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What is Computer Intensive Statistics
Computer, n. A device or machine for performing or facilitating

calculation.

Compare Middle French computeur person who

makes calculations (1578).

Intensive, adj. Of very high degree or force, vehement.

French intensif, -ive (14–15th cent. in Hatzfeld &

Darmesteter).

Statistics, n. The systematic collection and arrangement of

numerical facts or data of any kind; (also) the

branch of science or mathematics concerned with

the analysis and interpretation of numerical data and

appropriate ways of gathering such data.

In early use after French statistique and German

Statistik.
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What Makes Statistics Computer Intensive?

Some good reasons for using computer-intensive methods:

Complexity Complex models cannot often be dealt with

analytically.

Intractability Models which are not available analytically.

Laziness Computer time is cheap; human time isn’t.

Scale Large data sets bring fresh challenges.

We won’t address the bad reasons here. . .

Vevox.app 170–356–838

What is your familiarity with Computer Intensive Statistics?
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Problems

Motivating Problem: Population genetics I

What shapes genetic variation?

AACGAGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGAGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCCTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCCTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCCTACGTCAGTCTCCTT

AACGAGTACTGGCTAAAGCTCGACTCGCTTACGTCAGTCTCTTT

AACGGGTACTGGCTAAAGCTCGACTCGCCTACGTCAGTCTCCTT
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Problems

Motivating Problem: Population genetics II

Population genetics models

A generative model for DNA sequence data should account for
Mutation

Recombination

Natural selection

Genetic drift

Demographic history

(population expansion, contraction, bottlenecks, . . . )

Population structure

. . .

All of these processes are captured through their effects on the

gene genealogy of a sample.
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Problems

Motivating Problem: Population genetics III

The genealogy is a latent / hidden / unobserved variable; we need

to integrate over it.

For a model with parameters θ we want to compute

L(θ) = P(D;θ) =

∫
P(G)P(D|G;θ) dG.
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Problems

Motivating Problem: Hypothesis Testing

Testing Example: Chi-Squared Test of goodness of fit

T =
∑K
k=1

(Ok−Ek)2

Ek

Asymptotic argument: T
d
≈ χ2

K−1 under regularity conditions.

What if we don’t have many observations of every category?

What if we want to know whether the medians of two populations

are significantly different?

What if we don’t know the form of their distributions?

10
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Problems

Motivating Problem: Confidence Intervals

Constructing confidence intervals requires knowledge of sampling

distributions.

Confidence Interval: Medians

X1, X2, . . . , Xn
iid∼ fX .

X[1] ≤ X[2] ≤ · · · ≤ X[n] are the associated order statistics.

T = X[(n+1)/2] is the sample median.

How can we construct a confidence interval for the median

of fX?

What if we don’t even know the form of fX?
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Problems

Motivating Problem: Bayesian Inference

Bayesian statistics

Data y1, . . . , yn and model f (yi |θ) where θ is some

parameter of interest.

Likelihood L(θ; y1, . . . , yn) =

n∏

i=1

f (yi |θ)

In the Bayesian framework θ is a random variable with prior

distribution f prior(θ). After observing y1, . . . , yn, the

posterior density of f is

f post(θ) = f (θ|y1, . . . , yn)

=
f prior(θ)L(θ; y1, . . . , yn)∫

Θ f
prior(ϑ)L(θ; y1, . . . , yn) dϑ

Often this is intractable—we need an approximation.
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Ideas

Simulation-based Methods

Doing statistics backwards:
Representing the solution of a problem as a param-

eter of a hypothetical population, and using a random

sequence of numbers to construct a sample of the popu-

lation, from which statistical estimates of the parameter

(p values, confidence intervals, or other quantities of in-

terest) can be obtained.
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Ideas

Preliminary Example: Raindrop experiment for π

Consider “uniform rain”

on the square

[−1, 1]× [−1, 1], i.e. the

two coordinates

X, Y
iid∼ U[−1, 1].

Probability that a rain

drop falls in the circle is

P(drop within circle) =
area of the unit circle

area of the square

=

∫ ∫
{x2+y2≤1}

1 dxdy

∫ ∫
{−1≤x,y≤1}

1 dxdy
=

π

2 · 2 =
π

4
.
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Ideas

Preliminary Example: Raindrop experiment for π

Given π, we can compute P(drop within circle) =
π

4
.

Given n independent raindrops, the number of rain drops

falling in the circle, Zn is a binomial random variable:

Zn ∼ Bin
(
n, p =

π

4

)
.

So we can estimate p with

p̂ =
Zn
n
,

and π by

π̂ = 4p̂ = 4 ·
Zn
n
.

15
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Ideas

Preliminary Example: Raindrop experiment for π

Result obtained for

n = 100 raindrops:

77 points inside the circle.

Resulting estimate of π is

π̂ =
4 · Zn
n

=
4 · 77

100
= 3.08,

(rather poor estimate).
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However: the law of large numbers guarantees that

π̂n =
4 · Zn
n
→ π

almost surely for n →∞.
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Ideas

Preliminary Example: Raindrop experiment for π
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Ideas

Preliminary Example: Raindrop experiment for π

How fast does π̂ converge to π?

Central limit theorem gives the answer.

(1− 2α) confidence interval for p (p̂n = Zn/n):

[
p̂n − z1−α

√
p̂n(1− p̂n)

n
, p̂n + z1−α

√
p̂n(1− p̂n)

n

]

(1− 2α) confidence interval for π (π̂n = 4p̂n):

[
π̂n − z1−α

√
π̂n(4− π̂n)

n
, π̂n + z1−α

√
π̂n(4− π̂n)

n

]

Width of the interval is O(n−1/2), thus speed of convergence

OP(n−1/2).
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Ideas

Preliminary Example: Raindrop experiment for π

Recall the two core elements of this example:

1 Write the quantity of interest (here π) as an expectation:

π = 4P(drop within circle) = E
(

4 · I{drop within circle}
)

2 Replace this algebraic representation with a sample
approximation.

SLLN guarantees that the sample approximation converges to

the algebraic representation.

CLT gives information about the speed of convergence.
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Ideas

The Generalisation to Monte Carlo Integration

f : [0, 1]→ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

y

∫ 1

0
f (x) dx =

∫ 1

0

∫ f (x)

0
1 dt dx =

∫ ∫
{(x,t):t≤f (x)}

1dt dx =

∫ ∫
{(x,t):t≤f (x)}

1 dt dx∫ ∫
{0≤x,t≤1}

1dt dx
.
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Ideas

Comparison of the speed of convergence

Monte Carlo integration is OP(n−1/2).

Numerical integration of a one-dimensional function by

Riemann sums is O(n−1).

Monte Carlo does not compare favourably for

one-dimensional problems.

However:

Monte Carlo estimates are often unbiased.

Order of convergence of Monte Carlo integration is

independent of dimension.

Order of convergence of numerical integration techniques

deteriorates with increasing dimension.

Monte Carlo methods can be a good choice for

high-dimensional integrals.
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Ideas

Views of Simulation-based Inference

Direct approximation of a quantity of interest.

Careful construction of random experiment for

particular task at hand.

Justify with a dedicated argument in each case.

Approximation of integrals of interest.

Represent quantity of interest as expectation

w.r.t. some f .

Use sample average to approximate expectation.

Appeal to SLLN and CLT.

Approximation of distributions of interest.

Represent quantity of interest as a function of

distribution f .

Use empirical measure of sample to approximate f .

Appeal to Glivenko–Cantelli theorem.

22
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Ideas

Theoretical Motivation of Sample Approximation

Theorem (Strong Law of Large Numbers)

Let X1, X2, . . .
iid∼ f , and let ϕ : E → R with E [|ϕ(X1)|] <∞.

Then:
1

n

n∑

i=1

ϕ(Xi)
a.s.−→ E [ϕ(X1)] .

Theorem (Central Limit Theorem)

Let X1, . . .
iid∼ fX and let ϕ : E → Rk with Σ = Var [ϕ(X)] <∞.

Then as n →∞:

√
n

[
1

n

n∑

i=1

ϕ(Xi)− E [ϕ(X1)]

]
D→ N (0,Σ) .

23
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Ideas

Theoretical Motivation of Sample Approximation

Theorem (Glivenko–Cantelli)

Let X1, . . .
iid∼ fX have cdf FX .

Let

Fn(x) =
1

n

n∑

i=1

I(−∞,x ](Xi).

Then as n →∞:

sup
x
|Fn(x)− F (x)| a.s.−→ 0.

24
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Randomized Tests

Randomized Testing

One simple example of computer intensive statistics.

We’ll revisit how we can implement these things later.

Art of testing: find a set Rα such that

P (T ∈ Rα;H0) = α

and

P (T ∈ Rα;H1) > α.

What if we don’t know the distribution of the test statistic,

fT ?

26
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Randomized Tests

Is a Die Fair?

Given n rolls of a die, we want to establish whether it’s fair.

Canonical example of a χ2-test. . .

Compute

T =

K∑

k=1

(Ok − Ek)2

Ek

T
approx∼ χ2

K−1 by asymptotic arguments.

What if the asymptotics don’t hold?

27
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Randomized Tests

A Randomized Goodness of Fit Test

Imagine we have 9 measured rolls (and can’t easily obtain

more):
Value 1 2 3 4 5 6

Count 0 1 0 2 2 4

If the die is fair we expect 1.5 observations of each value.

The test statistic is:

T =
1.52 + 0.52 + 1.52 + 0.52 + 0.52 + 2.52

1.5
= 7

2

3

The asymptotics certainly don’t hold:

(Ok − Ek)2 ∈ {0.52, 1.52, 2.52, 3.52, 4.52, 5.52, 6.52, 7.52}.

But we can simulate from H0.
28
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Randomized Tests

An R Implementation

Randomized Goodness of Fit Testing: Setup

p <− 1/6 ∗ c(1,1,1,1,1,1)
n <− 9
r <− 10000

ob <− rmultinom(r,n,p)

ex <− n∗p
T <− colSums ((ob - ex)ˆ2/ex)

How many elements in T are larger than the observed value?

Randomized Goodness of Fit Testing: Comparison

t <− 23/3
m <− sum(T ¿= ( t - 1E-9)) #T discrete
p r i n t (m/r)
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Randomized Tests

Randomized testing: results

Does this look fair? Vote! Vevox.app 170–356–838

Value 1 2 3 4 5 6

Count 0 1 0 2 2 4
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Randomized Tests

Randomized testing: results

Empirical p-value:

0.1848

Asymptotic p-value:

0.1860

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25
x

de
ns

ity

Type

Empirical

Asymptotic
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Randomized Tests

Randomized Test in General

Given a hypothesis, H0 and an alternative, H1, and data x
which realises X under H0:

Obtain a realisation u of U

(U|X ∼ fU|X from some known distribution).

Compute Rα such that P ((X,U) ∈ Rα;H0) = α.

Reject H0 if (x , u) ∈ Rα.

Goodness of Fit Test in General Form

Let fU|X(u|x) =
∏r
i=1 fT (X)(ui ;H0).

In practice: sample Zi
iid∼ fX(·;H0) and set Ui = T (Zi),

where T (X) is a real-valued summary of X.

Let Rα = {(x , u) : T (x) > u[r(1−α)]}, where u[i ] is the i th

order statistic.

32
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Randomized Tests

Are Those Medians Different (Part I)?
Consider testing for different medians:

H0 : X1, . . . , XnX
iid∼ fX(·;m) Y1, . . . , YnY

iid∼ fY (·;m)

H1 : X1, . . . , XnX
iid∼ fX(·;m) Y1, . . . , YnY

iid∼ fY (·;m′)

And we’ll assume a particular example for the form of the

two distributions:

fX(x ;m) = fY (x ;m) =
1

2
exp(−|x −m|)

Letting X̃ = X[(nX+1)/2] and Ỹ = Y[(nY +1)/2]:

X̃ − Ỹ = (X̃ −m)− (Ỹ −m)

= (X −m)[(nX+1)/2] − (Y −m)[(nY +1)/2]

So the distribution of X̃ − Ỹ is independent of m|H0.
33
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Randomized Tests

A Randomized test:

Let T = X̃ − Ỹ .

Draw i = 1, . . . , r copies of X and Y with m = 0:

X ′,j1,...,nX

iid∼ fX(·; 0),

Y ′,j1,...,nY

iid∼ fY (·; 0).

Compute the difference between their medians:

i = 1, . . . , r : T ′i = X ′,i[(nX+1)/2] − Y
′,i

[(nY +1)/2].

Let p = (1 + |{i : T ′i ≥ T}|)/(r + 1).

Reject H0 if p < α (a one-sided test; H1 : m′ < m).

But surely this is cheating: what if we don’t know so much (like

fX and fY )?

34
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Permutation Tests

Permutation Tests

Consider the hypotheses:

H0 : X1, . . . , XnX
iid∼ fX(·) Y1, . . . , YnY

iid∼ fY (·)
F−1
X (0.5) = F−1

Y (0.5)

H1 : X1, . . . , XnX
iid∼ fX(·) Y1, . . . , YnY

iid∼ fY (·)
F−1
X (0.5) 6=F−1

Y (0.5)

where fX and fY are unknown.

Here, F−1
X and F−1

Y are assumed to exist.

Sample medians are natural test statistics, but:

We don’t know their distribution under H0.

And can’t sample from that distribution.

What can we do?
35
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Permutation Tests

Let Z = (X1, . . . , XnX , Y1, . . . , YnY ) be an n = nX + nY
vector.

Now let

T (Z) = median(Z1, . . . , ZnX )−median(ZnX+1, . . . , Zn)

And let π ∈ P ⊆ {1, . . . , n}n denote a permutation, writing:

πZ := (Zπ1 , Zπ2 , . . . , Zπn)

Now, under H0:

∀π ∈P : T (πZ)
D
= T (Z)

So if T (Z) > T (πZ) for 100(1−α)% of π we can reject H0.

We just need to compute T (πZ) for every π ∈ P. . .
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Permutation Tests

A Randomized Permutation Test

We can sample elements uniformly from P:

Sample π1 ∼ U (1, . . . , n).

Sample π2 ∼ U ({1, . . . , n} \ {π1}).
...

Sample πn ∼ U ({1, . . . , n} \ {π1, . . . , πn−1}).

We can do this many times to approximate the law of T (πz)
when π ∼ U(P):

Sample π1, . . . ,πk
iid∼ U(P).

Compute T1 = T (π1z), . . . , Tk = T (πkz).

Use the empirical distribution of (T1, . . . , Tk) to approximate

the law of T (πz).

This provides a general strategy for nonparametric testing.
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Bootstrap Basics

Bootstrap Methods

Randomized tests: use empirical distribution of T .

Permutation tests: use resampling-based empirical

distribution of T .

Bootstrap methods: use resampling-based empirical

distribution of θ̂ to characterise the sampling distribution of

θ̂.

The Bootstrap Ansatz

If X1, . . . , Xn
iid∼ FX and n is large then “F̂ nX ≈ F”

=⇒ sampling from F̂ nX is “close” to sampling from F

=⇒ samples from F̂ nX might be suitable for approximating F !

39
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Bootstrap Basics

The Basis of the Bootstrap

Given a simple random sample X1, . . . , Xn

Repeat the following for b = 1, . . . , B:

Sample n times from F̂ nX(x) i.e. sample n times uniformly

with replacement from X1, . . . , Xn to obtain X̂b1 , . . . , X̂
b
n .

