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Statistical objective

To analyse observations y = (y1, . . . , yn).

I Regard y as observed value of random variable
Y = (Y1, . . . ,Yn) having an (unknown) probability
distribution specified by a probability density function, or
probability mass function, f (y).

I Restrict the unknown density to a suitable family F , of known
analytical form, involving a finite number of real unknown
parameters θ = (θ1, . . . , θd)T . The region Ωθ ⊂ Rd of
possible values of θ is called the parameter space. To indicate
dependency of the density on θ write f (y ; θ), the ‘model
function’.

I Assume that the objective of the analysis is to assessing some
aspect of θ, for example the value of a single component θi .

G. Alastair Young Statistical Asymptotics



Statistical Preliminaries

Neo-Fisherian Statistics

Provide a framework for the relatively systematic analysis of a wide
range of possible F .

We do not aim to satisfy formal optimality criteria.

Focus on the likelihood function and quantities derived from it: a
‘neo-Fisherian’ approach to inference.
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Special Models

Two general classes of models particularly relevant in theory and
practice are:

I exponential families

I transformation families
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Exponential Families

Suppose that Y depends on parameter φ = (φ1, . . . , φm)T , to be
called natural parameters, through a density of the form

fY (y ;φ) = h(y) exp{sTφ− K (φ)}, y ∈ Y,

where Y is a set not depending on φ. Here
s ≡ s(y) = (s1(y), . . . , sm(y))T , are called natural statistics.
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The value of m may be reduced if either s = (s1, . . . , sm)T or
φ = (φ1, . . . , φm)T satisfies a linear constraint (with probability
one). Assume that representation is minimal, in that m is as small
as possible.
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Full Exponential Family

Provided the natural parameter space Ωφ consists of all φ such that∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m)
exponential family.
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Properties of exponential families

Let s(y) = (t(y), u(y)) be a partition of the vector of natural
statistics, where t has k components and u is m − k dimensional.
Consider the corresponding partition of the natural parameter
φ = (τ, ξ).

The density of a generic element of the family can be written as

fY (y ; τ, ξ) = exp{τT t(y) + ξTu(y)− K (τ, ξ)}h(y).

Two key results hold which allow inference about components of
the natural parameter, in the absence of knowledge about the
other components.
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Result 1

The family of marginal distributions of U = u(Y ) is an m − k
dimensional exponential family,

fU(u; τ, ξ) = exp{ξTu − Kτ (ξ)}hτ (u),

say.

G. Alastair Young Statistical Asymptotics



Statistical Preliminaries

Result 2

The family of conditional distributions of T = t(Y ) given
u(Y ) = u is a k dimensional exponential family, and the
conditional densities are free of ξ, so that

fT |U=u(t | u; τ) = exp{τT t − Ku(τ)}hu(t),

say.
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Curved exponential families

In the above, both the natural statistic and the natural parameter
lie in m-dimensional regions.

Sometimes, φ may be restricted to lie in a d-dimensional subspace,
d < m.

This is most conveniently expressed by writing φ = φ(θ) where θ is
a d-dimensional parameter.
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We then have

fY (y ; θ) = h(y) exp[sTφ(θ)− K{φ(θ)}]

where θ ∈ Ωθ ⊂ Rd .

We call this system an (m, d) exponential family, or curved
exponential family, noting that we required that (φ1, . . . , φm) does
not belong to a v -dimensional linear subspace of Rm with v < m.

Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} describes a curve
as θ varies.
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Transformation families

A transformation family is defined by a group of transformations
acting on the sample space which generates a family of
distributions all of the same form, but with different values of the
parameters.
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Present context

Concerned with group G of transformations acting on sample
space Y of random variable Y , binary operation ◦ is composition
of functions. Have e(x) = x , (g1 ◦ g2)(x) = g1(g2(x)).
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The group elements typically correspond to elements of a
parameter space Ωθ, transformation may be written as gθ. The
family of densities of gθ(Y ), for gθ ∈ G is called a (group)
transformation family.
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Maximal invariant

We say that the statistic t is invariant to the action of the group G
if its value does not depend on whether y or g(y) was observed,
for any g ∈ G : t(y) = t(g(y)).

The statistic t is maximal invariant if every other invariant statistic
is a function of it, or equivalently, t(y) = t(y ′) implies that
y ′ = g(y) for some g ∈ G .
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Group action on Ωθ

Typically, there is a one-to-one correspondence between the
elements of G and the parameter space Ωθ.

Assume this.
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Then the action of G on Y requires that Ωθ itself constitutes a
group, with binary operation ∗ say: we must have gθ ◦ gφ = gθ∗φ.

