do.

2. We could replace n > 0 by n ≥ 0, X ≥ 10 by X ∈ A for some subset A of
state-space, . . . :
thus we could have TA = inf{n > 0 : Xn ∈ A} (the “hitting time on A”).

3. In case of hitting time on A,

[TA ≤ n] = [X1 ∈ A]∪ . . .∪ [Xn ∈ A]

so [TA ≤ n] is determined by information at time n, so TA is a stopping
time.

4. General hitting times TA need not be “too big”: example if X is simple
symmetric random walk begun at 0 and A = {±10}.
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Branching process example

Example using branching processes

Let Y be a branching process of mean-family-size µ (so
Xn = Yn/µn determines a martingale), with Y0 = 1.

ñ The random time T = inf{n : Yn = 0} = inf{n : Xn = 0} is
a stopping time.

ñ Indeed [T ≤ n] is clearly determined by information at
time n:

[T ≤ n] = [Yn = 0]

since Yn−1 = 0 implies Yn = 0 et cetera.

ñ Again T here is “too big”: so long as it is almost surely
finite then 1 = E [X0] > E [XT ].
Finiteness occurs if µ < 1, or if µ = 1 and there is positive chance of zero
family size.
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3: Stopping times

Branching process example

Example using branching processes

1. So Yn = Zn−1,1 + . . .+ Zn−1,Yn−1 for independent family sizes Zm,j .
2. For a more interesting example, consider

S = inf{n : at least one family of size 0 before n}

3. In case of S, consider

[S ≤ n] = A0 ∪ A1 ∪ . . .∪ An−1

where Ai = [Zi,j = 0 for some j ≤ Yi]. Thus [S ≤ n] is determined by
information at time n, so S is a stopping time.

4. It is important to be clear about what is information provided at time n.
Here we suppose it to be made up only of the sizes of families produced by
individuals in generations 0, 1, . . . , n− 1. Other choices are possible, of
course.
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Events revealed by stopping time

Events revealed by the time of a stopping time T

Suppose T is a stopping time.

Definition
The “pre-T σ -algebra” FT is composed of events which, if T
does not occur later than time n, are themselves determined
at time n. Thus:

A ∈ FT if A∩ [T ≤ n] ∈ Fn for all n .

Definition
Random variables Z are said to be “FT -measurable” if events
made up from them ([Z ≤ z], . . . ) are in pre-T σ -algebra FT .
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3: Stopping times

Events revealed by stopping time

Events revealed by the time of a stopping time T

1. Consider random walk X begun at 0 and the stopping time
T = inf{n : Xn ≥ 10}. Then the event [X15 < 5 and T > 15] is in the pre-T
σ -algebra FT .

2. The random variable Xmin{15,T} is FT -measurable.
3. Consider the branching process example with S being the time at which a

zero-size family is first encountered. Then

Y0 + Y1 + . . .+ YS ∈ FS .
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Optional Stopping Theorem

Optional stopping theorem

Theorem
Suppose M is a martingale and S ≤ T are two bounded
stopping times. Then

E [MT |FS] = MS .

We can generalize to general stopping times S ≤ T if either M
is bounded or M is “uniformly integrable”.

Optional stopping theorem
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3: Stopping times

Optional Stopping Theorem

Optional stopping theorem

Uniform integrability: note we can take expectation of a single random variable X
exactly when E [|X|; |X| > n]→ 0 as n→∞. (This fails when E [|X|; |X| > n] = ∞!).
Uniform integrability requires this to hold uniformly for a whole collection of
random variables Xi :

lim
n→∞ sup

i
E [|Xi|; |Xi| > n] = 0 .

Examples: if the Xi are bounded; if there is a single non-negative random variable

Z with E [Z] <∞ and |Xi| ≤ Z for all i; if the p-moments E
[
X

p
i

]
are bounded for

some p > 1.
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Application to gambling

Gambling: you shouldn’t expect to win

Suppose your fortune in a gambling game is X , a martingale
begun at 0 (for example, a simple symmetric random walk).
If N is the maximum time you can spend playing the game,
and if T ≤ N is a bounded stopping time, then

E [XT ] = 0 .

Contrast Fleming (1953):

“Then the Englishman, Mister Bond, increased his winnings to exactly
three million over the two days. He was playing a progressive system
on red at table five. . . . It seems that he is persevering and plays in
maximums. He has luck.”
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3: Stopping times

Application to gambling

Gambling: you shouldn’t expect to win

There are exceptions, for example Blackjack (using card-counting:
en.wikipedia.org/wiki/Card_counting).
I find strategies proposed for other games to be less convincing, for example the
Labouchére system favoured by Ian Fleming
(en.wikipedia.org/wiki/Labouch%C3%A8re_system):

The Labouchére system, also called the cancellation system, is a
gambling strategy used in roulette. The user of such a strategy
decides before playing how much money they want to win, and writes
down a list of positive numbers that sum to the predetermined
amount. With each bet, the player stakes an amount equal to the sum
of the first and last numbers on the list. If only one number remains,
that number is the amount of the stake. If bet is successful, the two
amounts are removed from the list. If the bet is unsuccessful, the
amount lost is appended to the end of the list. This process continues
until either the list is completely crossed out, at which point the
desired amount of money has been won, or until the player runs out
of money to wager.

APTS-ASP 79

3: Stopping times

Hitting times

Martingales and hitting times

Suppose X1, X2, . . . are independent Gaussian random
variables of mean −µ < 0 and variance 1. Let
Sn = X1 + . . .+ Xn and let T be the time when S first exceeds
level ` > 0.

Then exp
(
α(Sn + µn)− α2

2 n
)

determines a martingale, and

the optional stopping theorem can be applied to show

E [exp (−pT )] ∼ e−(µ+
√
µ2+2p)` .

This improves to an equality, at the expense of using more
advanced theory, if we replace the Gaussian random walk S
by Brownian motion.

Martingales and hitting times

Suppose X1, X2, . . . are independent Gaussian random
variables of mean −µ < 0 and variance 1. Let
Sn = X1 + . . .+ Xn and let T be the time when S first exceeds
level ` > 0.

Then exp
(
α(Sn + µn)− α2

2 n
)

determines a martingale, and

the optional stopping theorem can be applied to show

E [exp (−pT )] ∼ e−(µ+
√
µ2+2p)` .

This improves to an equality, at the expense of using more
advanced theory, if we replace the Gaussian random walk S
by Brownian motion.

2
0

1
0

-0
6

-1
8 APTS-ASP

3: Stopping times

Hitting times

Martingales and hitting times

So T = inf{n : Sn ≥ `}. Use the optional stopping theorem on the bounded
stopping time min{T ,n}:

E
[
exp

(
αSmin{T ,n} +α(µ − α2 )min{T ,n}

)]
= 1 .

Use careful analysis of the left-hand side, letting n→∞, large `,

E
[
exp

(
α` +α(µ − α

2
)T
)]

∼ 1 .

Now set α = µ +
√
µ2 + 2p > 0, so α(µ − α

2 ) = −p:

E [exp (−pT )] ∼ exp
(
−(µ +

√
µ2 + 2p)`

)
.

Improvement: Brownian motion is continuous in time and so cannot jump over
the level ` without hitting it.
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Martingale convergence

Martingale convergence

Theorem
Suppose X is a non-negative supermartingale. Then
Z = lim Xn exists, moreover E [Z|Fn] ≤ Xn.

ANIMATION

Theorem
Suppose X is a bounded martingale (or, more generally,
uniformly integrable). Then Z = lim Xn exists, moreover
E [Z|Fn] = Xn.

Theorem
Suppose X is a martingale and E

[
X2

n

]
≤ K for some fixed

constant K. Then one can prove directly that Z = lim Xn

exists, moreover E [Z|Fn] = Xn.
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3: Stopping times

Martingale convergence

Martingale convergence

1. Consider symmetric simple random walk begun at 1 and stopped at 0:
Xn = Ymin{n,T} if T = inf{n : Yn = 0} and Y is symmetric simple random
walk. Clearly Xn is non-negative; clearly Xn = Ymin{n,T} → Z = 0, since Y will
eventually hit 0; clearly 0 = E [Z|Fn] ≤ Xn since Xn ≥ 0.

2. Thus symmetric simple random walk Y begin at 0 and stopped at ±10 must
converge to a limiting value Z . Evidently Z = ±10. Moreover since
E [Z|Fn] = Yn we deduce P [Z = 10|Fn] = Yn+10

20 .
3. Sketch argument: from martingale property

0 ≤ E
[
(Xm+n − Xn)2

∣∣∣Fn

]
= E

[
X2

m+n

∣∣∣Fn

]
− X2

n ;

hence E
[
X2

n

]
is non-decreasing; hence it converges to a limiting value;

hence E
[
(Xm+n − Xn)2

]
tends to 0.
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Martingale convergence

Birth-death process revisited
Y is a discrete-time birth-death process absorbed at zero:

pk,k+1 = λ
λ+ µ , pk,k−1 = µ

λ+ µ , for k > 0, with 0 < λ < µ.

This is a non-negative supermartingale and so lim Yn exists.

Now let T = inf{n : Yn = 0}: T <∞ a.s. Then

Xn = Yn∧T +
(
µ − λ
µ + λ

)
(n∧ T )

is a non-negative (super)martingale converging to Z = µ−λ
µ+λT .

Thus

E [T ] ≤
(
µ + λ
µ − λ

)
X0 .
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3: Stopping times

Martingale convergence

Birth-death process revisited

1. This is the discrete-time analogue of the birth-death-immigration process of
Section 1 with α = 0 (so no immigration).