For a function of interest g : En → R, approximate the

distribution of g under F using the sample

g(X̂1
1 , . . . , X̂

1
n), . . . , g(X̂B1 , . . . , X̂

B
n ).

Glivenko–Cantelli (and extensions) tells us that

F̂ nX(x)
a.s.−→ FX(x).

N.B. Regularity conditions must hold in order for this to work.
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Bootstrap Basics

Approximating the Sampling Distribution of the Median

Given X1, . . . , Xn a simple random sample:

Compute T = median(X1, . . . , Xn).

For b = 1, . . . , B:

Sample n times with replacement from X1, . . . , Xn to obtain

X̂b1 , . . . , X̂
b
n .

Compute T̂ b = median(X̂b1 , . . . , X̂
b
n ).

Treat the empirical distribution of T̂ 1, . . . , T̂B as a proxy for

the sampling distribution of T .
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Bootstrap Basics

Bootstrap Bias Correction
Given x1, . . . , xn and,

estimator T : En → R of θ,

compute t = T (x1, . . . , xn).

For b = 1, . . . , B

Sample n times with replacement from X1, . . . , Xn to obtain

X̂b1 , . . . , X̂
b
n .

Compute T̂ b = T (X̂b1 , . . . , X̂
b
n ).

Treat the empirical distribution of T̂ 1 − t, . . . , T̂B − t as a

proxy for the sampling distribution of T (X1, . . . , Xn)− θ.

Obtain bias-corrected estimate:

t −
1

B

B∑

b=1

(T̂ b − t) = 2t −
1

B

B∑

b=1

T̂ b.
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Bootstrap Confidence Intervals

Näıve Bootstrap Confidence Intervals 1:

The Asymptotic Approach
For some T we might expect T to have an asymptotically

normal distribution.

So, estimate its variance:

σ̂2
T =

1

B − 1

B∑

b=1

(
T̂ b −

1

B

B∑

b=1

T̂ b

)2

And use the normal confidence interval:
[
T − zα/2σ̂T , T + zα/2σ̂T

]

with approximate coverage α.

Depends on asymptotic normality.

Further approximation for finite samples.
43
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Bootstrap Confidence Intervals

Näıve Bootstrap Confidence Intervals 2:

Bootstrap Percentile Confidence Intervals

We could use the bootstrap distribution of T directly:

[T̂ [B(α/2)], T̂ [B(1−α/2)]]

These are known as bootstrap percentile confidence intervals.

Depend on the bootstrap approximation; no additional

approximations.
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Bootstrap Confidence Intervals

Bootstrap “pivotal” Confidence Intervals
Using bootstrap approximations of (approximate) pivots

can be more elegant.

Assume that T is an estimator of some real population

parameter, θ.

Define R = T − θ.

Let FR denote the cdf of R, then:

P(L ≤ θ ≤ U) = P(L− T ≤ θ − T ≤ U − T )

= P(T − U ≤ R ≤ T − L)

= FR(T − L)− FR(T − U).

Suggests using:

[T − F−1
R (1− α/2), T − F−1

R (α/2)]

We can’t use this interval directly because we don’t know FR
and we certainly don’t know F−1

R .
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Bootstrap Confidence Intervals

Bootstrap “pivotal” Confidence Intervals

We can invoke the bootstrap idea again:

Compute T = g(X1, . . . , Xn).

For b = 1, . . . , B:

Sample n times with replacement from X1, . . . , Xn to obtain

X̂b1 , . . . , X̂
b
n .

Compute T̂ b = g(X̂b1 , . . . , X̂
b
n ).

Claim that “T̂ 1, . . . , T̂B are to T as T is to θ”.

Set R̂b = T̂ b − T .

Use the empirical distribution, F̂R, of R̂1, . . . , R̂B instead of

FR:

[T − F̂−1
R (1− α/2), T − F̂−1

R (α/2)]
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Bootstrap Confidence Intervals

Summary of Part 1

Motivation: Bayesian inference, Fisherian inference, . . .

Towards simulation-based inference (see later).

Randomized Tests

Permutation Tests

Bootstrap Characterisation of Estimators.

Bootstrap Confidence Intervals.

Young, G. A. (1994) Bootstrap: More than a stab in the

dark? Statistical Science, 9, 382–395.

Davison, A. C., Hinkley, D. V. and Young, G. A. (2003)

Recent developments in bootstrap methodology. Statistical

Science, 18, 141–157.
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Monte Carlo Methods PRNGs Sampling

Simulation

We’ve seen motivation of simulation for inference.

We’ve seen examples of simulation-based methods.

Now we need methods for simulation.
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Monte Carlo Method

A generic scheme for approximating expectations.

To approximate I = Ef [ϕ(X)],

Draw X1, . . . , Xn
iid∼ f ,

Use Îmc = 1
n

∑n
i=1 ϕ(Xi).

Convergence follows from SLLN, CLT, . . .
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Recall: The Three Views of the Monte Carlo Method
Direct Approximation Design an experiment such that:

ϕ(X) ∼ fϕ(X)

constructed such that it has the expectation of

interest.

Integral Approximation We’re interested in

Ef [ϕ(X)]

and know how to approximate such.

Distributional Approximation We’re interested in

Ef [ϕ(X)]

so obtain an approximation of f with respect to

which we can compute expectations.
52
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Contrasting Views of Monte Carlo

Usual explanation of the Monte Carlo Method, with

X1, . . .
iid∼ f approximating the integral:

1

n

n∑

i=1

ϕ(Xi)
a.s.−→ Ef [ϕ(X)]

Another perspective, approximate the distribution:

let f̂ n = 1
n

∑n
i=1 δXi

if f̂ n ⇒ f

then we automatically have that

Ef̂ n [ϕ(X)]→ Ef [ϕ(X)]

for every continuous bounded ϕ.
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Pseudorandom Number Generators

Problem: (how) can computers produce random

numbers?

von Neumann’s perspective

Any one who considers artithmetical methods of re-

producing random digits is, of course, in a state of sin.

. . . there is no such thing as a random number—there are

only methods of producing random numbers, and a strict

arithmetic procedure is of course not such a method.

As in so many other areas, von Neumann was completely correct.
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Pseudorandom Number Generators

Three Resolutions of this Philosophical Paradox

1 Use Exogeneous Randomness (TRNGs)

See www.random.org or

http://en.wikipedia.org/wiki/Hardware˙random˙

number˙generator.

2 Pseudorandom Number Generators (PRNGs; c.f. Statistical

Computing module)

Sacrifice randomness whilst mimicking its relevant statistical

properties.

3 Quasirandom Number Sequences (QRNSs)

Sacrifice randomness in exchange for minimising discrepancy.

All have advantages and disadvantages; we’ll focus on PRNGs.
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Monte Carlo Methods PRNGs Sampling

Transformation

Transformation Methods

Assume we have a good PRNG.

How can we obtain (pseudo)samples from other

distributions?

General framework:

Treat output of PRNG as a stream of iid U[0, 1] RVs.

Use laws of probability to transform these to obtain RVs with

other distributions.

Treat transformed PRNG output as RVs of the target

distribution.

But, how?
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Transformation

Inversion Sampling

The Inversion method

Let U ∼ U[0, 1] and

let F be an invertible CDF.

Then F−1(U) has the CDF F . ●
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●
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●

●
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Transformation

Inversion Sampling

The Inversion method

Let U ∼ U[0, 1] and F be an invertible CDF.

Then F−1(U) has the CDF F .

Inversion Sampling: A simple algorithm for drawing X ∼ F
1 Draw U ∼ U[0, 1].

2 Set X = F−1(U).
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Transformation

Example: Exponential distribution

The exponential distribution with rate λ > 0 has the CDF (x ≥ 0)

Fλ(x) = 1− exp(−λx)

F−1
λ (u) = − log(1− u)/λ.

So we have a simple algorithm for drawing X ∼ Exp (λ):

1 Draw U ∼ U[0, 1].

2 Set X = −
log(1− U)

λ
.

Actually, setting X = −
log(U)

λ
makes more sense.
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Transformation

The Generalised Inverse of the CDF

Generalised inverse of the CDF

F−(u) := inf{x : F (x) ≥ u}

F−(u) x

1

u

F (x)

Replacing F−1 with F− yields a generally-applicable inversion

sampling algorithm — key is F−(u) ≤ x ⇔ u ≤ F (x).
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Transformation

Box–Muller: Fast Normally-Distributed Random

Variables
Consider (X1, X2) their polar representation (R, θ):

X1 = R · cos(θ), X2 = R · sin(θ)

The following equivalence holds (with θ, R independent):

X1, X2
iid∼ N(0, 1) ⇐⇒ θ ∼ U[0, 2π] and R2 ∼ Expo(1/2)

Given U1, U2
iid∼ U[0, 1] set

R =
√
−2 log(U1), θ = 2πU2.

By substitution

X1 =
√
−2 log(U1) · cos(2πU2),

X2 =
√
−2 log(U1) · sin(2πU2).
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Transformation

Box–Muller: Algorithm

Box–Muller method

1 Draw

U1, U2
iid∼ U[0, 1].

2 Set

X1 =
√
−2 log(U1) · cos(2πU2),

X2 =
√
−2 log(U1) · sin(2πU2).

3 Output X1, X2
iid∼ N (0, 1).
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Transformation

The Limitations of Simple Transformations. . .

When F− is available and cheap to evaluate, inversion
sampling is very efficient. But:

We often don’t have access to F ;

even if we do, F− may be difficult/impossible to obtain.

The multivariate case can be even harder.

Clever custom transformations:

are costly to develop,

require considerable ingenuity,

are completely infeasible in complicated scenarios.

We need alternatives.
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Rejection

The Fundamental Theorem of simulation

Fundamental Theorem of Simulation

Sampling from a density f is equivalent to sampling uniformly

from the area between f and the ordinal axes and discarding the

“vertical” component.

Follows from the identity

f (x) =

∫ f (x)

0

1 du =

∫ ∞

0

10<u<f (x)︸ ︷︷ ︸
=f (x,u)

du.

i.e. f (x) can be interpreted as the marginal density of a

uniform distribution on the area under the density f (x):

{(x, u) : 0 ≤ u ≤ f (x)}.
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Rejection

First element of rejection sampling

We can sample from f by sampling from the area under the

density.
u

x

If (X,U) ∼ U ({(x, u) : 0 ≤ u ≤ f (x)}) then X ∼ f .
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Rejection

Second Element of Rejection Sampling

Generally G = {(x, u) : 0 ≤ u ≤ f (x)} is complicated: we

can’t sample uniformly from it—at least not directly.

Idea: Instead:

Sample from some A ⊇ G.

Keep only those points which lie within G.

Reject the rest.
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Rejection

Example: Sampling from a Beta(3, 5) distribution (1)
1 Draw (X,U) from the dark rectangle, i.e.:

X ∼ U(0, 1) U ∼ U(0, 2.4) X ⊥ U.

2 Accept X as a sample from f if (X,U) lies under the density.

10

2.4

u

x

Step 2 is equivalent to: Accept X if U ≤ f (X),

i.e. accept X with probability P(U ≤ f (X)|X = x) = f (X)/2.4.
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Rejection

Example: Sampling from a Beta(3, 5) distribution (2)

Algorithm:
1 Draw X ∼ U(0, 1).
2 Accept X as a sample from Beta(3, 5) w.p. f (X)/2.4.

Not every density can be bounded by a box.

Natural generalisation: replace M times U[0, 1] with M times

another density g.

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)

f (x)
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Rejection

A General Algorithm

Algorithm: Rejection sampling

Given two densities f , g with f (x) ≤ M · g(x) for all x , we can

generate a sample from f by

1. Draw X ∼ g.

2. Accept X as a sample from f with probability

f (X)

M · g(X)
,

otherwise go back to step 1.

For f (x) ≤ M · g(x) to hold for all x , f cannot have heavier tails

than g.
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Rejection

A Useful Trick

Avoiding Unknown Constants

If we know only f̃ (x) and g̃(x), where f (x) = C · f̃ (x), and

g(x) = D · g̃(x), we can carry out rejection sampling using

acceptance probability
f̃ (X)

M · g̃(X)

provided f̃ (x) ≤ M · g̃(x) for all x .

Can be useful in Bayesian statistics:

f post(θ) =
f prior(θ)L(θ; y1, . . . , yn)∫

Θ f
prior(ϑ)L(ϑ; y1, . . . , yn) dϑ

= C · f prior(θ)L(θ; y1, . . . , yn).
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Rejection

Example: Sampling from N(0, 1)
Recall the N(0, 1) and Cauchy densities:

f (x) =
1√
2π

exp

(
−
x2

2

)
, g(x) =

1

π(1 + x2)
.

For M =
√

2π · exp(−1/2) we have that f (x) ≤ Mg(x).

So we can use rejection sampling targeting f using g as

proposal.

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)

f (x)
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Rejection

Non-example: Sampling from a Cauchy Distribution

We cannot sample the other way round: from a Cauchy

distribution using a Normal as proposal distribution.

The Cauchy distribution has heavier tails than the Normal

distribution: there is no M ∈ R such that

1

π(1 + x2)
≤ M ·

1√
2πσ2

exp

(
−
x2

2

)
.

Vevox.app 170–356–838

How would you sample from a Cauchy distribution?
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Rejection

Non-example: Sampling from a Cauchy Distribution

We cannot sample the other way round: from a Cauchy

distribution using a Normal as proposal distribution.

The Cauchy distribution has heavier tails than the Normal

distribution: there is no M ∈ R such that

1

π(1 + x2)
≤ M ·

1√
2πσ2

exp

(
−
x2

2

)
.

Vevox.app 170–356–838

How would you sample from a Cauchy distribution?
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Importance Sampling

An Alternative to Rejection

Rejection sampling discards many samples.

This seems wasteful.

Couldn’t we, instead, weight samples based on the

acceptance probability?
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Importance Sampling

The fundamental identities behind importance sampling

Assume that g(x) > 0 for (almost) all x with f (x) > 0:

P(X ∈ X ) =

∫

X
f (x) dx =

∫

X
g(x)

f (x)

g(x)︸ ︷︷ ︸
=:w(x)

dx =

∫

X
g(x)w(x) dx.

Assume that g(x) > 0 for (almost) all x with

f (x) · ϕ(x) 6= 0

Ef (ϕ(X)) =

∫
f (x)ϕ(x) dx =

∫
g(x)

f (x)

g(x)︸ ︷︷ ︸
=:w(x)

ϕ(x) dx

=

∫
g(x)w(x)ϕ(x) dx = Eg(w(X) · ϕ(X)).
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Importance Sampling

The fundamental identities behind importance sampling

Consider X1, . . . , Xn ∼ g and Eg|w(X) · ϕ(X)| <∞. Then

1

n

n∑

i=1

w(Xi)ϕ(Xi)

a.s.
n→∞−→ Eg(w(X) · ϕ(X))

=⇒
1

n

n∑

i=1

w(Xi)ϕ(Xi)

a.s.
n→∞−→ Ef (ϕ(X)).

Thus we can estimate µ := Ef (ϕ(X)) by
1 Sample X1, . . . , Xn ∼ g,
2 µ̃ := 1

n

∑n
i=1 w(Xi)ϕ(Xi).
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Importance Sampling

The importance sampling algorithm

Algorithm: Importance Sampling

Choose g such that supp(g) ⊇ supp(f · ϕ).

1 For i = 1, . . . , n:

1 Generate Xi ∼ g.
2 Set w(Xi) = f (Xi )

g(Xi )
.