Group action on Y induces group action on Ωθ. If Ḡ denotes
induced group, associated with each gθ ∈ G is a ḡθ ∈ Ḡ , satisfying
ḡθ(φ) = θ ∗ φ.
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Distribution constant statistic

If t is an invariant statistic, the distribution of t(Y ) is the same as
that of t(g(Y )) for all g . If, as we assume, elements of G are
identified with parameter values, this means distribution of
T = t(Y ) does not depend on the parameter and is known in
principle.

T is said to be distribution constant.
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Equivariant statistic

A statistic S = s(Y ) defined on Y and taking values in the
parameter space Ωθ is said to be equivariant if s(gθ(y)) = ḡθ(s(y))
for all gθ ∈ G and y ∈ Y.
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Often S is chosen to be an estimator of θ, and it is then called an
equivariant estimator. An equivariant estimator can be used to
construct a maximal invariant.

Consider t(Y ) = g−1
s(Y )(Y ).

Then t(Y ) is maximal invariant.
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Likelihood

We have a parametric model, involving a model function fY (y ; θ)
for a random variable Y and parameter θ ∈ Ωθ. The likelihood
function is

LY (θ; y) = L(θ; y) = L(θ) = fY (y ; θ).
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Log-likelihood

Usually we work with the log-likelihood

lY (θ; y) = l(θ; y) = l(θ) = log fY (y ; θ),

sometimes studied as a random variable

lY (θ;Y ) = l(θ;Y ) = log fY (Y ; θ).
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Score function

We define the score function by

ur (θ; y) =
∂l(θ; y)

∂θr

uY (θ; y) = u(θ; y) = ∇θl(θ; y),

where ∇θ = (∂/∂θ1, . . . , ∂/∂θd)T .
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To study the score function as a random variable we write

uY (θ;Y ) = u(θ;Y ) = U(θ) = U.
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Score function and information

For regular problems we have

E{U(θ); θ} = 0.
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Observed and expected information

The covariance matrix of U is

cov{U(θ); θ} = E{−∇∇T l ; θ}.

This matrix is called the expected information matrix for θ, or
sometimes the Fisher information matrix, and will be denoted by
i(θ).
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The Hessian matrix −∇∇T l is called the observed information
matrix, and is denoted by j(θ).

Note that i(θ) = E{j(θ)}.
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Pseudo-likelihoods

Consider a model parameterised by a parameter θ which may be
written as θ = (ψ, λ), where ψ is the parameter of interest and λ is
a nuisance parameter.

To draw inferences about the parameter of interest, we must deal
with the nuisance parameter. Ideally, we would like to construct a
likelihood function for ψ alone.
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Marginal likelihood

Suppose that there exists a statistic T such that the density of the
data Y may be written as

fY (y ;ψ, λ) = fT (t;ψ)fY |T (y |t;ψ, λ).

Inference can be based on the marginal distribution of T which
does not depend on λ. The marginal likelihood function based on t
is given by

L(ψ; t) = fT (t;ψ).
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Conditional likelihood

Suppose that there exists a statistic S such that

fY (y ;ψ, λ) = fY |S(y |s;ψ)fS(s;ψ, λ).

A likelihood function for ψ may be based on fY |S(y |s;ψ), which
does not depend on λ.
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The conditional log-likelihood function may be calculated as

l(ψ; y |s) = l(θ)− l(θ; s),

where l(θ; s) denotes the log-likelihood function based on the
marginal distribution of S and l(θ) is the log-likelihood based on
the full data Y .
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Sufficiency

Let the data y correspond to a random variable Y with density
fY (y ; θ), θ ∈ Ωθ. Let s(y) be a statistic such that if S ≡ s(Y )
denotes the corresponding random variable, then the conditional
density of Y given S = s does not depend on θ, for all s, so that

fY |S(y | s; θ) = g(y , s),

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.
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Minimal sufficient statistic

The definition does not define S uniquely. We usually take the
minimal S for which this holds, the minimal sufficient statistic. S
is minimal sufficient if it is a function of every other sufficient
statistic.
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Factorisation

Determination of S from the definition above is often difficult.
Instead we use the factorisation theorem: a necessary and sufficient
condition that S is sufficient for θ is that for all y , θ

fY (y ; θ) = g(s, θ)h(y),

for some functions g and h.
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A useful result

To identify minimal sufficient statistics.

A statistic T is minimal sufficient iff

T (x) = T (y)⇔ L(θ1; x)

L(θ2; x)
=

L(θ1; y)

L(θ2; y)
, ∀θ1, θ2 ∈ Ωθ.
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Examples

Exponential families Here the natural statistic S is sufficient. In a
curved (m, d) exponential family the dimension m of the sufficient
statistic exceeds that of the parameter.