2. Test understanding: show that Y is a supermartingale, and use the SLLN to
show that Yn → 0 almost surely as n→∞. In Section 1 we computed the
equilibrium distribution and concluded that

π−1
0 =

(
µ

µ − λ

)α
λ
,

and so with α = 0 the equilibrium distribution is simply extinction of the
process, in agreement with what you have just shown.

3. Here we have written n∧ T for min{n,T}.
4. Test understanding: show that X is a martingale.
5. Markov’s inequality then implies that

P [T > k] ≤
(
µ + λ
µ − λ

)
X0

k
.
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Martingale convergence

Likelihood revisited

Suppose i.i.d. random variables X1, X2, . . . are observed at
times 1, 2, . . . , and suppose the common density is f (θ; x).
Recall that, if the “true” value of θ is θ0, then

Mn = L(θ1;X1, . . . ,Xn)
L(θ0;X1, . . . ,Xn)

is a martingale, with E [Mn] = 1 for all n ≥ 1.

The SLLN and Jensen’s inequality show that

1
n

log Mn → −c as n→∞ ,

moreover if f (θ0; ·) and f (θ1; ·) differ as densities then
c > 0, and so Mn → 0.
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3: Stopping times

Martingale convergence

Likelihood revisited

1. Remember that the expectation is computed using θ = θ0.
2. Jensen’s inequality for concave functions is opposite to that for convex

functions: if ψ is concave then E [ψ(X)] ≤ ψ(E [X]). Moreover if X is
non-deterministic and ψ is strictly concave then the inequality is strict.

3. The rate of convergence of Mn is exponential if the difference between θ0
and θ1 is identifiable.

4. Note that this is in keeping with hypothesis testing: as more information is
gathered, so we would expect the evidence against θ1 to accumulate, and
the likelihood ratio to tend to zero.
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Harmonic functions

Martingales and bounded harmonic functions
ñ Consider a discrete state-space Markov chain X with

transition kernel pij. Suppose f (i) is a bounded
harmonic function: a function for which f (i) =∑j f (j)pij.
Then f (X) is a bounded martingale, hence must
converge as time increases to infinity.

ñ The simplest example: consider simple random walk X
absorbed at boundaries a < b. Then f (x) = x−a

b−a is a
bounded harmonic function, and can be shown to satisfy

f (x) = P [X hits b before a|X0 = x] .

ñ Another example: given branching process Y and family
size generating function G(s), suppose ζ is smallest
non-negative root of ζ = G(ζ). Set f (y) = ζy . Check this
is a non-negative martingale (and therefore harmonic).
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3: Stopping times

Harmonic functions
Martingales and bounded harmonic functions

1. The terminology supermartingale/submartingale was actually chosen to
mirror the potential-theoretic terminology superharmonic/subharmonic.

2. Use martingale convergence theorem and optional stopping theorem.
3. We’d like to say, therefore f (y) = P [Y becomes extinct |Y0 = y]. Since
ζ ≤ 1, it follows f is bounded, so this follows as before.

4. Further significant examples come from, for example, multidimensional
random walk absorbed at boundary of a geometric region.
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Counting and compensating

“It is a law of nature we overlook, that intellectual versatility is the
compensation for change, danger, and trouble.”

H. G. Wells,
The Time Machine, 1896

Simplest example: Poisson process
Compensators
Examples
Variance of compensated counting process
Counting processes and Poisson processes
Compensation of population processes
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4: Counting and compensating

Counting and compensating

We can now make a connection between martingales and Markov chains. We start
with the Poisson process, viewed as a process used for counting incidents, and
show how martingales can be used to describe much more general counting
processes.
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4: Counting and compensating

Simplest example: Poisson process

Simplest example: Poisson process

Consider birth-death-immigration process from above, with
birth and death rates set to zero: λ = µ = 0. The result is a
Poisson process of rate α as described before:

Definition
A continuous-time Markov chain N is a Poisson process of
rate α > 0 if the only transitions are N → N + 1 of rate α.

Theorem
If N is Poisson process of rate α then

P [Nt = k] = P [Poisson(αt) = k] = (αt)k

k!
e−αt .

The times of transitions are often referred to as incidents.

Simplest example: Poisson process
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4: Counting and compensating

Simplest example: Poisson process

Simplest example: Poisson process

1. This has a claim to be the simplest possible continuous-time Markov chain.
Its state-space is very reducible, so it does not supply good examples for
questions of equilibrium!

2. In one approach to stochastic processes this serves as a fundamental
building block for more complicated processes.

3. Times between consecutive incidents are independent Exponential(α).
Thence a whole wealth of distributional relationships between Exponential,
Poisson, and indeed Gamma, Geometric, Hypergeometric, . . . .

4. A more general result is suggestive about how to generalize to Poisson
point patterns: if A ⊂ [0,∞) has length measure a then

P [k incidents in A] = P [Poisson(αa) = k] .

5. A significant converse: given a random point pattern such that

P [No incidents in A] = exp(−αa)

for any A of length measure a, the point pattern marks the incidents of a
Poisson counting process of rate α.
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4: Counting and compensating

Simplest example: Poisson process

Poisson process directions

There are ways to extend the Poisson process idea:
ñ view as a pattern of points:

ñ Slivnyak’s theorem: condition on t being a transition /
incident. Then remaining incidents form transitions of
Poisson process of same rate.

ñ PASTA principle: if a Markov chain has “arrivals”
following a Poisson distribution, then in statistical
equilibrium Poisson Arrivals See Time Averages.

ñ How to make points “interact”?
ñ Generalize to Poisson patterns of geometric objects.

ñ view as counting process and generalize:
ñ varying “hazard rate”;
ñ relate to martingales?

Here we follow the second direction.
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4: Counting and compensating

Simplest example: Poisson process

Poisson process directions

1. Slivnyak’s theorem generalizes directly to Poisson point patterns. The trick
is, of course, to make sense of conditioning on an event of probability 0.

2. PASTA: That is to say, at “just before” the arrival time, the probability that
the system is in state k is πk the equilibrium probability. Easy consequence
of Slivnyak’s theorem.

3. The following is crucial for calculations for Poisson patterns of geometric
objects: the chance of seeing no object of given kind in given region is
exp(−µ) where µ is mean number of such objects.

4. The hazard rate here is "infinitesimal chance of seeing an incident right now
given that one hasn’t seen anything since the last incident". For Poisson
processes the times between incidents are exponentially distributed, with
rate parameter α say. If the time since the last incident is u then this is
f (u)/F(u) for f (u) = αexp(−αu) and F(u) = exp(−αu). Hence the hazard
rate is αexp(−αu)/exp(−αu) = α. This suggests generalizations if the
times between incidents are no longer exponentially distributed.
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4: Counting and compensating

Compensators

Hazard rate and compensators
Starting point: if N is Poisson process of rate α then

ñ (“mean”) Nt −αt determines a martingale;

ñ (“variance”) (Nt −αt)2 −αt determines a martingale;

Consider processes which “count” incidents:

Definition
A counting process is a continuous-time process—not
necessarily Markov—changing by single jumps of +1.

Try to subtract something to turn it into a martingale.

Definition
We say

∫ t
0 `(s)d s compensates a counting process N if

ñ the (possibly random) `(s) is in Fs;

ñ Nt −
∫ t
0 `(s)d s determines a martingale.

Hazard rate and compensators
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4: Counting and compensating

Compensators

Hazard rate and compensators

1. Calculation based on E [Nt+s −Ns|Fs] = αt.
2. Calculation based on Var [Nt+s −Ns|Fs] = αt.
3. Later we will also consider population processes counting births +1 and

deaths −1.
4. It is possible to make a more general definition which replaces

∫ t
0 `(s)d s by

a non-decreasing process Λt – but then we have to require “Λt ∈ Ft−”.

5. It can then be shown that

– compensators always exist
– and are essentially unique.

Compensators generalize the notion of hazard rate.
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4: Counting and compensating

Examples

Example: random sample of lifetimes

Suppose X1, . . . , Xn are independent and identically
distributed non-negative random variables (lifetimes) with
common density f .

ñ Set P [Xi > t] = 1− ∫ t
0 f (s)d s = exp

(
− ∫ t

0 h(s)d s
)
.

ñ Counting process Nt = #{i : Xi ≤ t} increases by +1
jumps in continuous time.

ñ Observe:
ñ Nt −

∫ t
0 h(s)(n−Ns)d s is a martingale.

ñ (Nt −
∫ t
0 h(s)(n−Ns)d s)2 − ∫ t

0 h(s)(n−Ns)d s is a
martingale.
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4: Counting and compensating

Examples

Example: random sample of lifetimes

1. Resolves to showing the following is a martingale:

I[Xi≤t]−
∫min{t,Xi}

0
h(u)d u .

Key calculation: the expectation of the above is

P [Xi ≤ t]−
∫ t

0
h(u)P [Xi > u]d u ,

which vanishes if we substitute in P [Xi > u] = exp
(
− ∫ u

0 h(s)d s
)
.

This of course is computation of an absolute probability:
Test understanding: make changes to get the relevant conditional
probability calculation.

2. This follows most directly by noting independence of the

I[Xi≤t]−
∫min{t,Xi}
0 h(s)d s. However it is actually true for a more general

reason . . . see later.
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4: Counting and compensating

Examples

Example: pure birth process

Example (Pure birth process)
If the pure birth process N makes transitions N → N + 1 at
rate λN then

Nt −
∫ t

0
λNs d s is a martingale.