2 Return

µ̃ =

∑n
i=1 w(Xi)ϕ(Xi)

n

as an estimate of Ef (ϕ(X)).

Importance sampling does not yield realisations from f ,

but a weighted sample (Xi ,Wi),

which can be used for estimating expectations Ef (ϕ(X)),

or approximating f itself.
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Importance Sampling

Basic properties of the importance sampling estimate
We have already seen that µ̃ is consistent if

supp(g) ⊇ supp(f · ϕ) and Eg|w(X) · ϕ(X)| <∞, as

µ̃ :=
1

n

n∑

i=1

w(Xi)ϕ(Xi)

a.s.
n→∞−→ Ef (ϕ(X))

The expected value of the weights is Eg(w(X)) = 1.

µ̃ is unbiased (see theorem below)

Theorem 2.2: Bias and Variance of Importance Sampling

Eg(µ̃) = µ,

Varg(µ̃) =
Varg(w(X) · ϕ(X))

n
.
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Importance Sampling

Optimal proposals

Theorem (Optimal proposal)

The proposal distribution g that minimises the variance of µ̃ is

g∗(x) =
|ϕ(x)|f (x)∫
|ϕ(t)|f (t) dt

.

Theorem of little practical use: the optimal proposal involves∫
|ϕ(t)|f (t) dt, which is the integral we want to estimate!

Practical relevance:

Choose g such that it is close to |ϕ(x)| · f (x).
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Importance Sampling

Super-efficiency of importance sampling

For the optimal g∗ we have that

Varf

(
ϕ(X1) + · · ·+ ϕ(Xn)

n

)
> Varg?(µ̃),

if ϕ is not almost surely constant.

Superefficiency of importance sampling

The variance of the importance sampling estimate can be less

than the variance obtained by sampling directly from the target f .

Intuition: Importance sampling allows us to choose a g that

focuses on areas which contribute most to
∫
ϕ(x)f (x) dx .

Even sub-optimal proposals can be super-efficient.
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Importance Sampling

Importance Sampling Example 1: Setup

Compute Ef |X| for X ∼ t3 by . . .

(a) sampling directly from t3.

(b) using a t1 distribution as proposal distribution.

(c) using a N(0, 1) distribution as proposal distribution.

Vevox.app 170–356–838

Which of these methods is best?

Reminder:

gt3 (x) =
2

π
√

3
·

1
(

1 + x2

3

)2 , gt1 (x) =
1

π
·

1

1 + x2
.
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Importance Sampling

Importance Sampling Example 1: Setup

Compute Ef |X| for X ∼ t3 by . . .

(a) sampling directly from t3.

(b) using a t1 distribution as proposal distribution.

(c) using a N(0, 1) distribution as proposal distribution.

Vevox.app 170–356–838

Which of these methods is best?

Reminder:

gt3 (x) =
2

π
√

3
·

1
(

1 + x2

3

)2 , gt1 (x) =
1

π
·

1

1 + x2
.
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Importance Sampling

IS Example: Densities

-4 -2 0 2 4
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0

0.
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0.
3

0.
4

x

|x| · f(x) (Target)
f(x) (direct sampling)
gt1(x) (IS t1)
gN(0,1)(x) (IS N(0, 1))
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Importance Sampling

IS Example: Estimates obtained

000 500500500 100010001000 150015001500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

IS
es
ti
m
at
e
ov
er

ti
m
e

Iteration

Sampling directly from t3 IS using t1 as instrumental dist’n IS using N(0, 1) as instrumental dist’n

86



Monte Carlo Methods PRNGs Sampling

Importance Sampling

IS Example: Weights
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Importance Sampling

Another Example: Rare Events (1)

Consider

f (x, y) = N

((
x

y

)
;µ,Σ

)
,

where

µ =

(
0

0

)
, Σ =

[
1 0.7

0.7 1

]
.

Consider

ϕ(x, y) = I[4,∞)(x)I[4,∞)(y).
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Importance Sampling

Another Example: Rare Events (2)
Using simple Monte Carlo with 1,000,000 samples from f :
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Importance Sampling

Another Example: Rare Events (3)
Using simple Monte Carlo with 10,000,000 samples from f :
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Importance Sampling

Another Example: Rare Events (4)
Using importance sampling with 1,000,000 samples from

g(x, y) = exp(−(x − 4)− (y − 4))Ix≥4Iy≥4:
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Importance Sampling

Another Example: Rare Events (5)
Using importance sampling with 1,000 samples from

g(x, y) = exp(−(x − 4)− (y − 4))Ix≥4Iy≥4:
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Importance Sampling

Another Example: Rare Events (6)
Using importance sampling with 1,000,000 samples from

g(x, y) = N

((
x

y

)
;

(
4

4

)
,Σ

∣∣∣∣ x ≥ 4, y ≥ 4

)
:
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Importance Sampling

Another Example: Rare Events (7)
Using importance sampling with 1,000 samples from

g(x, y) = N

((
x

y

)
;

(
4

4

)
,Σ

∣∣∣∣ x ≥ 4, y ≥ 4

)
:
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Importance Sampling

We only need f up to a multiplicative constant.
Assume f (x) = Cf̃ (x). Then

µ̃ =
1

n

n∑

i=1

w(Xi)ϕ(Xi) =
1

n

n∑

i=1

Cf̃ (Xi)

g(Xi)
ϕ(Xi)

C does not cancel out. Knowing f̃ (·) is not enough.

Idea: Estimate C using the sample, via
∑n
i=1 w(Xi), i.e.

consider the self-normalised estimator

µ̂ =
1

n

n∑

i=1

w(Xi)ϕ(Xi)
/1

n

n∑

i=1

w(Xi)1

Now we have that µ̂ does not depend on C:

µ̂ =

∑n
i=1 w(Xi)ϕ(Xi)∑n

i=1 w(Xi)
=

∑n
i=1

f̃ (Xi )
g(Xi )

ϕ(Xi)
∑n
i=1

f̃ (Xi )
g(Xi )

,
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Importance Sampling

The importance sampling algorithm (2)

Algorithm: Importance Sampling using self-normalised

weights

Choose g such that supp(g) ⊇ supp(f ).

1 For i = 1, . . . , n:

1 Generate Xi ∼ g.
2 Set w(Xi) = f (Xi )

g(Xi )
.

2 Return

µ̂ =

∑n
i=1 w(Xi)ϕ(Xi)∑n

i=1 w(Xi)

as an estimate of Ef (ϕ(X)).
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Importance Sampling

Basic properties of the self-normalised estimate
µ̂ is consistent as

µ̂ =

∑n
i=1 w(Xi)ϕ(Xi)

n︸ ︷︷ ︸
=µ̃−→Ef (ϕ(X))

n∑n
i=1 w(Xi)︸ ︷︷ ︸
−→1

a.s.
n→∞−→ Ef (ϕ(X)),

(provided supp(g) ⊇ supp(f ) and Eg|w(X) · ϕ(X)| <∞).

Theorem: Bias and Variance (ctd.)

Eg(µ̂) = µ+
µVarg(w(X))− Covg [w(X), w(X) · ϕ(X)]

n
+O(n−2)

Varg(µ̂) =
Varg(w(X) · ϕ(X))− 2µCovg [w(X), w(X) · ϕ(X)]

n

+
µ2Varg(w(X))

n
+O(n−2)
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Importance Sampling

Finite variance estimators

Importance sampling estimates are consistent for many

choices of g.

More important in practice: we want finite variance

estimators:

Var(µ̃) = Var

(∑n
i=1 w(Xi)ϕ(Xi)

n

)
<∞

Sufficient (albeit restrictive) conditions for finite variance of
µ̃:

f (x) ≤ M · g(x) and Varf (ϕ(X)) <∞, or

E is compact, f is bounded above on E, and g is bounded

below on E.

Note: If f has heavier tails then g, then the weights may

have infinite variance!
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Importance Sampling

Summary of Part 2

Transformation: Inversion sampling

Transformation: Case-specific methods such as Box–Muller

Rejection Sampling

Importance Sampling
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Part 3— Section 7

Motivation and Basics



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Motivating MCMC

Why do we need other, more complicated methods?

Transformation’s great when it works.

Rejection sampling’s good when M is small.

Importance sampling works well with good proposals.

What do we do when we can’t meet any of these

requirements?
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Motivating MCMC

One Approach

Markov Chain Monte Carlo methods (MCMC)

Key idea: Create a dependent sample, i.e. X(t) depends on

the previous value X(t−1).

Allows for “local” updates.

Yields an “approximate sample” from the target distribution.

More mathematically speaking: yields a Markov chain with

the target distribution f as stationary distribution.

Under conditions, the realised chain provides approximations

of Ef [ϕ(X)] and of f itself.
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Motivating MCMC

Markov Chains

Markov Chain (N.B. Terminology varies)

A discrete time Markov process taking values in a general space:

X(0) ∼ µ0 Initial Dist.

X(t)|
(
X(0) = x (0), . . . , X(t−1) = x (t−1)

)
∼ K(x (t−1), ·) Kernel

Stationary Distribution

f is a stationary or invariant distribution for a Markov Chain on E

with kernel K if
∫

A

∫

E

f (x)K(x, y)dxdy =

∫

A

f (y)dy

for all measurable sets A [or
∫
f (x)K(x, y)dx = f (y)].
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Motivating MCMC

Heuristically Motivating MCMC

If X(0), . . . is an f -invariant Markov chain and X(t) ∼ f for

some t then X(t+s) ∼ f ∀s ∈ N.

So if X(t) is “approximately independent” of X(t+s) for large
enough s then

X(t), X(t+s), . . . , X(t+ks), . . . is approximately
iid∼ f ,

X(t+1), X(t+s+1), . . . , X(t+ks+1), . . . is approximately
iid∼ f ,

...

X(t+s−1), X(t+2s−1), . . . , X(t+ks−1), . . . is approximately
iid∼ f .

We might conjecture that for such a chain, for some large s:

1

n

n∑

k=1

ϕ(X(t+ks))→ Ef [ϕ(X)] and
1

n

n∑

k=1

ϕ(X(k))→ Ef [ϕ(X)] .
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Motivating MCMC

Some Questions to Answer

Can we formalise this heuristic argument?

 ergodic theory

How can we construct f -invariant Markov kernels?

 various types of sampler

What properties of these kernels are important?

 more ergodic theory

How do we initialise the chain?

 transient phases and burn-in

How do we know if it’s working?

 ergodic theory and convergence diagnostics
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Important Properties

Aperiodicity

Definition: Period

A Markov chain has a period d if there exists some partition of

the state space, E1, . . . , Ed with the properties that:

∀i 6= j : Ei ∩ Ej = ∅,
d⋃
i=1

Ei = E,

The chain moves deterministically between elements of the

partition:

∀i , j, t, s : P
(
Xt+s ∈ Ej |Xt ∈ Ei

)
=

{
1 j = i + s mod d

0 otherwise.

A Markov chain is aperiodic if its period is 1.
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Important Properties

Irreducibility

Definition: Irreducibility

Given a distribution, f , over E, a Markov chain is said to be

f -irreducible if for all points x ∈ E and all measurable sets A such

that f (A) > 0 there exists some t such that:

∫

A

Kt(x, y)dy > 0.

If this condition holds with t = 1, then the chain is said to be

strongly f -irreducible.

Kt(x, y) :=

∫
K(x, z)Kt−1(z, y)dz, K1(x, y) = K(x, y).
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Important Properties

Transience and Recurrence I

Consider sets A ⊆ E for f -irreducible Markov chains.

Let ηA :=
∑∞
k=1 IA(X(k)).

Transience and Recurrence of Sets

A set A is recurrent if:

∀x ∈ A : Ex [ηA] =∞.

A set is uniformly transient if there exists some M <∞ such that:

∀x ∈ A : Ex [ηA] ≤ M.

A set, A ⊆ E, is transient if it may be expressed as a countable

union of uniformly transient sets.
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Important Properties

Transience and Recurrence II

Transience and Recurrence of Markov Chains

A Markov chain is recurrent if the following hold:

The chain is f -irreducible for some distribution f .

For every measurable set A ⊆ E such that
∫
A f (y)dy > 0,

Ex [ηA] =∞ for every x ∈ A.

It is transient if it is f -irreducible for some distribution f and the

entire space is transient.

In the case of irreducible chains, transience and recurrence are

properties of the chain rather than individual states.
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Important Properties

A Motivating Convergence Result

Theorem (A Simple Ergodic Theorem)

If (Xi)i∈N is an f -irreducible, f -invariant, recurrent Rd -valued

Markov chain, then the following strong law of large numbers

holds for any integrable function ϕ : Rd → R:

lim
t→∞

1

t

t∑

i=1

ϕ(Xi)
a.s.
=

∫
ϕ(x)f (x)dx.

for almost every starting value x .

Note: this gives no rate of convergence.
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A Motivating Example

Example: Poisson change point model I

rate λ for y1 . . . rate λ for yM rate λ for yM+1 . . . . . . rate λ for yn

λ

0
1

2
3

4
5

6
7

Yi ∼ Poi(λ1) for i = 1, . . . ,M,

Yi ∼ Poi(λ2) for i = M + 1, . . . , n.
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A Motivating Example

Example: Poisson change point model II

Objective: (Bayesian) inference about the parameters λ1, λ2, and

M given observed data y1, . . . , yn.

Prior distributions: λj ∼ Gamma(αj , βj) (j = 1, 2), i.e.

f (λj) =
1

Γ(αj)
λ
αj−1
j β

αj
j exp(−βjλj).

(discrete uniform prior on M, i.e. p(M) ∝ 1).

Likelihood: L(λ1, λ2,M; y1, . . . , yn)

=

(
M∏

i=1

exp(−λ1)λyi1

yi !

)
·

(
n∏

i=M+1

exp(−λ2)λyi2

yi !

)
.
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A Motivating Example

Example: Poisson change point model III

Joint distribution f (y1, . . . , yn, λ1, λ2,M)

= L(λ1, λ2,M; y1, . . . , yn) · f (λ1) · f (λ2) · p(M)

∝

(
M∏

i=1

exp(−λ1)λyi1

yi !

)
·

(
n∏

i=M+1

exp(−λ2)λyi2

yi !

)

·
1

Γ(α1)
λα1−1

1 βα1
1 exp(−β1λ1) ·

1

Γ(α2)
λα2−1

2 βα2
2 exp(−β2λ2)

Joint posterior distribution f (λ1, λ2,M|y1, . . . , yn)

∝ λ
α1−1+

∑M
i=1 yi

1 exp(−(β1 +M)λ1)

·λα2−1+
∑n

i=M+1 yi
2 exp(−(β2 + n −M)λ2)
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A Motivating Example

Example: Poisson change point model IV
Conditional on M (i.e. if M was known) we have

f (λ1|y1, . . . , yn,M) ∝ λα1−1+
∑M

i=1 yi
1 exp(−(β1 +M)λ1),

i.e.

λ1|Y1, . . . Yn,M ∼ Gamma

(
α1 +

M∑

i=1

yi , β1 +M

)
,

λ2|Y1, . . . Yn,M ∼ Gamma

(
α2 +

n∑

i=M+1

yi , β2 + n −M

)
.

p(M| . . . ) ∝ λ
∑M

i=1 yi
1 · λ

∑n
i=M+1 yi

2 · exp((λ2 − λ1) ·M).
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A Motivating Example

Example: Poisson change point model V
This suggests an iterative algorithm:

1 Draw λ1 from λ1|Y1, . . . , Yn,M, i.e. draw

λ1 ∼ Gamma

(
α1 +

M∑

i=1

yi , β1 +M

)
.