Transformation models Except in special cases, such as the normal
distribution, where the model is also an exponential family model,
there is no reduction of dimensionality by sufficiency: sufficient
statistic has same dimension as Y .
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Conditioning

In methods of statistical inference, probability is used in two quite
distinct ways.

I To define the stochastic model assumed to have generated the
data.

I To assess uncertainty in conclusions. The probabilities used
for the basis of inference are long-run frequencies under
hypothetical repetition from the assumed model.
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The issue arises of how these long-run frequencies are to be made
relevant to the data under study.

The answer lies in conditioning the calculations so that the long
run matches the particular set of data in important respects.
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The Bayesian stance

In a Bayesian approach conditioning is dealt with automatically.

The particular value of θ is itself generated by a random
mechanism giving a known density πΘ(θ) for θ, the prior density.
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Then Bayes’ Theorem gives the posterior density

πΘ|Y (θ | Y = y) ∝ πΘ(θ)fY |Θ(y | Θ = θ),

where now the model function fY (y ; θ) is written as a conditional
density fY |Θ(y | Θ = θ).

The insertion of a random element in the generation of θ allows us
to condition on the whole of the data y : relevance to the data is
certainly accomplished. This approach is uncontroversial if a
meaningful prior can be agreed.
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The Fisherian stance

Suppose first that the whole parameter vector θ is of interest.

Reduce the problem by sufficiency.

If, with parameter dimension d = 1, there is a one-dimensional
sufficient statistic, we have reduced the problem to that of one
observation from a distribution with one unknown parameter and
there is little choice but to use probabilities calculated from that
distribution.
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If the dimension of the (minimal) sufficient statistic exceeds that of
the parameter, there is scope and need for ensuring relevance to
the data under analysis by conditioning.
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We therefore aim to

1. partition the minimal sufficient statistic s in the form
s = (t, a), so that dim(t) = dim(θ) and A has a distribution
not involving θ;

2. use for inference the conditional distribution of T given A = a.

Conditioning on A = a makes the distribution used for inference
involve (hypothetical) repetitions like the data in some respects.
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Ancillarity, Conditionality Principle

A component a of the minimal sufficient statistic such that the
random variable A is distribution constant is said to be ancillary, or
sometimes ancillary in the simple sense.

The Conditionality Principle says that inference about parameter of
interest, θ, is to be made conditional on A = a i.e. on the basis of
the conditional distribution of Y given A = a, its observed value,
rather than from the model function fY (y ; θ).
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Nuisance parameter case

Suppose, more generally, that we can write θ = (ψ, χ), where ψ is
of interest and χ is nuisance. Suppose that

1. Ωθ = Ωψ × Ωχ, so that ψ and χ are variation independent;

2. the minimal sufficient statistic s = (t, a);

3. the distribution of T given A = a depends only on ψ;

4. either:
I (a) the distribution of A depends only on χ and not on ψ;
I (b) the distribution of A depends on (ψ, χ) in such a way that

from observation of A alone no information is available about
ψ;
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A Conditionality Principle

Inference about ψ should be based upon the conditional
distribution of T given A = a. Still refer to A as ancillary.

The most straightforward case corresponds to (a). The arguments
for conditioning on A = a when ψ is the parameter of interest are
as compelling as in the case where A has a fixed distribution.

Condition (b) is more problematical to qualify.
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An important modern convention

Often we use the term ancillary to mean a distribution constant
statistic which, together with the MLE, constitutes a (minimal)
sufficient statistic.

Then we can write the log-likelihood as l(θ; θ̂, a).
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Parameter Orthogonality

We work now with a multi-dimensional parameter θ. There are a
number of advantages if the Fisher information matrix
i(θ) ≡ [irs(θ)] is diagonal.

Suppose that θ is partitioned into components
θ = (θ1, . . . , θd1 ; θd1+1, . . . , θd)T = (θT(1), θ

T
(2)). Suppose that

irs(θ) = 0 for all r = 1, . . . , d1; s = d1 + 1, . . . , d , for all θ ∈ Ωθ, so
that i(θ) is block diagonal. We say that θ(1) is orthogonal to θ(2).

G. Alastair Young Statistical Asymptotics



Statistical Preliminaries

Orthogonality implies that the corresponding components of the
score statistic are uncorrelated.
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The case d1 = 1

Write θ = (ψ, λ1, . . . , λq), with q = d − 1. If we start with an
arbitrary parameterisation (ψ, χ1, . . . , χq) with ψ given, it is always
possible to find λ1, . . . , λq as functions of (ψ, χ1, . . . , χq) such
that ψ is orthogonal to (λ1, . . . , λq).
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The case d1 > 1

When dim(ψ) > 1 there is no guarantee that a λ may be found so
that ψ and λ are orthogonal.
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