Here again one can check that the expression of variance
type (Nt −

∫ t
0 λNs d s)2 − ∫ t

0 λNs d s also determines a
martingale.

Example: pure birth process
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4: Counting and compensating

Examples

Example: pure birth process

1. A direct proof can be obtained by computing the distribution of Nt given
N0. Alternatively here is a plausibility argument: in a small period of time
[t, t +∆t) it is most likely no transition will occur; the chance of one
transition is about λNt∆t, and the chance of more is infinitesimal. So the
conditional mean increment is λNt∆t which is exactly matched by the
compensator.
The measure-theoretic approach to martingales makes sense of this
plausibility argument, at the same time showing how it generalizes to its
proper full scope.

2. Direct computations would permit a direct proof; but a similar plausibility
argument also applies. The conditional variance of the increment is about
λNt∆t(1− λNt∆t) ≈ λNt∆t, again matching the compensator.
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4: Counting and compensating

Variance of compensated counting process

Variance of compensated counting process

The above expression of variance type holds more generally:

Theorem
Suppose N is a counting process compensated by

∫
`(s)d s.

Then (
Nt −

∫ t

0
`(s)d s

)2

−
∫ t

0
`(s)d s is a martingale.

Rigorous proof, or heuristic limiting argument . . . .

Variance of compensated counting process
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∫ t
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4: Counting and compensating

Variance of compensated counting process

Variance of compensated counting process

1. The key point of the rigorous proof, which we omit, is that
“Λt =

∫ t
0 `(s)d s ∈ Ft−”.

2. But again one can argue plausibly, starting with the comment that the

increment over (t, t +∆t) has conditional expectation
∫ t+∆t
t `(s)d s and

takes values 0 or 1. Hence we can deduce the conditional probability of a

+1-jump as being
∫ t+∆t
t `(s)d s, and so argue as above.
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4: Counting and compensating

Counting processes and Poisson processes

Counting processes and Poisson processes
The compensator of a counting process can be used to tell
whether the counting process is Poisson:

Theorem
Suppose N is a counting process which has compensator αt.
Then N is a Poisson process of rate α.

Better still, counting processes with compensators
approximating αt are approximately Poisson of rate α. Here
is a nice way to see this:

Theorem
Suppose N is a counting process with compensator
Λ = ∫ `(s)d s. Consider the random time change
τ(t) = inf{s : Λs = t}. Then the time-changed counting
process Nτ(t) is Poisson of unit rate.

The above gives a good pay-off for this theory.

Counting processes and Poisson processes
The compensator of a counting process can be used to tell
whether the counting process is Poisson:

Theorem
Suppose N is a counting process which has compensator αt.
Then N is a Poisson process of rate α.

Better still, counting processes with compensators
approximating αt are approximately Poisson of rate α. Here
is a nice way to see this:

Theorem
Suppose N is a counting process with compensator
Λ = ∫ `(s)d s. Consider the random time change
τ(t) = inf{s : Λs = t}. Then the time-changed counting
process Nτ(t) is Poisson of unit rate.

The above gives a good pay-off for this theory.

2
0

1
0

-0
6

-1
8 APTS-ASP

4: Counting and compensating

Counting processes and Poisson processes

Counting processes and Poisson processes

1. Again there is a plausibility argument: the increment over (t, t +∆t) has
conditional probability α∆t, hence is approximately independent of past;
hence Nt is approximately the sum of many Bernoulli random variables each
of the same small mean, hence is approximately approximately Poisson . . . .

2. Begs the question, is Nτ(t) a counting process? (Yes, but needs proof.)
3. There is an amazing multivariate generalization of this time-change result,

related to Cox’s proportional hazards model.
4. If the compensator approximates αt then it is immediate that τ(t)

approximates t, and hence good approximation results can be derived!
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Counting processes and Poisson processes

Compensators and likelihoods

Here is an even bigger pay-off.

Theorem
Suppose N is a counting process with compensator
Λ = ∫ `(s)d s. Then its likelihood with respect to a unit-rate
Poisson point process over the time interval [0,T ] is
proportional (for fixed T ) to

exp

(∫ T

0

(
log`(t)d N(t)− `(t)d t

))
,

where
∫ T
0 log`(t)d N(t) =∑0≤t≤T log`(t) I[∆N(t)=1] simply

sums log`(t) over the times of N-incidents.
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4: Counting and compensating

Counting processes and Poisson processes

Compensators and likelihoods

Why is this true?
Consider the case when N is Poisson of rate α. Then the required likelihood is a
ratio of probabilities: if N(T ) = n then it equals

(αT )ne−αT /n!

Tne−T /n!
= exp

(
n logα− (α− 1)T

)
which agrees with the result stated in the theorem (note: up to a constant of
proportionality namely eT ).
The case of varying intensities ` (time-varying, random) follows by an
approximation argument.
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Compensation of population processes

Compensation of population processes
The notion of compensation works for much more general
processes, such as population processes:

Example (Birth-death-immigration process)
If the birth-death-immigration process X makes transitions
X → X + 1 at rate λX +α and X → X − 1 at rate µX then

Xt −
∫ t

0
((λ− µ)Xs +α)d s is a martingale.

But we now need something other than the compensator to
convert (Xt −

∫ t
0((λ− µ)Xs +α)d s)2 into a martingale.

More generally a continuous-time Markov chain X relates to
martingales obtained from f (X) (for given functions f ) by
compensation using the rates of X .
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4: Counting and compensating

Compensation of population processes

Compensation of population processes

1. Plausibility argument much as before.
2. The plausibility argument fails for the variance case! However it is possible

to use a slightly different integral here. In fact

(Xt −
∫ t

0
((λ− µ)Xs +α)d s)2 −

∫ t

0
((λ+ µ)Xs +α)d s is a martingale.

This is best understood using ideas of stochastic integrals (of rather simple
form), which we will not explore here.

3. This is the heart of the famous “Stroock-Varadhan martingale formulation”,
which allows one to use martingales to study and to define very general
Markov chains.

4. A multivariate version of the likelihood result above now allows us to
convert specification of rates into a likelihood.
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Central Limit Theorem

“Everybody believes in the exponential law of errors: the
experimenters, because they think it can be proved by mathematics;
and the mathematicians, because they believe it has been established
by observation”

Lippmann, quoted in E. T. Whittaker and G. Robinson,
Normal Frequency Distribution. Ch. 8 in
The Calculus of Observations: A Treatise on Numerical

Mathematics, 1967.

Classical Central Limit Theorem
Lindeberg’s Central Limit Theorem
Rates of convergence
Martingale case

Central Limit Theorem
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5: Central Limit Theorem

Central Limit Theorem

The Central Limit Theorem is one of the jewels of classical probability theory,
with a huge literature developing such questions as, how may the assumptions
be relaxed? and at what speed does the convergence actually occur?
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5: Central Limit Theorem

Classical Central Limit Theorem

The classical Central Limit Theorem

Definition
Random variables Yn are said to converge in distribution to a
random variable Z (or its distribution) if

P [Yn ≤ y] → P [Z ≤ y] whenever P [Z ≤ y] is continuous at y .

Theorem
Suppose X1, . . . , Xn are independent and identically
distributed, with finite mean µ and finite variance σ2. Then

Yn = (X1 + . . .+ Xn)− nµ√
nσ

D→ N(0,1) ,

where convergence is in distribution.

The classical Central Limit Theorem
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5: Central Limit Theorem
Classical Central Limit Theorem

The classical Central Limit Theorem

1. N(0,1) denotes a random variable with standard normal distribution.

2. Common notations: Yn
d→ Z or Yn

D→ Z or Yn ⇒ Z .
3. Cleanest proof involves characteristic functions E [exp(iuYn)],

E [exp(iuZ)] = e−
1
2 u2

and hence complex numbers. A Taylor series

expansion shows E [exp(iuXn)] ≈ exp(iuµ)(1− u2

2 σ
2); hence

E [exp(iuYn)] ≈
(

1− u2

2n

)n
→ e−u2/2. Result follows from theory of

characteristic function transform.
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5: Central Limit Theorem

Classical Central Limit Theorem

Example

Empirical CDF of 500 draws from mean of 10 independent
Student t on 5 df, with limiting normal CDF graphed in red.

Example

Empirical CDF of 500 draws from mean of 10 independent
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5: Central Limit Theorem
Classical Central Limit Theorem

Example

It is appropriate to use the CDF (cumulative distribution function) here, because
that is the approximation which the CLT describes.
Note there is good agreement!
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5: Central Limit Theorem

Classical Central Limit Theorem

Questions arising

In this section we address the following questions:

1. Do we really need “identically distributed”?

2. How fast does the convergence happen?

3. Do we really need “independent”?

In particular we can produce a satisfying answer to items 1
and 3 in terms of martingales.
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5: Central Limit Theorem
Classical Central Limit Theorem

Questions arising

1. No we don’t need exactly “identically distributed”, and we can produce a
useful answer.

2. Something really rather definite can be said about rate of convergence.
3. No we do not need exactly “independent”, and we can produce a useful

answer.
4. (Our answer to items 1 and 3 is satisfying though not as good as possible!)
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Lindeberg’s Central Limit Theorem

Lindeberg’s Central Limit Theorem

Strongest result about non-identically distributed case:

Theorem
Suppose X1, . . . , Xn are independent and not identically
distributed, with Xi having finite mean µi and finite variance
σ2

i . Set mn = µ1 + . . .+ µn and s2
n = σ2

1 + . . .+ σ2
n . Suppose

further that
∑n

i=1 E
[
(Xi − µi)2/s2

n ; (Xi − µi)2 > ε2s2
n

]
→ 0 for

every ε > 0. Then

Yn = X1 + . . .+ Xn −mn

sn

D→ N(0,1) .