2 Draw λ2 from λ2|Y1, . . . , Yn,M, i.e. draw

λ2 ∼ Gamma

(
α2 +

n∑

i=M+1

yi , β2 + n −M

)
.

3 Draw M from M|Y1, . . . , Yn, λ1, λ2, i.e. draw

p(M) ∝ λ
∑M

i=1 yi
1 · λ

∑n
i=M+1 yi

2 · exp((λ2 − λ1) ·M).
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The Algorithm

The systematic scan Gibbs sampler

Algorithm: (Systematic scan) Gibbs sampler

Starting with (X
(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1. Draw X
(t)
1 ∼ fX1|X−1

(·|X(t−1)
2 , . . . , X

(t−1)
p ).

. . .

j. Draw X
(t)
j ∼ fXj |X−j (·|X

(t)
1 , . . . , X

(t)
j−1, X

(t−1)
j+1 , . . . , X

(t−1)
p ).

. . .

p. Draw X
(t)
p ∼ fXp|X−p(·|X(t)

1 , . . . , X
(t)
p−1).
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The Algorithm

Illustration of the systematic scan Gibbs sampler

X
(t)
1

X
(t
)

2

(X
(0)
1 ,X

(0)
2 )

(X
(1)
1 ,X

(0)
2 )

(X
(1)
1 ,X

(1)
2 )

(X
(2)
1 ,X

(1)
2 )

(X
(2)
1 ,X

(2)
2 )(X

(3)
1 ,X

(2)
2 )

(X
(3)
1 ,X

(3)
2 ) (X

(4)
1 ,X

(3)
2 )

(X
(4)
1 ,X

(4)
2 ) (X

(5)
1 ,X

(4)
2 )

(X
(5)
1 ,X

(5)
2 )(X

(6)
1 ,X

(5)
2 )

(X
(6)
1 ,X

(6)
2 )
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The Algorithm

The random scan Gibbs sampler

Algorithm: (Random scan) Gibbs sampler

Starting with (X
(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1 Draw an index j from a distribution on {1, . . . , p} (e.g.

uniform).

2 Draw

X
(t)
j ∼ fXj |X−j (·|X

(t−1)
1 , . . . , X

(t−1)
j−1 , X

(t−1)
j+1 , . . . , X

(t−1)
p ), and

set X
(t)
ι := X

(t−1)
ι for all ι 6= j .
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The Algorithm

Invariant distribution

Lemma (Kernel)

The transition kernel of the systematic scan Gibbs sampler is

K(x(t−1), x(t)) = fX1|X−1
(x

(t)
1 |x

(t−1)
2 , . . . , x

(t−1)
p )

·fX2|X−2
(x

(t)
2 |x

(t)
1 , x

(t−1)
3 , . . . , x

(t−1)
p )

· . . .
·fXp|X−p(x

(t)
p |x (t)

1 , . . . , x
(t)
p−1).

Proposition (Invariance)

The joint distribution f (x1, . . . , xp) is indeed the invariant

distribution of the Markov chain (X(0),X(1), . . . ) generated by the

Gibbs sampler.
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The Algorithm

Proof (outline) I

Assume that X(t−1) ∼ f , then

P(X(t) ∈ X ) =

∫

X

∫
f (x(t−1))K(x(t−1), x(t)) dx(t−1) dx(t).

We can expand the K(x(t−1), x(t)) of the integrand, and compute the

x
(t−1)
1 -integral:

∫
f (x

(t−1)
1 , . . . , x (t−1)

p ) dx
(t−1)
1

︸ ︷︷ ︸
=f (x

(t−1)
2 ,...,x

(t−1)
p )

fX1|X−1
(x

(t)
1 |x

(t−1)
2 , . . . , x (t−1)

p )

︸ ︷︷ ︸
=f (x

(t)
1 ,x

(t−1)
2 ,...,x

(t−1)
p )

·

fX2|X−2
(x

(t)
2 |x

(t)
1 , . . . , x (t−1)

p ) · · · fXp |X−p(x (t)
p |x

(t)
1 , . . . , x

(t)
p−1).
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The Algorithm

Proof (outline) II
And we can then compute the x

(t−1)
2 integral:

∫ ∫
f (x

(t)
1 , x

(t−1)
2 , . . . , x (t−1)

p ) dx
(t−1)
2

︸ ︷︷ ︸
=f (x

(t)
1 ,x

(t−1)
3 ,...,x

(t−1)
p )

fX2|X−2
(x

(t)
2 |x

(t)
1 , x

(t−1)
3 , . . . , x (t−1)

p )

︸ ︷︷ ︸
=f (x

(t)
1 ,x

(t)
2 ,x

(t−1)
3 ,...,x

(t−1)
p )

fX3|X−3
(x

(t)
3 |x

(t)
1 , . . . , x (t−1)

p ) · · · fXp |X−p(x (t)
p |x

(t)
1 , . . . , x

(t)
p−1).

And so on until the x
(t−1)
p -integral:

∫
f (x

(t)
1 , . . . , x

(t)
p−1, x

(t−1)
p ) dx (t−1)

p

︸ ︷︷ ︸
=f (x

(t)
1 ,...,x

(t)
p−1)

fXp |X−p(x (t)
p |x

(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
=f (x

(t)
1 ,...,x

(t)
p )

.
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The Algorithm

Proof (outline) III

This just leaves the x(t)-integrals:

P(X(t) ∈ X ) =

∫

X
f (x

(t)
1 , . . . , x (t)

p ) dx(t).

Thus f is the density of X(t) (if X(t−1) ∼ f ).
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Examples

Recall our Poisson Changepoint Model

Joint posterior distribution f (λ1, λ2,M|y1, . . . , yn)

∝ λ
α1−1+

∑M
i=1 yi

1 exp(−(β1 +M)λ1)

·λα2−1+
∑n

i=M+1 yi
2 exp(−(β2 + n −M)λ2)

Full Posterior Distributions

λ1|Y1, . . . Yn,M ∼ Gamma

(
α1 +

M∑

i=1

yi , β1 +M

)
,

λ2|Y1, . . . Yn,M ∼ Gamma

(
α2 +

n∑

i=M+1

yi , β2 + n −M

)
.

and p(M| . . . ) ∝ λ
∑M

i=1 yi
1 · λ

∑n
i=M+1 yi

2 · exp((λ2 − λ1) ·M).
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Examples

An R Implementation

cdist.M <− f u n c t i o n (lambda1 ,lambda2) –
dist.M. l o g <− cumsum(y[1:n-1]) ∗ l o g (lambda1) +

(sum(y)-cumsum(y[1:n -1]))∗ l o g (lambda2) +
(lambda2 -lambda1) ∗ (1:(n-1))

dist.M <− exp(dist.M. l o g - mean(dist.M. l o g ))
dist.M <− dist.M / sum(dist.M)

˝

pmix.gibbs <− f u n c t i o n (M,lambda1 ,lambda2 , t ) –
r <− a r r a y (NA ,c( t +1,3))
r[1,] <− c(M,lambda1 ,lambda2)
f o r (i in 1: t ) –
#lambda1

r[i+1,2] <− rgamma(1,a1+sum(y[1:r[i,1]]) , b1+r[i,1])
#lambda2

r[i+1,3] <− rgamma(1,a2+sum(y[(r[i ,1]+1):n]), b2+n-r[i,1])
#M

r[i+1,1] <− sample.int(n-1,1,prob=cdist.M(r[i+1,2],r[i+1 ,3]))
˝

r

˝
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Examples

Traces and Estimates: M

0 200 400 600 800 1000

1
2

3
4

5

Two Traces of M

iteration t

M
^(

t)

Consider two

differently-initialised chains.

Chain 1:

(M,λ1, λ2)(0) = (3, 1, 2)

Chain 2:

(M,λ1, λ2)(0) = (6, 4, 1
2 )

Estimated Posterior Modes:

Chain 1: 3

Chain 2: 3
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Examples

Traces and Estimates: λ1

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Two Traces of lambda_1

iteration t

la
m

bd
a_

1^
(t

)

Estimated Posterior Means:

Chain 1: 0.76

Chain 2: 0.78
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Examples

Traces and Estimates: λ2

0 200 400 600 800 1000

2
3

4
5

6
7

8
9

Two Traces of lambda_2

iteration t

la
m

bd
a_

2^
(t

)

Estimated Posterior Means:

Chain 1: 4.51

Chain 2: 4.47
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Examples

Histograms: Approximations of the Posterior
Histogram of M from chain 1
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Examples

Poisson Change-Point Model: More Challenging Data I
Consider the more realistic data:
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Examples

Poisson Change-Point Model: More Challenging Data II

From a chain of length 100,000 we obtain the following

histograms:

Estimated Posterior Distribution of M

M

D
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si
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Examples

Poisson Change-Point Model: More Challenging Data III

Estimated Posterior Distribution of lambda_2

lambda2

D
en

si
ty
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Data was generated with: y ¡- c(rpois(40,7),rpois(70,5))
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Examples

Poisson Change-Point Model: More Challenging Data IV

0 2000 4000 6000 8000 10000

0
20

40
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10
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Trace of M

iteration t

M
^(

t)
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Examples

Poisson Change-Point Model: More Challenging Data V
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Examples

Poisson Change-Point Model: More Challenging Data VI
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Examples

Example: The Ising Model
The Ising model on (V, E) each vi ∈ V has an associated xi ∈ {−1,+1}:

π(x1, . . . , xm)

=
1

Z
exp


J

∑

(i ,j)∈E

xi · xj




=
1

Z
exp(−J|E|) exp


2J

∑

(i ,j)∈E

I(xi = xj)




=
1

Z′
exp


2J

∑

(i ,j)∈E

I(xi = xj)


 .

π(xj |x−j) = exp


J

∑

i :(i ,j)∈E

xixj


/


exp


−J

∑

i :(i ,j)∈E

xi


+ exp


J

∑

i :(i ,j)∈E

xi




 .
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Examples

The Core Logic in R

tr <− l i s t ()

tr [[1]] <− x <− a r r a y (0,c(m,n))

f o r ( t in 1:100) –

f o r (i in 1:m) –

f o r (j in 1:n) –

ns <− neighbours(m,n,i,j)

p1 <− 0
f o r (k in 1: l e n g t h (ns)) –

p1 <− p1 + x[(ns[[k]])[1] ,(ns[[k]])[2]]
˝

p0 <− l e n g t h (ns) - p1

pp <− c(exp(J∗p0),exp(J∗p1))
pp <− pp / sum(pp)

x[i,j] <− sample(c(0,1),1,prob=pp)

˝

˝

tr[[ t +1]] <− x
˝
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Examples

The Gibbs Sampler for Ising Models I

Samples 1, 10, and 100 with J = 0.05:
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial Configuration, J=1/20
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Examples

The Gibbs Sampler for Ising Models II

0.0 0.2 0.4 0.6 0.8 1.0

0.
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Iteration 10, J=1/20
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Iteration 100, J=1/20
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Examples

The Gibbs Sampler for Ising Models III

Samples 1, 10, and 100 with J = 0.50:
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial Configuration, J=1/2
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The Gibbs Sampler for Ising Models IV

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 10, J=1/2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 100, J=1/2
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The Gibbs Sampler for Ising Models V

Samples 1, 10, and 100 with J = 1.00:
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Initial Configuration, J=2
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The Gibbs Sampler for Ising Models VI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 10, J=2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 100, J=2

Solutions include the Swendsen-Wang algorithm (c.f. assessment)

or perfect simulation. . .

144



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Examples

The Ising Model and Image Reconstruction
The Ising Model is widely used in statistics as a prior distribution.

Consider image denoising: x an m× n image on V ⊆ Z2 with

obvious neighbourhood structure E :

Observe y where yv = xv wp 1− ε.
Prior: X ∼ Ising(J,V, E).

Likelihood:

L(x ; y) =
∏
v∈V [(1− ε)I{yv = xv}+ εI{yv 6= xv}].

Posterior:

p(x |y) ∝ exp


2J

∑

(i ,j)∈E

I(xi = xj)


 ·

∏

v∈V
[(1− ε)I{yv = xv}+ εI{yv 6= xv}]
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Ludolphus’ Zebra

https://upload.wikimedia.org/wikipedia/commons/a/af/ZebraLudolphus.jpg

Noisy Image / Samples Ground Truth
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A Pathological Example: The Reducible Gibbs sampler

Consider Gibbs sampling from the

uniform distribution

f (x1, x2) =
1

2π
IC1∪C2

(x1, x2),

C1 := {(x1, x2) : ‖(x1, x2)− (1, 1)‖ ≤ 1}
C2 := {(x1, x2) : ‖(x1, x2) + (1, 1)‖ ≤ 1}

-2

-2

-1

-1

0

0

1

1

2

2

X
(t)
1

X
(t
)

2

The resulting Markov chain is reducible:

It stays forever in either C1 or C2.
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The Metropolis–Hastings algorithm

Algorithm: Metropolis–Hastings

Starting with X(0) := (X
(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1 Draw X ∼ q(·|X(t−1)).

2 Compute

α(X|X(t−1)) = min

{
1,

f (X) · q(X(t−1)|X)

f (X(t−1)) · q(X|X(t−1))

}
.

3 With probability α(X|X(t−1)) set X(t) = X, otherwise set

X(t) = X(t−1).
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Illustration of the Metropolis–Hastings method

X
(t)
1

X
(t
)

2

x(0)=x(1)=x(2)

x(3)=x(4)=x(5)=x(6)=x(7)

x(8)

x(9)
x(10)

x(11)=x(12)=x(13)=x(14)

x(15)
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Basic properties of the Metropolis–Hastings algorithm
The probability that a newly proposed value is accepted given

X(t−1) = x(t−1) is

a(x(t−1)) =

∫
α(x|x(t−1))q(x|x(t−1)) dx.

The probability of remaining in state X(t−1) is

P(X(t) = X(t−1)|X(t−1) = x(t−1)) = 1− a(x(t−1)).

The probability of acceptance does not depend on the

normalisation constant: If f (x) = C · f̃ (x), then

α(X|X(t−1)) = min

(
1,

f̃ (X) · q(X(t−1)|X)

f̃ (X(t−1)) · q(X|X(t−1))

)

151



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

The Algorithm

Transition Kernel

Lemma (Transition Kernel of Metropolis–Hastings)

The transition kernel of the Metropolis–Hastings algorithm is

K(x(t−1), x(t)) = α(x(t)|x(t−1))q(x(t)|x(t−1))

+ (1− a(x(t−1)))δx(t−1) (x(t)),

Lemma (Detailed Balance and Metropolis Hastings)

The Metropolis–Hastings kernel satisfies the detailed balance

condition

K(x(t−1), x(t))f (x(t−1)) = K(x(t), x(t−1))f (x(t)).
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f -invariance of Metropolis–Hastings

Proposition (Detailed Balanced implies Invariance)

Any K which satisfies the detailed balance condition with respect

to f ,

K(x(t−1), x(t))f (x(t−1)) = K(x(t), x(t−1))f (x(t)),

is f -invariant.

Proof

Integrate both sides wrt x(t−1).

Hence the Metropolis–Hastings algorithm is f -invariant.
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Random-walk Metropolis: Idea
In the Metropolis–Hastings algorithm the proposal is from

X ∼ q(·|X(t−1)).

A popular choice for the proposal is

q(x|x(t−1)) = g(x− x(t−1)) with g symmetric, thus

X = X(t−1) + ε, ε ∼ g.