Proof is by a more careful development of the characteristic
function proof of the classical Central Limit Theorem.
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5: Central Limit Theorem
Lindeberg’s Central Limit Theorem

Lindeberg’s Central Limit Theorem

1. The beauty of the Lindeberg condition is that it simply requires none of the
individual components to contribute too much to the total variance relative
to the intended limit.
Put this way, it is rather easy to remember the final result!

2. However the Lindeberg condition can be tricky to check. The Lyapunov
condition is easier, and implies the Lindeberg condition: a useful special
case of this condition is that the sum of the third central moments
r3
n =

∑n
i=1 E

[
|Xi − µi|3

]
is finite and satisfies rn/sn → 0.
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5: Central Limit Theorem

Lindeberg’s Central Limit Theorem

Example, distributions not identical (I)

Empirical CDF of 500 draws from mean of 10 independent
Student t on 5 df together with 100 draws from mean of 10
independent Student t on 3 df, with limiting normal CDF
graphed in red.

Example, distributions not identical (I)

Empirical CDF of 500 draws from mean of 10 independent
Student t on 5 df together with 100 draws from mean of 10
independent Student t on 3 df, with limiting normal CDF
graphed in red.
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5: Central Limit Theorem
Lindeberg’s Central Limit Theorem

Example, distributions not identical (I)

Here the distributions are not all the same.
There is still reasonably good agreement!
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5: Central Limit Theorem

Lindeberg’s Central Limit Theorem

Example, distributions not identical (II)

Empirical CDF of 500 draws from mean of 10 independent
Student t on 5 df together with 100 draws from mean of 10
independent Student t on 3 df scaled by a factor of 3, with
limiting normal CDF graphed in red.

Example, distributions not identical (II)

Empirical CDF of 500 draws from mean of 10 independent
Student t on 5 df together with 100 draws from mean of 10
independent Student t on 3 df scaled by a factor of 3, with
limiting normal CDF graphed in red.
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5: Central Limit Theorem
Lindeberg’s Central Limit Theorem

Example, distributions not identical (II)

Now agreement is rather poorer.
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Rates of convergence

Rates of convergence

Remarkably, we can capture how fast convergence occurs if
we are given some extra information about the Xi. Reverting
to the classical conditions (identically distributed, finite mean
and variance), using above notation, suppose

ρ(3) = E
[
|Xi − µ|3

]
<∞. Let Fn(x) be the distribution

function of (X1+...+Xn)−nµ√
nσ , and let Φ(x) be the standard

normal distribution function. Then there is a universal
constant C > 0 such that

|Fn(x)− Φ(x)| ≤ Cρ(3)

σ3
√

n
.

Rates of convergence
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5: Central Limit Theorem

Rates of convergence

Rates of convergence

There are many variants and many improvements on this result, whose proof
requires much detailed mathematical analysis. For example, what is C? (Latest:
we can take C = 0.7655.) And what can we say about the tails of the distribution?
And so forth . . . , leading back to the material discussed in the Statistical
Asymptotics module.
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5: Central Limit Theorem

Rates of convergence

Example

Plot of difference between limiting normal CDF of empirical
CDF of 500 draws from mean of 10 independent Student t on
5 df, together with upper and lower bounds.

Example
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5: Central Limit Theorem
Rates of convergence

Example

It is apparent that the bound on CLT discrepancy is not too bad . . . at least
according to this particular measure of discrepancy.
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5: Central Limit Theorem

Martingale case

Martingale case

Theorem
Suppose X0 = 0, X1, . . . is a martingale for which E

[
X2

n

]
is

finite for each n. Set s2
n = E

[
X2

n

]
and suppose s2

n →∞. The
following two conditions taken together imply that Xn/sn

converges to a standard normal distribution:

1

s2
n

n−1∑
m=0

E
[
|Xm+1 − Xm|2|Fm

]
→ 1 ,

1

s2
n

n−1∑
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E
[
|Xm+1 − Xm|2; |Xm+1 − Xm|2 ≥ ε2s2

n

]
→ 0 for each ε > 0 .
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5: Central Limit Theorem

Martingale case

Martingale case

1. There are central limit theorems for martingales, typically close in spirit to
the Lindeberg theorem. Namely: the total variance needs to be nearly
constant, and there must be no relatively large contributions to the
variance.

2. In fact s2
n →∞ is forced by the second (Lindeberg-type) condition.

3. Even more is true! the linear interpolation of the Xn, suitably rescaled, then
converges to a Brownian motion.

4. There are many references, and many variations and generalizations. See
for example Brown (1971).
(Practical remarks about contrast between theory and practice . . . .)
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5: Central Limit Theorem

Martingale case

Convergence to Brownian motion
Plot of X1/

√
n, . . . ,Xn/

√
n for n = 10, 100 ,1000, 10000.

Central-limit scaled (simple symmetric) random walk
converges to Brownian motion B, characterized by
independent increments, E [Bt+s − Bs] = 0 (so martingale)
and Var [Bt+s − Bs] = t, continuous paths.
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5: Central Limit Theorem
Martingale case

Convergence to Brownian motion

If paths weren’t continuous, then the compensated Poisson process would
produce another example of a process with independent increments and these
mean and variance properties!
In fact any random walk with jumps of zero mean and finite variance also
converges to Brownian motion under central-limit scaling.
There are also similar theorems for martingales . . . . Classical probability deals
well with central limit theorems and discrete-time martingales. If we want to deal
well with continuous-time processes such as Brownian motion then stochastic
calculus becomes very useful. From what we have said here, it should be plain
that such continuous-time processes can be viewed as particular limits of
discrete-time processes.
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6: Recurrence

Recurrence

“A bad penny always turns up”
Old English proverb.

Speed of convergence
Irreducibility for general chains
Regeneration and small sets
Harris-recurrence
Examples

Recurrence
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6: Recurrence

Recurrence

We have a theory of recurrence for discrete state space Markov chains. But what if
the state space is not discrete? and how can we describe speed of convergence?
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6: Recurrence

Motivation from MCMC

Given a probability density p(x)of interest, for example a
Bayesian posterior, we could address the question of
drawing from p(x) by using for example Gaussian
random-walk Metropolis-Hastings.

Thus proposals are normal, mean the current location x,
fixed variance-covariance matrix.

Using the Hastings ratio to accept/reject proposals, we
end up with a Markov chain X which has transition
mechanism which mixes a density with staying at the
start-point.

Evidently the chain almost surely never visits specified
points other than its starting point. Thus it can never be
irreducible in the classical sense, and the discrete-chain
theory cannot apply . . . .
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6: Recurrence

Motivation from MCMC

1. Clearly the discrete-chain theory needs major rehabilitation if it is to be
helpful in the continuous state space case!
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6: Recurrence

Recurrence

We already know, if X is a Markov chain on a discrete
state-space then its transition probabilities converge to a
unique limiting equilibrium distribution if:

1. X is irreducible;

2. X is aperiodic;

3. X is positive-recurrent.

How in general can one be quantitative about the speed at
which convergence to equilibrium can occur? and what if the
state-space is not discrete?

Recurrence
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6: Recurrence

Recurrence

Recurrence and rates of convergence for Markov chains in discrete case (uniform
and geometric ergodicity). Making sense of continuous state-space,
φ-irreducibility, Harris-recurrence. Small sets. Application to important
examples.

1. the state space of X cannot be divided into regions some of which are
inaccessible from others;

2. the state space of X cannot be broken into periodic cycles;
3. the mean time for X to return to its starting point is finite.
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6: Recurrence

Speed of convergence

Measuring speed of convergence to equilibrium (I)
Total variation distance

ñ Speed of convergence of a Markov chain X to equilibrium
can be measured as discrepancy between two probability
measures: L (Xt|X0 = x) (distribution of Xt) and π
(equilibrium measure).

ñ Simple possibility: total variation distance. Let X be
state-space, for A ⊆ X maximize discrepancy between
L (Xt|X0 = x) (A) = P [Xt ∈ A|X0 = x] and π(A):

distTV(L (Xt|X0 = x) ,π) = sup
A⊆X
{P [Xt ∈ A|X0 = x]−π(A)} .

ñ Alternative expression in case of discrete state-space:

distTV(L (Xt|X0 = x) ,π) = 1
2

∑
y∈X

|P [Xt = y|X0 = x]−πy | .

(Many other possible measures of distance . . . .)
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6: Recurrence
Speed of convergence

Measuring speed of convergence to equilibrium (I)

1. L (Xt|X0 = x) (A) is probability that Xt belongs to A.
2. Test understanding: why is it not necessary to consider
|P [Xt ∈ A|X0 = x]−π(A)|?
(Hint: consider P [Xt ∈ Ac|X0 = x]−π(Ac).)

3. Test understanding: prove this by considering
A = {y : P [Xt = y|X0 = x] > πy}.

4. It is not even clear that total variation is best notion: in the case of MCMC
one might consider a spectral approach (which we will pick up again when
we come to consider cutoff):

sup
f :
∫ |f (x)|2π(d x)<∞

(
E [f (Xt)|X0 = x]−

∫
f (x)π(d x)

)2
.

5. Nevertheless the concept of total variation isolates a desirable kind of rapid
convergence.
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6: Recurrence

Speed of convergence

Measuring speed of convergence to equilibrium (II)
Uniform ergodicity

Definition
The Markov chain X is uniformly ergodic if its distribution
converges to equilibrium in total variation uniformly in the
starting point X0 = x: for some fixed C > 0 and for fixed
γ ∈ (0,1),

sup
x∈X

distTV(L (Xn|X0 = x) ,π) ≤ Cγn .