Probability of acceptance becomes

min

{
1,

f (X) · g(X− X(t−1))

f (X(t−1)) · g(X(t−1) − X)

}
= min

{
1,

f (X)

f (X(t−1))

}
.

We accept . . .
every move to a more probable state with probability 1.

moves to less probable states with a probability

f (X)/f (x(t−1)) < 1.
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Random-walk Metropolis: Algorithm

Random-Walk Metropolis

Starting with X(0) := (X
(0)
1 , . . . , X

(0)
p ) and using a symmetric

random walk proposal g, iterate for t = 1, 2, . . .

1 Draw ε ∼ g and set X = X(t−1) + ε.

2 Compute

α(X|X(t−1)) = min

{
1,

f (X)

f (X(t−1))

}
.

3 With probability α(X|X(t−1)) set X(t) = X, otherwise set

X(t) = X(t−1).

Popular choices for g are (multivariate) Gaussians or

t-distributions (the latter having heavier tails)
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Example 3.4: Bayesian probit model (1)
Medical study on infections resulting from birth by Cæsarean

section.
3 influence factors:

indicator whether the Cæsarian was planned or not (zi1),

indicator of whether additional risk factors were present at

the time of birth (zi2), and

indicator of whether antibiotics were given as a prophylaxis

(zi3).

Response variable: number of infections Yi that were

observed amongst ni patients having the same covariates.
# births planned risk factors antibiotics

infection total
yi ni zi1 zi2 zi3

11 98 1 1 1
1 18 0 1 1
0 2 0 0 1

23 26 1 1 0
28 58 0 1 0

0 9 1 0 0
8 40 0 0 0
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Example 3.4: Bayesian probit model (2)
Model for Yi :

Yi ∼ Bin(ni , πi), π = Φ(z′iβ),

where zi = (1, zi1, zi2, zi3) and Φ(·) being the CDF of a

N(0, 1).

Prior on the parameter of interest β: β ∼ N(0, I/λ).

The posterior density of β is

f (β|y1, . . . , yn) ∝

(
N∏

i=1

Φ(z′iβ)yi · (1−Φ(z′iβ))ni−yi

)

· exp


−λ

2

3∑

j=0

β2
j




157



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Random-walk Metropolis with Examples

Example 3.4: Bayesian probit model (3)

Use the following “random walk Metropolis” algorithm.

Starting with any β(0) iterate for t = 1, 2, . . . :

1. Draw ε ∼ N(0,Σ) and set β = β(t−1) + ε.

2. Compute

α(β|β(t−1)) = min

{
1,

f (β|Y1, . . . , Yn)

f (β(t−1)|Y1, . . . , Yn)

}
.

3. With probability α(β|β(t−1)) set β(t) = β, otherwise set

β(t) = β(t−1).

(for the moment we use Σ = 0.08 · I, and λ = 10).

158



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Random-walk Metropolis with Examples

Example 3.4: Bayesian probit model (4)

Convergence of the β
(t)
j is to a distribution, not a value!
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Example 3.4: Bayesian probit model (5)

Convergence of cumulative averages
∑t
τ=1 β

(τ)
j /t is to a value.
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Example 3.4: Bayesian probit model (6)
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Example 3.4: Bayesian probit model (7)

Posterior mean 95% credible interval

intercept β0 -1.0952 -1.4646 -0.7333

planned β1 0.6201 0.2029 1.0413

risk factors β2 1.2000 0.7783 1.6296

antibiotics β3 -1.8993 -2.3636 -1.471

162



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Random-walk Metropolis with Examples

Choosing a good proposal distribution

Ideally: Markov chain with small correlations ρ(X(t−1),X(t)).

Yields fast exploration of the support of the target f .

Two sources for this correlation:

correlation between current state X(t−1) and newly proposed

value X ∼ q(·|X(t−1))

(can be reduced using a proposal with high variance),

correlation introduced by retaining a value X(t) = X(t−1)

because the proposal X has been rejected

(can be reduced using a proposal with small variance).

Trade-off for finding compromise between:

fast exploration of the space (good mixing behaviour),

obtaining a large probability of acceptance.

For multivariate distributions: covariance of proposal should

reflect the covariance structure of the target.
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Example: Choice of proposal (1)

Target distribution: N(0, 1) (i.e. f (·) = φ(0,1)(·)).

We want to use a random walk Metropolis algorithm with

ε ∼ N(0, σ2).

What is the optimal choice of σ2?

We consider four choices σ2 = 0.01, 1, 5, 100.
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Example 5.3: Choice of proposal (2)

σ2 = 0.01

σ2 = 1

σ2 = 5

σ2 = 100
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σ2 = 0.01

σ2 = 1

σ2 = 5

σ2 = 100
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Example 5.3: Choice of proposal (4)

Autocorrelation Probability of acceptance

ρ(X(t−1), X(t)) α(X,X(t−1))

Mean 95% CI Mean 95% CI

σ2 = 0.12 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)

σ2 = 1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)

σ2 = 2.382 0.6225 (0.6162,0.6289) 0.4426 (0.4401,0.4452)

σ2 = 102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Suggests: Optimal choice is σ2 = 2.382 = 5.66 > 1.
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Example 5.4: Bayesian probit model (revisited)

So far we used: Var(ε) = 0.08 · I.
Better choice: Let Var(ε) reflect the covariance structure

Frequentist asymptotic theory: Var(β̂m.l.e) = (Z′DZ)−1,

D is a suitable diagonal matrix.

Better choice: Var(ε) = 2 · (Z′DZ)−1.

Increases rate of acceptance from 13.9% to 20.0% and

reduces autocorrelation:
Σ = 0.08 · I β0 β1 β2 β3

Autocorrelation ρ(β
(t−1)
j , β

(t)
j ) 0.9496 0.9503 0.9562 0.9532

Σ = 2 · (Z′DZ)−1 β0 β1 β2 β3

Autocorrelation ρ(β
(t−1)
j , β

(t)
j ) 0.8726 0.8765 0.8741 0.8792

(In this example det(0.08 · I) = det(2 · (Z′DZ)−1).)
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Pathological Example: Reducible Metropolis–Hastings
Consider the target distribution

f (x) = (I[0,1](x) + I[2,3](x))/2.

and the proposal distribution q(·|x(t−1)):

X|X(t−1) = x (t−1) ∼ U[x (t−1) − δ, x (t−1) + δ]

x (t−1)

1/(2δ) q(·|x (t−1))

δδ

f (·)

1 2 3

1/2

Reducible if δ ≤ 1: the chain stays either in [0, 1] or [2, 3].
169



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Other Types of Proposal

The Metropolised Independence Sampler

Independent proposals: choose q(·|x) = q(·).

Algorithm 5.3 The Independence Sampler

Starting with X(0) := (X
(0)
1 , . . . , X

(0)
p ) iterate for t = 1, 2, . . .

1. Draw X ∼ q(·).

2. Compute

α(X|X(t−1)) = min

{
1,
f (X) · q(X(t−1))

f (X(t−1)) · q(X)

}
.

3. With probability α(X|X(t−1)) set X(t) = X, otherwise set

X(t) = X(t−1).
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Acceptance Rate

Proposition (Acceptance Rate of Independence Sampler)

If f (x)/q(x) ≤ M <∞ the acceptance rate of the independence

sampler is at least as high as that of the corresponding rejection

sampler.
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Gibbs Samplers Revisited

What about full conditionals as MH proposals?

For X = (X1, . . . , Xp):

Consider q(X|x(t−1)) = δ
x

(t−1)
−p

(X−p)fXp|X−p(Xp|X−p).

Remark

A Gibbs sampler step is a special case of the Metropolis–Hastings

algorithm.
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Finding the mode of a distribution

Our objective so far: estimate E(h(X)).

A new objective: estimate (global) mode(s) of a distribution:

{ξ : f (ξ) ≥ f (x) ∀x}

Näıvely: Choose the X(t) with maximal density f (X(t)).
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Example: Näıvely Finding The Mode of a Normal

Density
Consider f (x) = φ(x)

Use a Random Walk proposal X ∼ N(X(t−1), σ2) with

σ2 = 0.12, 1, 2.382, 102.

Run chains for various T , and pick for each:

Xmax = arg maxX∈(X(t))Tt=1
f (X)

N|σ2 0.12 1.02 2.382 102

10 0.906 0.091 0.609 0.623

100 0.315 0.020 -0.063 -0.033

100b -0.033 0.007 0.065 0.005

1000 0.001 0.001 -0.002 -0.002

1000b 0.015 0.001 -0.001 -0.001

This approach seems to work here. . .
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More Efficiently Finding the Mode

Idea: Transform distribution such that it is more

concentrated around the mode(s).

Consider

f(β)(x) ∝ (f (x))β

for very large values of β.

For β →∞ the distribution f(β)(·) will be concentrated on

the (global) modes.
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Example: Normal distribution (1)
Consider the N(µ, σ2) distribution with density

f(µ,σ2)(x) =
1√

2πσ2
exp

(
−

(x − µ)2

2σ2

)
∝ exp

(
−

(x − µ)2

2σ2

)
.

Mode of the N(µ, σ2) distribution is µ.

For increasing β the distribution is more and more

concentrated around its mode µ, as

(
f(µ,σ2)(x)

)β ∝
(

exp

(
−

(x − µ)2

2σ2

))β

= exp

(
−

(x − µ)2

2σ2/β

)
∝ f(µ,σ2/β)(x).

Increasing β corresponds to reducing the variance.
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Example: Normal distribution (2)

-2-2-2-2 -1-1-1-1 1111 000

0

0 222

2

2

4
6

8
10

12

xxxx

d
en

si
ty

φ(0,1)(x)
(
φ(0,1)(x)

)10 ∝ φ(0,1/10)(x)
(
φ(0,1)(x)

)100 ∝ φ(0,1/100)(x)
(
φ(0,1)(x)

)1000 ∝ φ(0,1/1000)(x)
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Another example

-2-2-2-2 -1-1-1-1 1111 0000 2222

f(x) (f(x))
3

(f(x))
9

(f(x))
27

xxxx
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Sampling from f(β)(·)
We can sample from f(β)(·) using a random walk Metropolis

algorithm.

Probability of acceptance becomes

min

{
1,

f(β)(X)

f(β)(X(t−1))

}
= min

{
1,

(
f (X)

f (X(t−1))

)β}
.

For β →∞ the probability of acceptance converges to. . .
1 if f (X) ≥ f (X(t−1)), and

0 if f (X) < f (X(t−1)).

For large β the chain (X(t))t converges to a local maximum

of f (·).

Whether the chain can escape from local maxima of the

density depends on whether it can reach the (global) mode

within a single step.
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Another Example

Assume we want to find the mode of

p(x) =





0.4 for x = 2

0.3 for x = 4

0.1 for x = 1, 3, 5.

using a random walk Metropolis

algorithm that can only move one to

the left or one to the right. 1 2 3 4 5

0.1

0.3

0.4

x

p(x)

For β →∞ the probability for accepting a move from 4 to 3

converges to 0, as p(4) > p(3), thus the chain cannot escape

from the local maximum at 4.
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Sampling from f(β)(·) is difficult

For large β the distribution f(β)(·) is increasingly

concentrated around its modes.

For large β sampling from f(β) gets increasingly difficult.

Remedy: Start with a small β0 and let βt slowly increase.

The sequence βt determines whether local extrema are

escaped.
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Simulated Annealing: Minimising an arbitrary function

More general objective: find global minima of a function

H : E → R+.

Idea: Consider a distribution

f (x) ∝ exp(−H(x)) for x ∈ E,

yielding

f(βt)(x) = (f (x))βt ∝ exp(−βt ·H(x)) for x ∈ E.

 back to the framework of the previous slides.

In this context βt is often referred to as inverse temperature.
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Simulated Annealing: Algorithm

Algorithm: Simulated Annealing

Starting with X(0) := (X
(0)
1 , . . . , X

(0)
p ) and β(0) > 0 iterate for

t = 1, 2, . . .

1. Increase βt−1 to βt .

2. Draw X ∼ q(·|X(t−1)).

3. Compute

α(X|X(t−1)) = min
{

1, exp
(
−βt

(
H((X)−H(X(t−1))

))
·

q(X(t−1)|X)

q(X|X(t−1))

}
.

4. With probability α(X|X(t−1)) set X(t) = X,

otherwise set X(t) = X(t−1). 184
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Annealing schedules

As before X(t) converges for βt →∞ to a local minimum of

H(·).

Convergence to a global minimum depends on annealing

schedule:

Logarithmic tempering βt = log(1+t)
β0

.

Good theoretical properties; practically

irrelevant.

Geometric tempering βt = αt · β0 for some α > 1 . Popular

choice, no theoretical convergence results.

In practice: expect simulated annealing to find a “good” local

minimum, but don’t expect it to find the global minimum!
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SA Example (1)
Minimise

H(x) =
(

(x − 1)2 − 1
)2

+ 3 · s(11.56 · x2)

with

s(x) =

{
|x | mod 2 for 2k ≤ |x | ≤ 2k + 1, k ∈ N0

2− |x | mod 2 for 2k + 1 ≤ |x | ≤ 2(k + 1), k ∈ N0

-1 1 3
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4
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8
10

x

H
(x
)
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SA Example (2)
0.
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A More Challenging Example

Consider:

f (x1, x2) =

exp(sin(50x1)) + sin(60 exp(x2))+

sin(70 sin(x1)) + sin(sin(80x2))−

sin(10(x1 + x2)) +
1

4
(x2

1 + x2
2 )

What is its minimum?
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This question was part of SIAM’s 2002 hundred-dollar,

hundred-digit challenge (SIAM News, Volume 35, Number 1).

It is on the assessment.

188



Motivation Gibbs Samplers Metropolis–Hastings Simulated Annealing

Optimisation of Arbitrary Functions

Summary of Part 3

Motivation

MCMC

Gibbs Samplers

Metropolis–Hastings-type Algorithms

Simulated Annealing
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Theoretical Considerations and Convergence Results



Theoretical Considerations Convergence Diagnostics Practical Considerations

Results for Gibbs Samplers

Irreducibility and recurrence of Gibbs Samplers

Proposition

If the joint distribution f (x1, . . . , xp) satisfies the positivity

condition, the Gibbs sampler yields an f -irreducible, recurrent

Markov chain.

Outline Proof

Given an X such that
∫
X f (x

(t)
1 , . . . , x

(t)
p )d(x

(t)
1 , . . . , x

(t)
p ) > 0.

∫

X
K(x(t−1), x(t))dx(t) =

∫

X
fX1|X−1

(x
(t)
1 |x

(t−1)
2 , . . . , x (t−1)

p )
︸ ︷︷ ︸

>0

· · ·

fXp |X−p(x (t)
p |x

(t)
1 , . . . , x

(t)
p−1)

︸ ︷︷ ︸
>0

dx(t)

192



Theoretical Considerations Convergence Diagnostics Practical Considerations

Results for Gibbs Samplers

Ergodic theorem

Theorem (Ergodicity of the Gibbs Sampler)

If the Markov chain generated by the Gibbs sampler is irreducible

and recurrent (which is e.g. the case when the positivity condition

holds), then for any integrable function ϕ : E → R

lim
n→∞

1

n

n∑

t=1

ϕ(X(t))
a.s.
= Ef (ϕ(X))

for almost every starting value X(0).

Thus we can approximate expectations Ef (ϕ(X)) by their

empirical counterparts using a single Markov chain.
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Results for Gibbs Samplers

A Simple Example
Consider (

X1

X2

)
∼ N2

((
µ1

µ2

)
,

(
σ2

1 σ12

σ12 σ2
2

))

Associated marginal distributions

X1 ∼ N(µ1, σ
2
1),

X2 ∼ N(µ2, σ
2
2)

Associated full conditionals

(X1|X2 = x2) ∼ N(µ1 + σ12/σ
2
2(x2 − µ2), σ2

1 − (σ12)2σ2
2)

(X2|X1 = x1) ∼ N(µ2 + σ12/σ
2
1(x1 − µ1), σ2

2 − (σ12)2σ2
1)

Gibbs sampler consists of iterating for t = 1, 2, . . .
1. Draw X

(t)
1 ∼ N(µ1 + σ12/σ

2
2(X

(t−1)
2 − µ2), σ2

1 − (σ12)2σ2
2).

2. Draw X
(t)
2 ∼ N(µ2 + σ12/σ

2
1(X

(t)
1 − µ1), σ2

2 − (σ12)2σ2
1).
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Results for Gibbs Samplers

Using the ergodic theorem we can estimate P(X1 ≥ 0, X2 ≥ 0) by

the proportion of samples (X
(t)
1 , X

(t)
2 ) with X

(t)
1 ≥ 0 and

X
(t)
2 ≥ 0:
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≥
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t

195



Theoretical Considerations Convergence Diagnostics Practical Considerations

Results for Metropolis–Hastings Algorithms

Theoretical properties of Metropolis–Hastings

The Markov chain (X(0),X(1), . . . ) is (strongly) irreducible if

q(x|x(t−1)) > 0 for all x, x(t−1) ∈ supp(f ).

(See, e.g., Roberts & Tweedie, 1996, for weaker conditions.)

Such a chain is recurrent if it is irreducible.

(See e.g., Tierney, 1994.)

The chain is aperiodic if there is positive probability that the

chain remains in the current state, i.e. P(X(t) = X(t−1)) > 0

(for a suitable group of “current states”).
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Results for Metropolis–Hastings Algorithms

Theorem (A Simple Ergodic Theorem)

If (Xi)i∈N is an f -irreducible, f -invariant, recurrent Rd -valued

Markov chain then the following strong law of large numbers

holds for any integrable function ϕ : Rd → R:

lim
t→∞

1

t

t∑

i=1

ϕ(Xi)
a.s.
=

∫
ϕ(x)f (x)dx.

for almost every starting value x .
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Results for Metropolis–Hastings Algorithms

Theorem (A Central Limit Theorem)

Under technical regularity conditions the following CLT holds for

a recurrent, f -invariant Markov chain, and a function ϕ : E → R
which has at least two finite moments:

lim
t→∞

√
t

[
1

t

t∑

i=1

ϕ(Xi)−
∫
ϕ(x)f (x)dx

]
D
= N

(
0, σ2(ϕ)

)
,

σ2(ϕ) = E
[
(f (X1)− ϕ̄)2

]
+ 2

∞∑

k=2

E [(ϕ(X1)− ϕ̄)(ϕ(Xk)− ϕ̄)] ,

where ϕ̄ =
∫
ϕ(x)f (x)dx .
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Scaling of Proposal Distributions

Optimal Scaling
Much effort has gone into determining optimal scaling rules:

Diffusion Limits Under strong assumptions:

lim
p→∞

X
(btpc)
1√
p

d−→ Diffusion

where p is dimension and the speed of the diffusion

depends upon proposal scale.

ESJD Seek to maximise:
∫
f (x)K(x, y ; θ)(y − x)2dxdy

Rule of Thumb Optimal RWM Scaling depends upon dimension:

p = 1 Acceptance rate of around 0.44.

p ≥ 5 Acceptance rate of around 0.234.
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Motivation: The Need for Convergece Diagnostics

The need for convergence diagnostics

Theory guarantees (under certain conditions) the

convergence of the Markov chain X(t) to the desired

distribution.

This does not imply that a finite sample from such a chain

yields a good approximation to the target distribution.

Validity of the approximation must be confirmed in practice.

Convergence diagnostics help answering this question.

Convergence diagnostics are not perfect and should be

treated with a good amount of scepticism.
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Motivation: The Need for Convergece Diagnostics

Different diagnostic tasks

Convergence to the target distribution Does X(t) yield a sample

from the target distribution?

Has reached (X(t))t a stationary regime?

Does (X(t))t cover the support of the target

distribution?

Convergence of averages Is
∑T
t=1 ϕ(X(t))/T ≈ Ef (ϕ(X))?

Comparison to i.i.d. sampling How much information is

contained in the sample from the Markov chain

compared to an i.i.d. sample?
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Motivation: The Need for Convergece Diagnostics

Pathological example 1: potentially slowly mixing
Gibbs sampler from a bivariate Gaussian with correlation

ρ(X1, X2)

ρ(X1, X2) = 0.3
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ρ(X1, X2) = 0.99
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For correlations ρ(X1, X2) close to ±1 the chain mixes poorly.
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Motivation: The Need for Convergece Diagnostics

Pathological example 2: no central limit theorem

The following MCMC algorithm has the Beta(α, 1) distribution as

stationary distribution:

Starting with any X(0) iterate for t = 1, 2, . . .

1. With probability 1−X(t−1), set X(t) = X(t−1).

2. Otherwise draw X(t) ∼ Beta(α+ 1, 1).

Markov chain converges very slowly (no central limit theorem

applies).
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Motivation: The Need for Convergece Diagnostics

Pathological example 3: nearly reducible chain
Metropolis–Hastings sample from a mixture of two well-separated

Gaussians, i.e. the target is

f (x) = 0.4 · φ(−1,0.22)(x) + 0.6 · φ(2,0.32)(x).

If the variance of the proposal is too small, the chain cannot

move from one population to the other.
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Elementary Techniques for Assessing Convergence

Basic plots

Plot the sample paths (X
(t)
j )t .

should be oscillating very fast and show very little structure.

Plot the cumulative averages (
∑t
τ=1 ϕ(X

(τ)
j )/t)t .

should be converging to a value.

Only very obvious problems visible in these plots.

Difficult to assess multivariate distributions from univariate

projections.
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Elementary Techniques for Assessing Convergence

Plots for pathological example 1 (ρ(X1, X2) = 0.3)
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Looks OK.
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Elementary Techniques for Assessing Convergence

Plots for pathological example 1 (ρ(X1, X2) = 0.99)
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Slow mixing speed can be detected.
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Elementary Techniques for Assessing Convergence

Plots for pathological example 2
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Slow convergence of the mean can be detected.
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Elementary Techniques for Assessing Convergence

Plots for pathological example 3
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We cannot detect that the sample only covers one part of the

distribution.

(“you’ve only seen where you’ve been”)
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Further Convergence Diagnostics

Comparing multiple chains
Compare L > 1 chains (X(1,t))t , . . . , (X(L,t))t .

Initialised using overdispersed values X(1,0), . . . ,X(L,0).

Idea: Variance and range of each chain (X(l ,t))t should equal

the range and variance of all chains pooled together.

Compare basic plots for the different chains.
Quantitative measure:

Compute distance δ
(l)
α between α and (1− α) quantile of

(X
(l ,t)
k )t .

Compute distance δ
(·)
α between α and (1− α) quantile of the

pooled data.

The ratio Ŝinterval
α =

∑L
l=1 δ

(l)
α /L

δ
(·)
α

should be around 1.

Alternative: compare variance within each chain with the

pooled variance estimate.

Choosing suitable initial values X(1,0), . . . ,X(L,0) difficult.
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Further Convergence Diagnostics

Comparing multiple chains plots for pathological

example 3
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Ŝinterval
α = 0.2703� 1; we can detect that the sample only

covers one part of the distribution.
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Further Convergence Diagnostics

Comparing multiple chains: A warning
Consider the Witch’s hat distribution:

f (x1, x2) ∝
{

(1− δ)φ(µ,σ2·I)(x1, x2) + δ if x1, x2 ∈ (0, 1)

0 otherwise.

Assume we want to estimate P(0.49 < X1, X2 ≤ 0.51) for

δ = 10−3, µ = (0.5, 0.5)′, and σ = 10−5.

x

y

dens

213



Theoretical Considerations Convergence Diagnostics Practical Considerations

Further Convergence Diagnostics

Comparing multiple chains: A warning (II)
We can use a Gibbs sampler. Conditional distribution:

f (x1|x2) ∝
{

(1− δ)φ(µ,σ2·I)(x1, x2) + δ for x1 ∈ (0, 1)

0 otherwise.

But on average only 0.04% of the sampled values lie in

(0.49, 0.51)× (0.49, 0.51) yielding an estimate of:

P̂(0.49 < X1, X2 ≤ 0.51) = 0.0004.

It is close to impossible to detect this problem with any

technique based on multiple initialisations.
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Further Convergence Diagnostics

Riemann sums and control variates
Consider order statistic X[1] ≤ · · · ≤ X[T ].

Provided (X[t])t = 1 . . . , T covers the support of the target,

the Riemann sum

T∑

t=2

(X[t] −X[t−1])f (X[t])

converges to ∫
f (x)dx = 1.

Thus if
∑T
t=2(X[t] −X[t−1])f (X[t])� 1, the Markov chain

has failed to explore all the support of the target.

Requires that target density f is available inclusive of

normalisation constants.

Only effective in 1D.
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Further Convergence Diagnostics

Riemann sums for pathological example 3

For the chain stuck in the population with mean 2 we obtain

T∑

t=2

(X[t] −X[t−1])f (X[t]) = 0.598� 1,

so we can detect that we have not explored the whole distribution.
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Further Convergence Diagnostics

Effective sample size
MCMC algorithms yield a positively correlated sample

(X(t))t=1,...,T .

How much less useful is an MCMC sample of size T than an

i.i.d. sample of size T?

Approximate (ϕ(X(t)))t=1,...,T by an AR(1) process, i.e.:

ρ(ϕ(X(t)), ϕ(X(t+τ))) = ρ|τ |.

Variance of the estimator is

Var

(
1

T

T∑

t=1

ϕ(X(t))

)
≈

1 + ρ

1− ρ ·
1

T
Var

(
ϕ(X(t))

)

Same variance as an i.i.d. sample of the size T ·
1− ρ
1 + ρ

.

Thus define T ·
1− ρ
1 + ρ

as effective sample size.
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Further Convergence Diagnostics

Effective sample for pathological example 1

Rapidly mixing chain

(ρ(X1, X2) = 0.3)

10,000 samples

MCMC sampleX
(t)
1

f̂X1
(x1)

ρ(X
(t−1)
1 , X

(t)
1 ) = 0.078

ESS for estimating Ef (X1) is

8,547.

Slowly mixing chain

(ρ(X1, X2) = 0.99)

10,000 samples

MCMC sampleX
(t)
1

f̂X1
(x1)

ρ(X
(t−1)
1 , X

(t)
1 ) = 0.979

ESS for estimating Ef (X1) is

105.
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Further Convergence Diagnostics

What Else Can We Do?

1 More sophisticated convergence diagnostics:

Geweke’s method based on spectral analysis

Raftery’s binary-chain method
...

2 Theoretical Computations

Convergence rates

Mixing times

Confidence intervals

3 Perfect Simulation

Processes with “ordered transitions”.

Certain spatial processes.
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Theoretical Considerations Convergence Diagnostics Practical Considerations

Where do we start?
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RWM Traces.

Target:

f (x) = e−|x |/5/10

Starting values:

X(1) = 0

X(1) = 10

X(1) = 100

X(1) = 1, 000
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Practical considerations: Burn-in period
Theory (ergodic theorems) allows for the use of the entire

chain (X(0),X(1), . . . ).

However distribution of (X(t)) for small t might still be far

from the stationary distribution f .

Can be beneficial to discard the first iterations X(t),

t = 1, . . . , T0 (burn-in period).

Optimal T0 depends on mixing properties of the chain.
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Reducing Correlation

Practical considerations: Multiple Starts?

Should we use “multiple overdispersed initialisations”?

Advantages:

Exploring different parts of the space.

May be useful for assessing convergence.

Trivial to parallelize.

Disadvantages:

We need to specify many starting values.

What does overdispersed mean, anyway?

Every chain needs to reach stationarity.

Multiple burn-in periods may be expensive.
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Reducing Correlation

One Chain vs. Many: 1000 or 10× 100
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Reducing Correlation

One Chain vs. Many: 10, 000 or 10× 1000
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Reducing Correlation

One Chain vs. Many: 100, 000 or 10× 10, 000
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Reducing Correlation

Practical considerations: Thinning (1)

MCMC methods typically yield positively correlated chain:

ρ(X(t),X(t+τ)) large for small τ .

Idea: keeping only every m-th value: (Y(t))t=1,...,bT/mc with

Y(t) = X(m·t) instead of (X(t))t=1,...,T (thinning).

(Y(t))t exhibits less autocorrelation than (X(t))t , i.e.

ρ(Y(t),Y(t+τ)) = ρ(X(t),X(t+m·τ)) < ρ(X(t),X(t+τ)),

if the correlation ρ(X(t),X(t+τ)) decreases monotonically in

τ .

Price: length of (Y(t))t=1,...,bT/mc is only (1/m)-th of the

length of (X(t))t=1,...,T .
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Reducing Correlation

Practical considerations: Thinning (2)

If X(t) ∼ f and corresponding variances exist,

Var

(
1

T

T∑

t=1

ϕ(X(t))

)
≤ Var


 1

bT/mc

bT/mc∑

t=1

ϕ(Y(t))


 ,

i.e. thinning cannot be justified when objective is estimating

Ef (ϕ(X)).

Thinning can be a useful concept

if computer has insufficient memory.

for convergence diagnostics: (Y(t))t=1,...,bT/mc is closer to an

i.i.d. sample than (X(t))t=1,...,T .
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Augmentation

“Making the space bigger to make the problem easier.”

To target a distribution fX(x):

Construct some fX,Z(x , z) on X ⊗ Z
such that

fX(x) =

∫

Z
fX,Z(x , z)dz

and fX,Z is easy to sample from (when fX is not).

Versatile technique with many applications.
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

A Generic Augmentation Scheme

Given any density f (x), define

f (x, u) := f (x) · fU|X(u|x)

with

fU|X(u|x) =
1

f (x)
I[0,f (x)](u)

Then

f (x, u) = I[0,f (x)](u).
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

Rejection Sampling Revisited

Proposition (Rejection Sampling Equivalence)

Given f (x), define

f (x, u) = I[0,f (x)](u).

Given proposal g(x) and M ≥ supx f (x)/g(x), define

g(x, u) =
1

M
I[0,M·g(x)](u).

Let w(x, u) = f (x, u)/g(x, u)

The associated self-normalised importance sampling

estimator of Ef [ϕ(X)] is the rejection sampling estimator.
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)

f (x)

Sample uniformly and weight. . .
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Slice sampling

Slice Sampling

Rejection sampling can be viewed as importance sampling

with an extended target distribution. . .

so can we apply other algorithms to that extended

distribution?

Algorithm: The Slice Sampler

Starting with (X(0), U(0)) iterate for t = 1, 2, . . .

1 Draw X(t) ∼ fX|U(·|U(t−1)).

2 Draw U(t) ∼ fU|X(·|X(t)).
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

An Illustration of the Conditional Distributions

x

(x, u)

f(x)

U
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Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

A Slice-Sampler Trajectory

0.2 0.4 0.6 0.8

0.
0

0.0

0.
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1.
0

1.0

1.
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2.
0

X(t)

U
(t
)

Example: Sampling from a Beta(3, 5) distribution
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Slice sampling

How Practical Is This?