In theoretical terms, for example when carrying out MCMC,
this is a very satisfactory property. No account need be taken
of the starting point, and accuracy improves in proportion to
the length of the simulation.
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6: Recurrence
Speed of convergence

Measuring speed of convergence to equilibrium (II)

1. In fact this is a consequence of the apparently weaker assertion, as n→∞
so

sup
x∈X

distTV(L (Xt|X0 = x) ,π) → 0 .

2. Much depends on size of C and on how small is γ.
3. Typically theoretical estimates of C and γ are very conservative.
4. Other things being equal(!), given a choice, consider choosing a uniformly

ergodic Markov chain for your MCMC algorithm.
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6: Recurrence

Speed of convergence

Measuring speed of convergence to equilibrium (III)
Geometric ergodicity

Definition
The Markov chain X is geometrically ergodic if its distribution
converges to equilibrium in total variation for some C(x) > 0
depending on the starting point x and for fixed γ ∈ (0,1),

distTV(L (Xt|X0 = x) ,π) ≤ C(x)γn .

Here account does need to be taken of the starting point, but
still accuracy improves in proportion to the length of the
simulation.

Measuring speed of convergence to equilibrium (III)
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6: Recurrence
Speed of convergence

Measuring speed of convergence to equilibrium (III)

A significant question is, how might one get a sense of whether a specified chain
is indeed geometrically ergodic (because at least that indicates the rate at which
the distribution of Xt gets closer to equilibrium) and how one might obtain upper
bounds on γ.
We shall see later on that even given good information about γ and C, and even
if total variation is of primary interest, geometric ergodicity still leaves important
phenomona untouched!
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6: Recurrence

Irreducibility for general chains

φ-irreducibility (I)

We make two observations about Markov chain irreducibility:

1. The discrete theory fails to apply directly even to
well-behaved chains on non-discrete state-space.

2. Suppose φ is a measure on the state-space: then we
could ask for the chain to be irreducible on sets of
positive φ measure.

Definition
The Markov chain X is φ-irreducible if for any state x and for
any subset B of state-space of positive φ-measure φ(B) > 0
we find that X has positive chance of reaching B if begun at x.
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6: Recurrence

Irreducibility for general chains

φ-irreducibility (I)

1. Consider the Gaussian random walk X (jumps have standard normal
distribution): if X0 = 0 then we can assert that with probability one X never
returns to its starting point.

2. “measure”: like a probability measure, but not necessarily of finite total
mass. Think of length, area, or volume as examples. Also, counting
measure.

3. The Gaussian random walk is Lebesgue-measure-irreducible! (Here
Lebesgue measure is just length measure.)
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6: Recurrence

Irreducibility for general chains

φ-irreducibility (II)

1. We call φ an irreducibility measure. It is possible to
modify φ to construct a maximal irreducibility measure
ψ; one such that any set B of positive measure under
some irreducibility measure for X is of positive measure
for ψ.

2. Irreducible chains on countable state-space are
c-irreducible where c is counting measure (c(A) = |A|).

3. If a chain has unique equilibrium measure π then π will
serve as a maximal irreducibility measure.

φ-irreducibility (II)
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6: Recurrence

Irreducibility for general chains

φ-irreducibility (II)

1. Lebesgue measure is a maximal irreducibility measure for the Gaussian
random walk.

2. So φ-irreducibility simply generalizes the original notion of irreducibility.
3. Note that φ can be replaced by any other measure which is

“measure-equivalent” (has the same null-sets). So while π will serve as a
maximal irreducibility measure, we can use any alternative measure which
has the same sets of measure zero.
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6: Recurrence

Regeneration and small sets

Regeneration and small sets (I)

The discrete-state-space theory works because (a) the Markov
chain regenerates each time it visits individual states, and (b)
it has a positive chance of visiting specified individual states.
So it is natural to consider regeneration when visiting sets.

Definition
A set E of φ-positive measure is a small set of lag k for X if
there is α ∈ (0,1) and a probability measure ν such that for
all x ∈ E the following minorization condition is satisfied

P [Xk ∈ A|X0 = x] ≥ αν(A) for all A .

Regeneration and small sets (I)
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6: Recurrence
Regeneration and small sets

Regeneration and small sets (I)

1. In effect this reduces the theory of convergence to equilibrium to a chapter
in the theory of renewal processes, with renewals occurring each time the
chain visits a specified state.

2. In effect, if we sub-sample X every k time-steps then, every time it visits E,
there is a chance α that X forgets its entire past and starts again, using
probability measure ν.
Consider the Gaussian random walk described above. Any bounded set is
small of lag 1.
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3. In general α can be very small—reducing practical impact, but still helping
theoretically.
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6: Recurrence

Regeneration and small sets

Regeneration and small sets (II)
Let X be a RW with transition density p(x,d y) = 1

2 I[|x−y|<1].
Consider the set [0,1]: this is small of lag 1, with α = 1/2
and ν the uniform distribution on [0,1]:
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The set [0,2] is not small of lag 1, but is small of lag 2.
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6: Recurrence
Regeneration and small sets

Regeneration and small sets (II)

1. This can be seen by looking at the common overlap of the transition
densities from all points x ∈ [0,1]. This overlap is shaded here in green.

2. However, the common overlap of all one-step transition kernels from
x ∈ [0,2] is the empty set, and so [0,2] is not a small set of lag 1. If we
look at the two-step transition kernels however (the triangular kernels on
the right), then there is a common overlap: now α = 1/4 (the area of the
green triangle) and ν is the triangular density supported on [0,2].
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6: Recurrence

Regeneration and small sets

Regeneration and small sets (III)
Small sets would not be interesting except that:

1. all φ-irreducible Markov chains X possess small sets;

2. consider chains X with continuous transition density
kernels. They possess many small sets of lag 1;

3. consider chains X with measurable transition density
kernels. They need possess no small sets of lag 1, but
will possess many sets of lag 2;

4. given just one small set, X can be represented using a
chain which has a single recurrent atom.

In a word, small sets discretize Markov chains.

ANIMATION
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6: Recurrence
Regeneration and small sets

Regeneration and small sets (III)

1. This is a very old result: see Nummelin (1984) for a recent treatment.
2. Exercise: try seeing why this is obviously true!
3. Kendall and Montana (2002): so measurable transition density kernels lead

to chains which possess latent discretizations.
4. “Split-chain construction” (Athreya and Ney 1978; Nummelin 1978).
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6: Recurrence

Harris-recurrence

Harris-recurrence

Now it is evident what we should mean by recurrence for
non-discrete state spaces. Suppose X is φ-irreducible and φ
is a maximal irreducibility measure.

Definition
X is (φ-)recurrent if, for φ-almost all starting points x and
any subset B with φ(B) > 0, when started at x the chain X is
almost sure eventually to hit B.

Definition
X is Harris-recurrent if we can drop “φ-almost” in the above.
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6: Recurrence

Harris-recurrence
Harris-recurrence

1. So the irreducibility measure is used to focus attention on sets rather than
points.

2. And in fact we don’t even then need φ to be maximal.
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6: Recurrence

Examples

Examples of φ-irreducibility
ñ Random walks with continuous jump densities. And in

fact measurable jump densities suffice.
ñ Chains with continuous or even measurable transition

densities with exception that chain may stay put.
ñ Vervaat perpetuities:

Xn+1 = Uαn+1(Xn + 1)

where U1, U2, . . . are independent Uniform(0,1).
ñ Volatility models:

Xn+1 = Xn + σnZn+1

σn+1 = f (σn,Un+1)

for suitable f , and independent Gaussian Zn+1, Un+1.
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6: Recurrence
Examples

Examples of φ-irreducibility

1. Convolutions of measurable densities are continuous!
2. Many examples of Metropolis-Hastings samplers.
3. Test understanding: find a small set for the Vervaat perpetuity example (a

simulation of which is graphed below)!

20 40 60 80 100
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2
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7: Foster-Lyapunov criteria

Foster-Lyapunov criteria

“Even for the physicist the description in plain language will be the
criterion of the degree of understanding that has been reached.”

Werner Heisenberg,
Physics and philosophy: The revolution in modern science, 1958

Renewal and regeneration
Positive recurrence
Geometric ergodicity
Examples
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7: Foster-Lyapunov criteria

Foster-Lyapunov criteria

Geometric and uniform ergodicity make sense for general Markov chains: how to
find out whether they hold? and how to find out whether equilibrium
distributions exist?
We want simple criteria, and we can capture these using the language of
martingales.
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7: Foster-Lyapunov criteria

Renewal and regeneration

Renewal and regeneration

Suppose C is a small set for φ-recurrent X , with lag 1:

P [X1 ∈ A|X0 = x ∈ C] ≥ αν(A) .

Identify regeneration events: X regenerates at x ∈ C with
probability α and then makes transition with distribution ν;
otherwise it makes transition with distribution p(x,·)−αν(·)

1−α .
The regeneration events occur as a renewal sequence. Set

pk = P
[
next regeneration at time k | regeneration at time 0

]
.

If the renewal sequence is non-defective (if
∑

k pk = 1) and
positive-recurrent (if

∑
k kpk <∞) then there exists a

stationary version. This is the key to equilibrium theory
whether for discrete or continuous state-space.
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stationary version. This is the key to equilibrium theory
whether for discrete or continuous state-space.
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7: Foster-Lyapunov criteria

Renewal and regeneration

Renewal and regeneration

1. If lag is k > 1 then sub-sample every k steps!
2. This is a coupling construction, linked to the split-chain construation

(Athreya and Ney 1978; Nummelin 1978) and the Murdoch and Green
(1998) approach to CFTP.

3. This is just the appropriate compensating distribution

p(x, ·)−αν(·)
p(x,X)−αν(X) = p(x, ·)−αν(·)

1−α .

4. Non-defective: So there will always be a next regeneration.
5. Positive-recurrent: So mean time to next regeneration is finite.
6. Richard Tweedie at WRASS 1998: “continuous is no harder than discrete!”
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7: Foster-Lyapunov criteria

Positive recurrence

Positive recurrence

The Foster-Lyapunov criterion for positive recurrence of a
φ-irreducible Markov chain X on a state-space X:

Theorem (Foster-Lyapunov criterion for positive
recurrence)
Given Λ : X → [0,∞), positive constants a, b, c, and a small
set C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− a+ b I[Xn∈C] ;

then E [TA|X0 = x] <∞ for any A with φ(A) > 0, where
TA = inf{n ≥ 0 : Xn ∈ A} is the time when X first hits A, and
moreover X has an equilibrium distribution.

Positive recurrence

The Foster-Lyapunov criterion for positive recurrence of a
φ-irreducible Markov chain X on a state-space X:

Theorem (Foster-Lyapunov criterion for positive
recurrence)
Given Λ : X → [0,∞), positive constants a, b, c, and a small
set C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− a+ b I[Xn∈C] ;

then E [TA|X0 = x] <∞ for any A with φ(A) > 0, where
TA = inf{n ≥ 0 : Xn ∈ A} is the time when X first hits A, and
moreover X has an equilibrium distribution.
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7: Foster-Lyapunov criteria

Positive recurrence
Positive recurrence

1. In words, we can find a non-negative Λ(X) such that Λ(Xn)+ an determines
a supermartingale until Λ(X) becomes small enough for X to belong to a
small set!

2. We can re-scale Λ so that a = 1.
3. In fact if the criterion holds then it can be shown, any sub-level set of Λ is

small.
4. It is evident from the verbal description that reflected simple asymmetric

random walk (negatively biased) is an example for which the criterion
applies.

APTS-ASP 163

7: Foster-Lyapunov criteria

Positive recurrence

Sketch of proof

1. Yn = Λ(Xn)+ an is non-negative supermartingale up to
time T = inf{m ≥ 0 : Xm ∈ C} > n:

E
[
Ymin{n+1,T}|Fn,T > n

] ≤ (Λ(Xn)−a)+a(n+1) = Yn .

Hence Ymin{n,T} converges.

2. So P [T <∞] = 1 (otherwise Λ(X) > c, c + an < Yn 6→ 0).
Moreover E [YT |X0] ≤ Λ(X0) so c + aE [T ] ≤ Λ(X0).

3. Now use finiteness of b to show E [T∗|X0] <∞, where
T∗ first regeneration in C.

4. φ-irreducibility: positive chance of hitting A before first
regeneration in C. Hence E [TA|X0] <∞.

Sketch of proof
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7: Foster-Lyapunov criteria

Positive recurrence
Sketch of proof

Supplementary:

1. There is a stationary version of the renewal process of successive
regenerations on C.

2. One can construct a “bridge” of X conditioned to regenerate on C at time 0,
and then to regenerate again on C at time n.

3. Hence one can sew these together to form a stationary version of X , which
therefore has the property that Xt has the equilibrium distribution for all
time t.
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7: Foster-Lyapunov criteria

Positive recurrence

A converse . . .

Suppose on the other hand that E [T |X0] <∞ for all starting
points X0, where C is some small set and T is the first time
for X to return to C. The Foster-Lyapunov criterion for
positive recurrence follows for Λ(x) = E [T |X0 = x] if
E [T |X0] is bounded on C.

A converse . . .

Suppose on the other hand that E [T |X0] <∞ for all starting
points X0, where C is some small set and T is the first time
for X to return to C. The Foster-Lyapunov criterion for
positive recurrence follows for Λ(x) = E [T |X0 = x] if
E [T |X0] is bounded on C.
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7: Foster-Lyapunov criteria

Positive recurrence
A converse . . .

1. φ-irreducibility then follows automatically.
2. Indeed, (supposing lag 1 for simplicity)

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− 1+ b I[Xn∈C] ,

where b is the mean value of E [YT |x] if x is chosen using the regeneration
probability measure for C.

3. Moreover if the renewal process of successive regenerations on C is
aperiodic then a coupling argument shows general X will converge to
equilibrium.

4. If the renewal process of successive regenerations on C is not aperiodic
then one can sub-sample . . . .

5. Showing that X has an equilibrium is then a matter of probabilistic
constructions using the renewal process of successive regenerations on C.

APTS-ASP 167

7: Foster-Lyapunov criteria

Geometric ergodicity

Geometric ergodicity

The Foster-Lyapunov criterion for geometric ergodicity of a
φ-irreducible Markov chain X on a state-space X:

Theorem (Foster-Lyapunov criterion for geometric
ergodicity)
Given Λ : X → [1,∞), positive constants γ ∈ (0,1), b, c ≥ 1,
and a small set C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ γΛ(Xn)+ b I[Xn∈C] ;

then E
[
γ−TA|X0 = x

]
<∞ for any A with φ(A) > 0, where

TA = inf{n ≥ 0 : Xn ∈ A} is the time when X first hits A, and
moreover (under suitable periodicity conditions) X is
geometrically ergodic.

Geometric ergodicity

The Foster-Lyapunov criterion for geometric ergodicity of a
φ-irreducible Markov chain X on a state-space X:

Theorem (Foster-Lyapunov criterion for geometric
ergodicity)
Given Λ : X → [1,∞), positive constants γ ∈ (0,1), b, c ≥ 1,
and a small set C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ γΛ(Xn)+ b I[Xn∈C] ;

then E
[
γ−TA|X0 = x

]
<∞ for any A with φ(A) > 0, where

TA = inf{n ≥ 0 : Xn ∈ A} is the time when X first hits A, and
moreover (under suitable periodicity conditions) X is
geometrically ergodic.
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7: Foster-Lyapunov criteria

Geometric ergodicity

Geometric ergodicity

1. In words, we can find a Λ(X) ≥ 1 such that Λ(Xn)/γn determines a
supermartingale until Λ(X) becomes small enough for X to belong to a
small set!

2. We can rescale Λ so that b = 1.
3. The criterion for positive-recurrence is implied by this criterion.
4. We can enlarge C and alter b so that the criterion holds simultaneously for

all E [Λ(Xn+m)|Fn].
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7: Foster-Lyapunov criteria

Geometric ergodicity

Sketch of proof

1. Yn = Λ(Xn)/γn defines non-negative supermartingale up
to time T when X first hits C:

E
[
Ymin{n+1,T}|Fn,T > n

] ≤ γ ×Λ(Xn)/γn+1 = Yn .

Hence Ymin{n,T} converges.

2. P [T <∞] = 1, for otherwise Λ(X) > c and so Yn > c/γn

does not converge. Moreover E
[
γ−T

] ≤ Λ(X0).

3. Finiteness of b shows E
[
γ−T∗|X0

]
<∞, where T∗ is time

of regeneration in C.

4. From φ-irreducibility there is positive chance of hitting A
before regeneration in C. Hence E

[
γ−TA|X0

]
<∞.

Sketch of proof

1. Yn = Λ(Xn)/γn defines non-negative supermartingale up
to time T when X first hits C:
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] ≤ γ ×Λ(Xn)/γn+1 = Yn .

Hence Ymin{n,T} converges.

2. P [T <∞] = 1, for otherwise Λ(X) > c and so Yn > c/γn

does not converge. Moreover E
[
γ−T

] ≤ Λ(X0).

3. Finiteness of b shows E
[
γ−T∗|X0

]
<∞, where T∗ is time

of regeneration in C.

4. From φ-irreducibility there is positive chance of hitting A
before regeneration in C. Hence E
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7: Foster-Lyapunov criteria

Geometric ergodicity

Sketch of proof

1. Geometric ergodicity follows by a coupling argument which I do not specify
here.

2. The constant γ here provides an upper bound on the constant γ used in
the definition of geometric ergodicity. However it is not necessarily a very
good bound!
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7: Foster-Lyapunov criteria

Geometric ergodicity

Two converses

1. Suppose on the other hand that E
[
γ−T |X0

]
<∞ for all

starting points X0 (and fixed γ ∈ (0,1)), where C is some
small set and T is the first time for X to return to C. The
Foster-Lyapunov criterion for geometric ergodicity then
follows for Λ(x) = E [γ−T |X0 = x

]
if E

[
γ−T |X0

]
is

bounded on C.

Uniform ergodicity follows if the Λ function is bounded
above.

But more is true. Strikingly,

2. For Harris-recurrent Markov chains the existence of a
geometric Foster-Lyapunov condition is equivalent to
the property of geometric ergodicity.

Two converses

1. Suppose on the other hand that E
[
γ−T |X0

]
<∞ for all

starting points X0 (and fixed γ ∈ (0,1)), where C is some
small set and T is the first time for X to return to C. The
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is
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7: Foster-Lyapunov criteria

Geometric ergodicity

Two converses

1. This was used in Kendall 2004 to provide perfect simulation in principle.
The Markov inequality can be used to convert the condition on Λ(X) into
the existence of a Markov chain on [0,∞) whose exponential dominates
Λ(X).
The chain in question turns out to be a kind of queue (in fact, D/M/1). For
γ ≥ e−1 the queue will not be recurrent; however one can sub-sample X to
convert the situation into one in which the dominating queue will be
positive-recurrent.
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7: Foster-Lyapunov criteria

Examples

Examples
1. General reflected random walk: Xn+1 =max{Xn+Zn+1,0}

with independent Zn+1 of continuous density f (z),
E [Zn+1] < 0, P [Zn+1 > 0] > 0. Then
(a) X is Lebesgue-irreducible on [0,∞);
(b) Foster-Lyapunov criterion for positive recurrence applies.