Sampling U ∼ U[0, f (X)] is easy.

Sampling X ∼ U(L(U)) where

L(u) := {x : f (x) ≥ u}

can be easy. . .

but it might not be.

Consider the bivariate density:

f2(x1, x2) = c1 ·sin2(x1 ·x2)·cos2(x1 +x2)·exp(−
1

2
(|x1|+|x2|)).
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Slice sampling

The Trouble with Slice Sampling
Level sets of:

f2(x1, x2) = c1 · sin2(x1 · x2) · cos2(x1 + x2) · exp(−
1

2
(|x1|+ |x2|)).
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Slice sampling

Algorithm: The Co-ordinate-wise Slice Sampler

Starting with (X
(0)
1 , . . . , X

(0)
p , U(0)) iterate for t = 1, 2, . . .

1. Draw X
(t)
1 ∼ fX1|X−1,U(·|X(t−1)

−1 , U(t−1)).

2. Draw X
(t)
2 ∼ fX2|X−2,U(·|X(t)

1 , X
(t−1)
3 , . . . , X

(t−1)
p , U(t−1)).

...

p. Draw X
(t)
p ∼ fXp|X−p,U(·|X(t)

−p , U
(t−1)).

p+1. Draw U(t) ∼ fU|X(·|X(t)).

240



Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Slice sampling

Algorithm: The Metropolised Slice Sampler

Starting with (X(0), U(0)) iterate for t = 1, 2, . . .

1. Draw X ∼ q(·|X(t−1), U(t−1)).

2. With probability

min

(
1,

f (X, U(t−1))q(X(t−1)|X, U(t−1))

f (X(t−1), U(t−1))q(X|X(t−1), U(t−1))

)

accept and set X(t) = X.

Otherwise, set X(t) = X(t−1).

2. Draw U(t) ∼ fU|X(·|X(t)).
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Data Augmentation

Data Augmentation I

Latent variable models are common: statistical models with:

parameters θ,

observations y , and

latent variables, z .

Typically, the joint distribution, fY ,Z,θ, is known,

but integrating out the latent variables to get fY ,θ is not

feasible.

Without fY ,θ we can’t implement an MCMC algorithm

targeting fθ|Y .

The basis of data augmentation is to augment θ with z and

to run an MCMC algorithm which targets fθ,Z|Y .

This distribution has the correct marginal in θ.
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Data Augmentation

Data Augmentation and Gibbs Samplers

Gibbs sampling is only feasible when we can sample easily

from the full conditionals.

A technique that can help achieving full conditionals that are

easy to sample from is demarginalisation:

Introduce a set of auxiliary random variables Z1, . . . , Zr such

that f is the marginal density of (X1, . . . , Xp, Z1, . . . , Zr ),

i.e.

f (x1, . . . , xp) =

∫
f (x1, . . . , xp, z1, . . . , zr ) d(z1, . . . , zr ).

In many cases there is a “natural choice” of the completion

(Z1, . . . , Zr ).
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Data Augmentation

Example: Mixture of Gaussians — Model
Consider the following K population mixture model for data

Y1, . . . , Yn:

f (yi) =

K∑

k=1

πkφ(µk ,1/τ)(yi)

-2 -1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5
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mixture
population 1
population 2
population 3

Objective: Bayesian inference for (π1, . . . , πK , µ1, . . . , µK).
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Data Augmentation

Example: Mixture of Gaussians — Priors

The number of components K is assumed to be known.

The precision parameter τ is assumed to be known.

(π1, . . . , πK) ∼ Dirichlet(α1, . . . , αK), i.e.

f(α1,...,αK)(π1, . . . , πK) =
Γ(
∑K
k=1 αk)

∏K
k=1 Γ(αk)

K∏

k=1

παk−1
k .

(µ1, . . . , µK) ∼ N(µ0, 1/τ0), i.e.

f(µ0,τ0)(µk) ∝ exp
(
−τ0(µk − µ0)2/2

)
.

245



Augmentation Sequential Monte Carlo Gradient-based methods Other directions

Data Augmentation

Example: Mixture of Gaussians — Joint distribution

f (µ1, . . . , µK , π1, . . . , πK , y1, . . . , yn) ∝

(
K∏

k=1

παk−1
k

)
·

(
K∏

k=1

exp
(
−τ0(µk − µ0)2/2

)
)
·

(
n∏

i=1

K∑

k=1

πk exp
(
−τ(yi − µk)2/2

)
)
.

The full conditionals do not seem to come from “nice”

distributions.

Use data augmentation: include auxiliary variables Z1, . . . Zn
which indicate which population the i-th individual is from, i.e.

P(Zi = k) = πk and Yi |Zi = k ∼ N(µk , 1/τ).

The marginal distribution of Y is as before, so Z1, . . . Zn are

indeed a completion.
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Data Augmentation

Example: Mixture of Gaussians — Joint distribution

The joint distribution of the augmented system is

f (y1, . . . , yn, z1, . . . , zn, µ1, . . . , µK , π1, . . . , πK)

∝

(
K∏

k=1

παk−1
k

)
·

(
K∏

k=1

exp
(
−τ0(µk − µ0)2/2

)
)

·

(
n∏

i=1

πzi exp
(
−τ(yi − µzi )

2/2
)
)
.

The full conditionals now come from “nice” distributions.
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Data Augmentation

Example: Mixture of Gaussians — Full conditionals

P(Zi = k |Y1, . . . , Yn, µ1, . . . , µK , π1, . . . , πK)

=
πkφ(µk ,1/τ)(yi)∑K
ι=1 πιφ(µι,1/τ)(yi)

,

µk |Y1, . . . , Yn, Z1, . . . , Zn, π1, . . . , πK

∼ N

(
τ
(∑

i : Zi=k
Yi
)

+ τoµ0

|{i : Zi = k}|τ + τ0
,

1

|{i : Zi = k}|τ + τ0

)
,

π1, . . . , πK |Y1, . . . , Yn, Z1, . . . , Zn, µ1, . . . , µK

∼ Dirichlet (α1 + |{i : Zi = 1}|, . . . , αK + |{i : Zi = K}|) .
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Data Augmentation

Example: Mixture of Gaussians — Gibbs sampler
Starting with initial values µ

(0)
1 , . . . , µ

(0)
K , π

(0)
1 , . . . , π

(0)
K iterate for t = 1, 2, . . .

1. For i = 1, . . . , n:

Draw Z
(t)
i from the discrete distribution on {1, . . . , K}

P(Z
(t)
i = k |Y1, . . . , Yn, µ

(t−1)
1 , . . . , µ

(t−1)
K , π

(t−1)
1 , . . . , π

(t−1)
K ) =

πkφ(µ
(t−1)
k ,1/τ)

(yi)
∑K

ι=1 π
(t−1)
ι φ

(µ
(t−1)
ι ,1/τ)

(yi)
.

2. For k = 1, . . . , K:

Draw µ
(t)
k ∼

N



τ
(∑

i : Z
(t)
i =k

Yi

)
+ τoµ0

|{i : Z
(t)
i = k}|τ + τ0

,
1

|{i : Z
(t)
i = k}|τ + τ0


 .

3. Draw

(π
(t)
1 , . . . , π

(t)
K ) ∼ Dirichlet

(
α1 + |{i : Z(t)

i = 1}|, . . . , αK + |{i : Z
(t)
i = K}|

)
.
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ABC and pseudo-marginal methods

Towards approximate Bayesian computation

Consider a target distribution π(θ|y) written as:

π(θ|y) =
f (y |θ)p(θ)

p(y)
.

If both p(θ) and f (y |θ) can be evaluated we’re done.

If we cannot evaluate f (y |·) even pointwise, then we can’t

directly use the techniques which we’ve described previously.

Consider the case in which y is discrete.

We can invoke a clever data augmentation trick which

requires only that we can sample from f (·|θ).
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ABC and pseudo-marginal methods

We can define an extended distribution:

π(θ, u|y) ∝ f (u|θ)p(θ)δy,u

and note that it has, as a marginal distribution, our target:

∑

u

π(θ, u|y) ∝
∑

u

f (u|θ)p(θ)δy,u = f (y |θ)p(θ).

We can sample (θ, u) ∼ f (u|θ)p(θ) and use this as a

rejection sampling proposal for our target distribution,

keeping samples with probability proportional to

π(θ, u|y)

f (u|θ)p(θ)
∝ δy,u.
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ABC and pseudo-marginal methods

Approximate Bayesian Computation
When data is not discrete / takes many values, exact

matches have no or negligible probability.

Instead, we keep samples for which ||u − y || ≤ ε.
This leads to a different target distribution:

πABC
θ,u|y (θ, y |u) ∝ f (u|θ)p(θ)IB(y,ε)(u),

where B(y , ε) := {u : |u − y | ≤ ε}, so

πABC
θ|y ∝

∫
f (u|θ)p(θ)IB(y,ε)(u)du

∝p(θ)

∫
f (u|θ)IB(y,ε)(u)du

∝p(θ)

∫

u∈B(y,ε)

f (u|θ)du.

This approximation amounts to a smoothing of the likelihood.
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ABC and pseudo-marginal methods

Even More Approximate Bayesian Computation

Often a further approximation is introduced by considering

not the data itself but some low dimensional summary of the

data: This leads to a different target distribution:

πABC
θ,u|y (θ, u|y) ∝ f (u|θ)p(θ)IB(s(y),ε)(s(u)).

Unless the summary is a sufficient statistic (which it probably

isn’t) this introduces a difficult to understand approximation.

Be very careful.
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ABC and pseudo-marginal methods

Exact-approximate methods
Suppose that, for any θ, it is possible to compute an

unbiased estimate f̂ (y |θ) of f (y |θ). Then...

1 Using the acceptance probability

α
(
θ(i), θ∗

)
= min

{
1,

f̂ (y |θ∗)p(θ∗)q(θ(i)|θ∗)
f̂ (y |θ(i))p(θ(i))q(θ∗|θ(i))

}

yields an MCMC algorithm with target distibution π (θ|y).
2 Using the weight

w (i) =
f̂ (y |θ(i))p(θ(i))

q(θ(i))

yields an importance sampling algorithm with target

distribution π (θ|y).
Beaumont (2003), Andrieu and Roberts (2009), Fearnhead et al. (2010).
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ABC and pseudo-marginal methods

Why is this true?
Write down the joint distrubution of all of the variables that

are being used

f̂ (y |θ, u)p(u|θ)p(θ)

where u are the random variables used to generate the

estimate f̂ .

An algorithm that simulates from π(θ, u|y) has the correct

marginal
∫

u

π(θ, u|y)du ∝
∫

u

f̂ (y |θ, u)p(u|θ)p(θ)du

= p(θ)

∫

u

f̂ (y |θ, u)p(u|θ)du

= p(θ)f (y |θ)

∝ π (θ|y) .
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ABC and pseudo-marginal methods

Why is this true?

Using q
(

(θ∗, u∗) |
(
θ(i), u(i)

))
= q(θ∗|θ(i))p(u∗|θ∗) as a

proposal within a Metropolis-Hastings algorithm yields the

desired acceptance probability.

min

{
1,

f̂ (y |θ∗, u∗)p(u∗|θ∗)p(θ∗)

f̂ (y |θ(i), u(i))p(u(i)|θ(i))p(θ(i))

q(θ(i)|θ∗)p(u(i)|θ(i))

q(θ∗|θ(i))p(u∗|θ∗)

}

= min

{
1,

f̂ (y |θ∗, u∗)p(θ∗)

f̂ (y |θ(i), u(i))p(θ(i))

q(θ(i)|θ∗)
q(θ∗|θ(i))

}
.

A similar extended space representation may be used in

importance sampling.
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Returning to importance sampling

Returning to importance sampling

Recall the self-normalised importance sampling estimate of

Eπ[θ]
N∑

i=1

θ(i) w̃ (i)

∑N
j=1 w̃

(j)

where

w (i) = w̃
(
θ(i)
)

=
p(θ(i))f (y |θ(i))

q(θ(i))

and
{
θ(i)
}N
i=1

are independent points simulated from q(θ).

The variance of these estimators depends on the “distance”

between π and q.

To control the variance of the estimates, we should choose q

to have heavier tails than π.
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Returning to importance sampling

Returning to importance sampling

Compared to MCMC:

a bit simpler

obtain estimates of the marginal likelihood, where MCMC

doesn’t

the proposal is our only way of exploring the space - we

cannot use local moves as in MCMC.
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Returning to importance sampling

Improving IS

Can we improve on the weaknesses of IS?

can we construct a q that is close to π?

Idea:

introduce intermediate distributions between q and π, and

perform importance sampling sequentially.

What are ”intermediate” distributions?

One idea is to use tempering of the likelihood. Choose

πt (θ | y) = p (θ) f (y | θ)γt

for 0 = γ0 ≤ γ1 ≤ ... ≤ γT .
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Sequential importance sampling

A sequential importance sampling approach

Suppose we draw points from π0 = q, the original proposal

we used in IS.

Then use IS with proposal π0 and target π1:

weight the points using unnormalized weights π1(θ1)
π0(θ1) .

We then wish to somehow use these weighted points to help

us sample from π2.

Suppose we just use them directly:

there is no gain, since nothing changes that they are simply

sampled from q!
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Sequential importance sampling

A sequential importance sampling approach
Suppose we move them a little:

for each point, use a ”kernel” K (· | θ1) centered at the

current point.

For initial point θ1, we simulate θ2 ∼ K (· | θ1).

Then use θ2 points as proposals in an importance sampler.

What is the distribution of these points?
∫

θ1

π0 (θ1)K (θ2 | θ1) dθ1

Therefore our importance weight is

π2 (θ2)∫
θ1
π0 (θ1)K (θ2 | θ1) dθ1
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Sequential importance sampling

Problem and solution
In general, we cannot analytically evaluate∫

θ1

π0 (θ1)K (θ2 | θ1) dθ1

What can we do?

We cannot marginalize over θ1, but we can evaluate the joint

distribution of the proposal

π0 (θ1)K (θ2 | θ1)

as long as K is chosen such that we can!

Can we set up an importance sampler on some joint

distribution on θ1 and θ2, that has marginal π2?
Yes, easily!

use π2 (θ2)L (θ1 | θ2), where L is any normalized distribution

on θ1 given θ2.
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Sequential importance sampling

Constructing an SMC sampler

Simulate θ1 ∼ π0.

Simulate θ2 ∼ K (· | θ1).

Find unnormalized weight

π2 (θ2)L (θ1 | θ2)

π0 (θ1)K (θ2 | θ1)
.

Using self-normalising IS with points weighted in this way

allows us to estimate expectations with respect to π2 since

we have correctly weighted points from the joint

π2 (θ2)L (θ1 | θ2).

Note that so far, to keep the notation simple, we are simply

seeing the procedure for a single point as in standard IS; we

will repeat this N times.
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Sequential importance sampling

Constructing an SMC sampler

We would like to implement the approach sequentially, so
that:

at step 1, we have weighted points from π1,

at step 2, we have weighted points from π2,

etc.

Use the following approach:

Simulate θ0 ∼ π0.

Find unnormalized weight

w1 =
π1 (θ1)

π0 (θ1)
.
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Sequential importance sampling

Constructing an SMC sampler

Simulate θ2 ∼ K (· | θ1).