Similar considerations often apply to Metropolis-Hastings
Markov chains based on random walks.

2. Reflected Simple Asymmetric Random Walk:
Xn+1 =max{Xn + Zn+1,0} with independent Zn+1 such
that P [Zn+1 = −1] = q = 1− p = 1− P [Zn+1 = +1] > 1

2 .
(a) X is counting-measure-irreducible on non-negative

integers;
(b) Foster-Lyapunov criterion for geometric ergodicity

applies.

Aim for E
[
eaZn+1

]
< 1 for some positive a.

Examples
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7: Foster-Lyapunov criteria

Examples

Examples

It is instructive to notice that the criteria continue to apply to a considerable
variety of appropriately modified Markov chains.

1. (a) E [Zn+1] < 0 so by SLLN 1
n (Z1 + . . .+ Xn)→ −∞, so X hits 0 for any X0.

P [Zn+1 > 0] > 0 so f (z) > 0 for a < z < a(1+ 1
m ), some a, m > 0. So

if X0 = 0 then density of Xn is positive on (na,na+ n
m a). If

A ⊂ (ma,∞) is of positive measure then one of A∩ (na,na+ n
m a)

(n ≥m) is of positive measure so P [X hits A|X0 = 0] > 0.
E [Zn+1] < 0 so f (z) > 0 for −b − 1

k < z < −b, some b, k > 0. Start X

at some x in (nb − 1
k ,nb) (positive chance of hitting this interval if

nb − 1
k >ma). Then Xn has positive density over

(max{0, x − nb}, x − nb + n
m ) which includes (0, n−1

k ). By choosing n
large enough, we now see we can get anywhere.

(b) Test understanding: Check Foster-Lyapunov criterion for positive
recurrence for Λ(x) = x.

2. (a) Test understanding: this is the same as ordinary irreducibility for
discrete-state-space Markov chains!

(b) Test understanding: Check Foster-Lyapunov criterion for geometric
ergodicity for Λ(x) = eax for small positive a.
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Examples

Reflected Simple asymmetric random walk (II)

ñ Positive recurrence criterion: check for Λ(x) = x,
C = {0}:

E [Λ(X1)|X0 = x0] =
Λ(x0)− (q− p) if x0 6∈ C ,

0+ p if x0 ∈ C .

ñ Geometric ergodicity criterion: check for Λ = eax ,
C = {0} = Λ−1({1}):

E [Λ(X1)|X0 = x0] =
Λ(x0)× (pea + qe−a) if x0 6∈ C ,

1× (p + qe−a) if x0 ∈ C .

This works when pea + qe−a < 1; equivalently when
0 < a < log(q/p) (solve the quadratic in ea!).

Reflected Simple asymmetric random walk (II)

ñ Positive recurrence criterion: check for Λ(x) = x,
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C = {0} = Λ−1({1}):
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Λ(x0)× (pea + qe−a) if x0 6∈ C ,

1× (p + qe−a) if x0 ∈ C .
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7: Foster-Lyapunov criteria

Examples

Reflected Simple asymmetric random walk (II)

One may ask, does this kind of argument show that all positive-recurrent random
walks can be shown to be geometrically ergodic simply by moving from Λ(x) = x
to Λ(x) = eax? The answer is no, essentially because there exist random walks
whose jump distributions have negative mean but fail to have exponential
moments . . . .
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8: Cutoff

Cutoff

“I have this theory of convergence, that good things always happen
with bad things.”

Cameron Crowe, Say Anything film, 1989

The cutoff phenomenon
Cutoff and eigenvalues
Two metrics
A special case

Cutoff

“I have this theory of convergence, that good things always happen
with bad things.”

Cameron Crowe, Say Anything film, 1989

The cutoff phenomenon
Cutoff and eigenvalues
Two metrics
A special case
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8: Cutoff

Cutoff

In what way does a Markov chain converge to equilibrium? Is it a gentle
exponential process? Or might most of the convergence happen relatively
quickly?
Once again we focus on reversible Markov chains, as these make computations
simpler.
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8: Cutoff

The cutoff phenomenon

Convergence: cutoff or geometric decay?

What we have so far said about convergence to equilibrium
will have left the misleading impression that the distance
from equilibrium for a Markov chain is characterized by a
gentle and rather geometric decay.
It is true that this is typically the case after an extremely long
time, and it can be the case over all time. However it is
entirely possible for “most” of the convergence to happen
quite suddenly at a specific threshold.
The theory for this is developing fast, but many questions
remain open. In this section we describe a specific easy
example.

Convergence: cutoff or geometric decay?

What we have so far said about convergence to equilibrium
will have left the misleading impression that the distance
from equilibrium for a Markov chain is characterized by a
gentle and rather geometric decay.
It is true that this is typically the case after an extremely long
time, and it can be the case over all time. However it is
entirely possible for “most” of the convergence to happen
quite suddenly at a specific threshold.
The theory for this is developing fast, but many questions
remain open. In this section we describe a specific easy
example.
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8: Cutoff
The cutoff phenomenon

Convergence: cutoff or geometric decay?

Random walk wrapped around a circle exhibits a gentle and rather geometric
decay. Famously (Bayer and Diaconis 1992) the riffle shuffle does not! (For a pack
of 52 cards, 7 shuffles suffice for essentially all practical purposes. Compare this
to the commonly-used overhand shuffle, which takes > 1000 shuffles to
randomize a deck of 52 cards! (Pemantle 1989).)
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8: Cutoff

Cutoff and eigenvalues

Cutoff (I): Markov chains and matrices

We need to understand something about eigenvalues for
Markov chains.
Fix attention on a finite state space X, with reversible
aperiodic Markov chain of transition kernel px,y and
equilibrium distribution π .
The vector space of functions on X can be given a weighted
Euclidean norm:

‖f ‖2
π =

∑
x∈X

|f (x)|2π(x)

and hence an inner product 〈f ,g〉π .
View transition kernel as linear operator Pf (x) =∑y px,y f (y):
by reversibility this is 〈·, ·〉π symmetric.
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8: Cutoff
Cutoff and eigenvalues

Cutoff (I): Markov chains and matrices

Finite-state-space reversible Markov chains and (weighted) euclidean spaces.

1.
〈f ,g〉π =

∑
y

f (y)g(y)π(y) .

2. Test understanding: use detailed balance to show

〈f ,Pg〉π =
∑
x

f (x)
∑
y

px,yg(y)π(x) = 〈Pf ,g〉π

3. Adam Willis (MMORSE student at Warwick, 2004-2008) recently wrote an
excellent Integrated Masters project on this subject.

4. The vector space of functions on a finite state space is finite-dimensional!
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8: Cutoff

Cutoff and eigenvalues

Cutoff (II): eigenvalues and eigenfunctions

So P can be viewed as a symmetric matrix and thus has a full
set of eigenvalues −1 ≤ λk ≤ . . . ≤ λ1 ≤ 1 (if X has k
elements) and corresponding normalized eigenfunctions V1,
. . . , Vk.
Because of symmetry of P we may take the Vi to be an
orthonormal basis, so

∑
|f (y)|2π(y) =

k∑
i=1

〈f ,Vi〉2π .

The law of total probability implies λ1 = 1 and V1 ≡ 1, and
irreducibility implies λ2 < λ1.
Aperiodicity implies −1 < λk.

Cutoff (II): eigenvalues and eigenfunctions

So P can be viewed as a symmetric matrix and thus has a full
set of eigenvalues −1 ≤ λk ≤ . . . ≤ λ1 ≤ 1 (if X has k
elements) and corresponding normalized eigenfunctions V1,
. . . , Vk.
Because of symmetry of P we may take the Vi to be an
orthonormal basis, so

∑
|f (y)|2π(y) =

k∑
i=1

〈f ,Vi〉2π .
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8: Cutoff
Cutoff and eigenvalues

Cutoff (II): eigenvalues and eigenfunctions

1. Normalized: ‖Vi‖2
π = 1; eigen property: PVi = λiVi .

2. In fact all eigenvalues cannot exceed 1 in absolute value, by an inequality
argument. Two eigenvalues equal to 1 would allow us to split state space
into 2 components which violates irreducibility.

3. In passing, there is a useful analysis of rate of convergence of expectations
of functions of Markov chains based on this spectral analysis. Good when
you know a priori what you want to estimate . . . .
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8: Cutoff

Two metrics

Cutoff (III): metrics
We need to relate total variation distance to the weighted
Euclidean distance. Recall

distTV(P
(n)
x , π) = 1

2

∑
y
|P(n)x (y)−π(y)| = 1

2

∑
y
|P
(n)
x (y)
π(y) −1|π(y) .

But this relates to weighted Euclidean distance by using the
Cauchy-Schwartz inequality and

∑
y π(y) = 1:

2 distTV(P
(n)
x , π) ≤

√
‖P(n)x (·)
π(·) − 1‖2

π

√∑
y
π(y) =

√
‖P(n)x (·)
π(·) − 1‖2

π .

Now expand using orthonormal eigenfunctions and V1 ≡ 1:

‖P(n)x (·)
π(·) −1‖2

π =
k∑

i=2

〈P(n)x (·)
π(·) ,Vi〉2π =

k∑
i=2

(Pn
x Vi)2 =

k∑
i=2

λ2n
i Vi(x)2 .
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8: Cutoff
Two metrics

Cutoff (III): metrics

1. The key here is the Cauchy-Schwartz inequality:

(E [XY])2 ≤ E
[
X2
]
E
[
Y2
]
.

Applied probabilists and statisticians may be more comfortable with this if
they recognize that it is proved in the same way as the statement that
correlations are always bounded between ±1.

2. Miss i = 1 since V1 ≡ 1, so

〈P
(n)
x (·)
π(·) − 1,V1〉π =

∑
y

P(n)x (y)− 〈V1,V1〉π = 1− 1 = 0 .

Miss −1 in other terms by orthogonality, since for i > 1

〈−1,Vi〉π = −〈V1,Vi〉π = 0 .

3. Bear in mind that in this finite-state-space context eigenfunctions are the
same as eigenvectors!
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Cutoff (IV): upper bound in special case
Gibbs’ sampler for zero-interaction Ising model

Model for Gibb’s sampler. Consider N ×N array of ±1. At
each step choose entry at random, flip sign.

As above, identify
(

N2

r

)
eigenfunctions of eigenvalue 1− 2r

N2 ,

for 0 ≤ r ≤ N2. Set n = N2

4 (log(N2)+ θ).

‖P(n)x (·)
π(·) − 1‖2

π =
N2∑
r=1

(
N2

r

)(
1− 2r

N2

)2n

≤
N2∑
r=1

(
N2

r

)
exp

(
− 2r

N2 (
N2

2 (log(N2)+ θ))
)

=
N2∑
r=1

(
N2

r

)
(N2)−re−rθ ≤

N2∑
r=1

1
r!e
−rθ ≤ exp(e−θ)− 1 .
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8: Cutoff
A special case

Cutoff (IV): upper bound in special case

1. Eigenfunctions are just products Xi1 . . .Xik of spin variables Xr = ±1.
Test understanding: check this! In particular, note
PX1 = 1

N2 (−X1)+ (1− 1
N2 )X1 = (1− 2

N2 )X1, . . . .

2. Note, 1− x ≤ e−x always.
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Cutoff (V): lower bound in special case

The upper bound suggests a cutoff:

distTV(P
(n)
x , π) ≤ 1

2

√
exp(e−θ)− 1

Since n = N2

4 (log(N2)+ θ), the cutoff occurs at around
N2

4 log(N2) and lasts of order N2

4 .
However to make sure this works, we also need a lower
bound on distTV(P

(n)
x , π)). Achieve this by comparing means

and variances of Z =∑N2

i=1 Xi, where Xi is spin at site i. Simple
estimates confirm that there is still substantial total variation
distance at N2

4 log(N2), so this is a real cutoff.
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8: Cutoff
A special case

Cutoff (V): lower bound in special case

At any fixed time Z has a (scaled and shifted) Binomial distribution, and π is also

of this form. We can then use Markov’s inequality to convert mean and variance

comparisons into inequalities.
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A special case

Scaling the x-axis by the cutoff time, we see that the total
variation distance drops more and more rapidly towards zero
as N becomes larger: the curves in the graph below tend to a
step function as N →∞.
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Moral: effective convergence can be much faster than one
realizes, and occur over a fairly well defined period of time.
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8: Cutoff
A special case

The graph shows distTV(P
(cn)
x , π) for c ∈ (0,3), for four increasing values of N,

for the (closely related) simple random walk on ZN
2 .

Calculations for other cases can be much harder, but cutoffs are known to occur
for a large number of random walks on groups. These include a number of
card-shuffles, such as the riffle shuffle, random transpositions and
top-in-at-random shuffle. There are very interesting links here to group
representation theory . . . .

In general, expect cutoff when there are large numbers of “second” eigenvalues.
Should one expect cutoff for the case of an Ising model with weak interaction?
Probably . . . .

The famous Peres conjecture says cutoff is to be expected for a chain with
transitive symmetry if (1− λ2)τ →∞, where λ2 is the second largest eigenvalue
(so 1− λ2 is the “spectral gap”), and τ is the (deterministic) time at which the
total variation distance to equilibrium becomes smaller than 1

2 .
However there is a counterexample to Peres’ conjecture as expressed above, (P.
Diaconis, personal communication). So the conjecture needs to be refined!



APTS-ASP 193

8: Cutoff

A special case

Aldous, D. J. (1989).
Probability approximations via the Poisson clumping heuristic, Volume 77 of

Applied Mathematical Sciences.
New York: Springer-Verlag.

Aldous, D. J. and J. A. Fill (2001).
Reversible Markov Chains and Random Walks on Graphs.
Unpublished.

Athreya, K. B. and P. Ney (1978).
A new approach to the limit theory of recurrent Markov chains.
Trans. Amer. Math. Soc. 245, 493–501.

Bayer, D. and P. Diaconis (1992).
Trailing the dovetail shuffle to its lair.
Ann. Appl. Probab. 2(2), 294–313.

Breiman, L. (1992).
Probability, Volume 7 of Classics in Applied Mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
Corrected reprint of the 1968 original.

APTS-ASP 194

8: Cutoff

A special case

Brown, B. M. (1971).
Martingale central limit theorems.
Ann. Math. Statist. 42, 59–66.

Doyle, P. G. and J. L. Snell (1984).
Random walks and electric networks, Volume 22 of Carus Mathematical

Monographs.
Washington, DC: Mathematical Association of America.

Fleming, I. (1953).
Casino Royale.
Jonathan Cape.

Grimmett, G. R. and D. R. Stirzaker (2001).
Probability and random processes (Third ed.).
New York: Oxford University Press.

Häggström, O. (2002).
Finite Markov chains and algorithmic applications, Volume 52 of London

Mathematical Society Student Texts.
Cambridge: Cambridge University Press.

APTS-ASP 195

8: Cutoff

A special case

Jerrum, M. (2003).
Counting, sampling and integrating: algorithms and complexity.
Lectures in Mathematics ETH Zürich. Basel: Birkhäuser Verlag.

Kelly, F. P. (1979).
Reversibility and stochastic networks.
Chichester: John Wiley & Sons Ltd.
Wiley Series in Probability and Mathematical Statistics.

Kendall, W. S. (2004).
Geometric ergodicity and perfect simulation.
Electron. Comm. Probab. 9, 140–151 (electronic).

Kendall, W. S., F. Liang, and J.-S. Wang (Eds.) (2005).
Markov chain Monte Carlo: Innovations and Applications.
Number 7 in IMS Lecture Notes. Singapore: World Scientific.

Kendall, W. S. and G. Montana (2002).
Small sets and Markov transition densities.
Stochastic Process. Appl. 99(2), 177–194.

APTS-ASP 196

8: Cutoff

A special case

Kindermann, R. and J. L. Snell (1980).
Markov random fields and their applications, Volume 1 of Contemporary

Mathematics.
Providence, R.I.: American Mathematical Society.

Kingman, J. F. C. (1993).
Poisson processes, Volume 3 of Oxford Studies in Probability.
New York: The Clarendon Press Oxford University Press.
Oxford Science Publications.

Meyn, S. P. and R. L. Tweedie (1993).
Markov chains and stochastic stability.
Communications and Control Engineering Series. London: Springer-Verlag

London Ltd.

Murdoch, D. J. and P. J. Green (1998).
Exact sampling from a continuous state space.
Scand. J. Statist. 25(3), 483–502.

Norris, J. R. (1998).
Markov chains, Volume 2 of Cambridge Series in Statistical and Probabilistic

Mathematics.
Cambridge: Cambridge University Press.
Reprint of 1997 original.

APTS-ASP 197

8: Cutoff

A special case

Nummelin, E. (1978).
A splitting technique for Harris recurrent Markov chains.
Z. Wahrsch. Verw. Gebiete 43(4), 309–318.

Nummelin, E. (1984).
General irreducible Markov chains and nonnegative operators, Volume 83 of

Cambridge Tracts in Mathematics.
Cambridge: Cambridge University Press.

Øksendal, B. (2003).
Stochastic differential equations (Sixth ed.).
Universitext. Berlin: Springer-Verlag.
An introduction with applications.

Pemantle, R. (1989).
Randomization time for the overhand shuffle.
J. Theoret. Probab. 2(1), 37–49.

Steele, J. M. (2004).
The Cauchy-Schwarz master class.
MAA Problem Books Series. Washington, DC: Mathematical Association of

America.
An introduction to the art of mathematical inequalities.

APTS-ASP 198

8: Cutoff

A special case

Stoyan, D., W. S. Kendall, and J. Mecke (1987).
Stochastic geometry and its applications.
Wiley Series in Probability and Mathematical Statistics: Applied Probability and

Statistics. Chichester: John Wiley & Sons Ltd.
With a foreword by D. G. Kendall.

Williams, D. (1991).
Probability with martingales.
Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.

APTS-ASP 199

8: Cutoff

A special case

Photographs used in text
ñ Police phone box en.wikipedia.org/wiki/Image:

Earls_Court_Police_Box.jpg
ñ The standing martingale

en.wikipedia.org/wiki/Image:Hunterhorse.jpg
ñ Boat Race: en.wikipedia.org/wiki/Image:

Boat_Race_Finish_2008_-_Oxford_winners.jpg
ñ Impact site of fragment G of Comet Shoemaker-Levy 9 on Jupiter

en.wikipedia.org/wiki/Image:
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