At step 2, we would like to use a weight “update” that is

written in terms of the weight from the previous step:

w2 =
π2 (θ2)L (θ1 | θ2)

π0 (θ1)K (θ2 | θ1)

=
π1 (θ1)

π0 (θ1)

π2 (θ2)

π1 (θ1)

L (θ1 | θ2)

K (θ2 | θ1)

= w1
π2 (θ2)

π1 (θ1)

L (θ1 | θ2)

K (θ2 | θ1)
.
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Sequential importance sampling

Constructing an SMC sampler

In general, we have the following steps:

Simulate θt ∼ Kt (· | θt−1).

Use a weight “update” that is written in terms of the weight

from the previous step

wt = wt−1
πt (θt)

πt−1 (θt−1)

Lt−1 (θt−1 | θt)
Kt (θt | θt−1)

.
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Sequential importance sampling

How to choose K and L?

K and L can be chosen however we like, and the algorithm is

still valid.

However, some choices are better than others:

we want to choose Kt such that it helps us explore the

posterior,

a useful way of generating new points will help us explore the

posterior and give an advantage over importance sampling.

One idea:

choose Kt to be an MCMC kernel with stationary distribution

πt .
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Sequential importance sampling

How to choose K and L?

How should we choose L?

this will affect the variance of the estimates we get from the

algorithm.

If Kt is an MCMC kernel and πt is not too far from πt+1 for

all t, then choosing Lt−1 to be the time reversal of Kt
results in low variance estimates, i.e., choose Lt−1 such that

πt (θt−1)Kt (θt | θt−1) = πt (θt)Lt−1 (θt−1 | θt) .
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Sequential importance sampling

SMC sampler with MCMC moves

This results in the weight update

wt = wt−1
πt (θt)

πt−1 (θt−1)

Lt−1 (θt−1 | θt)
Kt (θt | θt−1)

= wt−1
πt (θt−1)

πt−1 (θt−1)
.
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Resampling

Missing detail

There is a key detail missing that will prevent this from being

a successful algorithm.

The fact that we have written this sequentially has obscured

the fact that we are simply sequentially constructing an

importance sampler that is on the space of, at iteration t, t

copies of θ.

The target is πt (θt)Lt−1 (θt−1 | θt) ...L1 (θ1 | θ2).

The proposal is π0 (θ1)K2 (θ2 | θ1) ...Kt (θt | θt−1).
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Resampling

IS on path space

This is an importance sampler on (potentially) a very
high-dimensional space:

each particle is actually a representation of the entire path

that the particle has taken through the steps of the method,

we have a fixed number of particles, and we are trying to

represent a space of increasing size,

we cannot hope to have a good representation of such a

high-dimensional space,

it will be a disaster!

What can we do about this?

Idea:

although we are performing IS on the path space, we only

need to have a good representation of the marginal

distribution of θt .
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Resampling

Resampling to the rescue
The idea is to resample from the population of particles
according to their weights:

suppose we have N particles,

sample N times from a multinomial distribution with N states,

this gives the indices of particles we will keep in our resampled

population of particles.

Some particles will die, and we will get duplicates of others.

Assign all resampled particles a weight of 1/N.

Negative effects:

we become degenerate (have only one particle representing)

states early in the path (although this doesn’t matter, since

we no longer care about the marginal distribution at these

states),

the variance of estimates based on our resampled particles

will be more than before we did resampling.
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Resampling

Resampling to the rescue

Positive effect:

we concentrate our particles on the regions of mass of πt ,

these particles will provide much better proposals for πt+1.

This turns out to be crucial!

the introduction of the resampling step was the key idea in

the original particle filter of Gordon et al. (1993).
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Resampling

SMC review

We explore the target using a population of particles, a

sequence of distributions and kernels that move us around

the space.

Using a population of particles has something in common

with using multiple MCMC chains.

Using a sequence of distributions reduces the responsibility of

choosing a good importance sampling proposal.

The kernels can potential use local moves, which allow us to

scale to higher dimensions than importance sampling.

A major advantage is that it is relatively easy to
automatically adapt the algorithm as it is running:

the sequence of distributions;

parameters of the kernels (including the scale of proposals).
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MALA

The Metropolis-Adjusted Langevin Algorithm

Based on the Langevin diffusion:

dXt = −
1

2
∇ log(f (Xt))dt + dBt

which is f -invariant in continuous time.

Given target f the MALA proposal mechanism samples:

X← X(t−1) + ε

ε ∼ N

(
−
σ2

2
∇ log f (X(t−1)), σ2Ip

)

at time t.

Accepts X with the usual MH acceptance probability.
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MALA

The Metropolis-Adjusted Langevin Algorithm
Based on the Langevin diffusion:

dXt =
1

2
∇ log(f (Xt))dt + dBt

which is f -invariant in continuous time.

Given target f the MALA proposal proposes:

X← X(t−1) + ε

ε ∼ N

(
σ2

2
∇ log f (X(t−1)), σ2Ip

)

at time t.

Accepts X with the usual MH acceptance probability.

Optimal acceptance rate (under similar strong conditions)

now 0.574.
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MALA

MALA Example: Normal (1)
Target f (x) = N(0, 1)

Proposal

q(X(t−1), X) = N

(
X(t−1) −

σ2X(t−1)

2
, σ2

)

Acceptance Probability

α(X(t−1), X) = 1 ∧
f (X)

f (X(t−1))

q(X,X(t−1))

q(X(t−1), X)

= 1 ∧ exp

(
1

2

[
(X(t−1))2 −X2

])
×

exp

(
1

2σ2

[{
X − µ(X(t−1))

}2
−
{
X(t−1) − µ(X)

}2
])

where µ(x) := x − xσ2

2 .
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MALA
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MALA
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MALA
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MALA

MALA Example: Normal (2)

RWM Autocorrelation Probability of acceptance ESJD

ρ(X(t−1), X(t)) α(X,X(t−1))

σ2 = 0.12 0.9901 0.9694 0.010

σ2 = 1 0.7733 0.7038 0.448

σ2 = 2.382 0.6225 0.4426 0.742

σ2 = 102 0.8360 0.1255 0.337

MALA Autocorrelation Probability of acceptance ESJD

ρ(X(t−1), X(t)) α(X,X(t−1))

σ2 = 0.52 0.898 0.877 0.246

σ2 = 1 0.492 0.961 1.293

σ2 = 1.52 0.047 0.774 2.137

σ2 = 2.02 0.011 0.631 4.119
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HMC

Scaling with dimension

The number of iterations we must run the following

algorithms to obtain one effectively independent point is, as

a function of the size of the parameter space d :

O (d) for random walk Metropolis-Hastings, which gives an

overall computational cost of O
(
d2
)

;

O
(
d1/3

)
for the Metropolis-adjusted Langevin algorithm,

which gives an overall computational cost of O
(
d4/3

)
.
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HMC

Hamiltonian / Hybrid Monte Carlo

Mimics a conservative physical system by introducing

momentum.

Approximate continuous measure-preserving flow using

(symplectic) numerical integration.

Use Metropolis–Hastings accept/reject correction.

Can mix much faster than random walk algorithms.

Difficulties with multi-modal targets and can be expensive.

c.f. Neal (2011) MCMC using Hamiltonian dynamics. In Brooks

et al., 113–162. [Brooks, Gelman, Jones, and Meng (eds.)

(2011) Handbook of Markov Chain Monte Carlo. CRC Press.]
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HMC

Constructing a proposal: dynamics of a ball

For random walk, we found that we needed to decrease the

proposal variance as the dimension increased.

We would like to have proposals that move a long way, but
still have a good probability of acceptance

we need a proposal that follows the mass of the distribution.

Think of the negative log of the target distribution, and
consider the idea of setting a ball rolling around this surface

someone with a background in physics could describe the

dynamics of this ball.

Idea:

give the ball a push in a random direction

follow the dynamics of the ball for a while

use this as the proposal.
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HMC

Hamiltonian dynamics
Hamiltonian mechanics is an abstract formulation of classical

mechanics (i.e. equations of motion, etc).

It describes a system involving two time-evolving vectors θ

and v , each of dimension d .

The “Hamiltonian” H (θ, v) describes the time evolution of

the system, through Hamilton’s equations

dθi
dt

=
∂H

∂vi

dvi
dt

= −
∂H

∂θi

for i = 1, ..., d .

Note that physicists would be very annoyed by the notation

here, where the vectors are called q and p instead of θ and v .

This is very abstract

what do these equations mean?
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HMC

Hamiltonian dynamics: total energy

In the use of this technique in MCMC, we use these dynamics

to describe a frictionless ball rolling around the negative log

of the posterior distribution, subject to a gravitational pull.

The vector θ denotes the position of the ball, and the vector
v its momentum

recall that momentum is equal to mass times velocity

for simplicity we will take the mass of the ball to be 1, which

means that momentum equals velocity.

H (θ, v) represents the total energy of the ball

H (θ, v)︸ ︷︷ ︸
total energy

= U (θ)︸ ︷︷ ︸
potential energy

+ K (v)︸ ︷︷ ︸
kinetic energy

.
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HMC

Hamiltonian dynamics: potential energy

Recall from classical mechanics that gravitational potential

energy U is equal to mgh, where m is the mass of the ball, g

is the gravitational field, and h is the height.

For simplicity, we simply set m and g to be equal to 1.

Therefore we simply take U (θ) to be the height of the ball at

θ

U (θ) = − log (π (θ | y)) .

For example, U (θ) = θ2 would correspond to a Gaussian

with zero mean.
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HMC

Hamiltonian dynamics: kinetic energy

Recall from classical mechanics that kinetic energy K is

equal to a half times mass times velocity squared.

In our case (with m = 1, momentum equals velocity). We

obtain, in the univariate case, K = v2/2.

We are looking at the multivariate case, which gives

K (v) = vT v/2.
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HMC

Hamiltonian dynamics: Hamiltonian
The Hamiltonian in our case is given by

H (θ, v) = − log (π (θ | y)) + vT v/2.

Hamilton’s equations in our case are given by

dθ

dt
= v and

dv

dt
= ∇ log (π (θ | y)) .

These make sense!
the rate of change of position is given by the velocity

the rate of change of velocity is given by the gradient of the

surface.

To construct a proposal for use in MCMC, we will simply
simulate forwards from these dynamics for some time t

this simulation defines a deterministic function Rt , mapping

(θ, v) 7→ (θ∗, v ∗).
291



Augmentation Sequential Monte Carlo Gradient-based methods Other directions

HMC

Hamiltonian dynamics: properties

What did we gain from the abstract formulation, rather than

simply working out this formulation from classical mechanics?

Hamiltonian dynamics has some nice mathematical

properties, that are particularly useful when constructing

MCMC updates (here we follow Neal (2011)).

Reversibility. There is an inverse to Rt , and this can be
defined in terms of Rt . We have that R−1

t is given by

taking the negative of the velocity (to make the ball go

backwards)

applying Rt (running the dynamics for time t)

taking the negative of the velocity of the result (to make the

ball ”face” back in the direction it was originally)

we need this property for the dynamics to have π as the

invariant distribution.
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HMC

Hamiltonian dynamics: properties

Conservation of the Hamiltonian. The dynamics do not
change the value of H - the total energy of the ball is
conserved.

this property is crucial in ensuring that the acceptance

probability is high

soon we will define the a joint distribution of θ and v in terms

of H - the conservation of H under the dynamics will mean

that (θ, v) has the same density as (θ∗, v ∗).

Volume preservation. Hamiltonian dynamics preserves

volume in the space of (θ, v). This means that no Jacobian

is needed when calculating the acceptance probability of a

move (as it is in some other methods).
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HMC

Hamiltonian Monte Carlo

We now have most of the ingredients needed to define

Hamiltonian Monte Carlo.

We proceed as follows

define a joint distribution on (θ, v) such that we can run

Hamiltonian dynamics on it in order to obtain points from π

describe how to deal with the fact that we cannot simulate

Hamiltonian dynamics exactly.
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HMC

Hamiltonian Monte Carlo: joint distribution

Define a joint distribution on (θ, v) as follows

πθ,v (θ, v) ∝ exp (−H (θ, v))

= exp (−U (θ)) exp (−K (v))

= exp (− (− log (π (θ | y)))) exp
(
−vT v/2

)

= π (θ | y) exp
(
−vT v/2

)
.

We see that the joint distribution on (θ, v) has π (θ | y) as
its marginal, and that we have a Gaussian distribution on v

we could choose a different covariance for this Gaussian

distribution on v - this would correspond to using a different

mass for the ball in the potential energy.
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HMC

Using Hamiltonian dynamics as an MCMC move

“A Note On Metropolis-Hastings Kernels For General State

Spaces”, Tierney (1998) gives the Metropolis-Hastings

acceptance probability for a volume preserving deterministic

move T that is an involution, i.e. where, in our case,

T (T (θ, v)) = (θ, v). The acceptance probability is given by

min
{

1, π(T (θ,v))
π(θ,v)

}
.

We define T to be the composition of applying Hamiltonian

dynamics Rt (θ, v), then taking the negative of the velocity

component.
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HMC

Using Hamiltonian dynamics as an MCMC move

Then, using the conservation of the Hamiltonian, the

acceptance probability of applying Hamiltonian dynamics to

the joint target is given by

min
{

1,
πθ,v (T (θ,v))
πθ,v (θ,v)

}
= min

{
1, exp(−H(T (θ,v)))

exp(−H(θ,v))

}
= 1, which

means that we would always accept such a move!

Potentially make very large moves, as long as we choose
appropriately the time for which we simulate the dynamics

too short, and we will not move far

too long, and it is possible that we end up where we started!

Alternate the dynamics with simulating a new velocity

exactly from the target distribution for v , so that we change

the direction of the trajectories at different iterations.
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HMC

Approximating Hamiltonian dynamics

We cannot simulate Hamiltonian dynamics exactly

we must use some solver, just as we did for the Langevin

method.

We use the ”leapfrog” method to approximately simulate the
dynamics

this produces a discretized trajectory that approximates the

continuous dynamics

the transformation produced using this approach is also

reversible and volume preserving.
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HMC

Approximating Hamiltonian dynamics
However, the Hamiltonian is not exactly conserved.

This means that the acceptance probability is not 1.

Let T be the transformation given by the leapfrog method,

and (θ∗, v∗) = T (θ, v). Then, the acceptance probability is

min

{
1,
π (T (θ, v))

π (θ, v)

}
= min {1, exp (−H (θ∗, v∗) +H (θ, v))} ,

Note that, as in standard Metropolis-Hastings, we can use

p (θ) l (y | θ) in place of π (θ | y), since the normalizing

constant p (y) cancels.

When implementing the leapfrog method, we need

∇ log (π (θ | y)). This is given by

∇ log p (θt) +∇ log l (y | θt) as in the previous lecture.
299



Augmentation Sequential Monte Carlo Gradient-based methods Other directions

HMC

HMC properties

Dependence on dimension

the optimal τ is proportional to d1/4

O
(
d1/4

)
steps are needed to reach a nearly independent point

overall cost is O
(
d5/4

)

this beats both random walk and MALA.

The tuning of HMC makes a big difference to the
performance

much research is devoted to automating this tuning

the ”no u-turn sampler” (NUTS), implemented in Stan, is a

significant contribution.
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HMC

HMC in action

HMC in action
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QMC

Quasi Monte Carlo

Why use “random” numbers?

Wouldn’t “regular” numbers be better?
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QMC

Low Discrepancy Sequences

Definition (Discrepancy)

Given P = {x1, . . . , xN} ⊂ [0, 1]d , the discrepancy and star

discrepancy are:

DN(P ) = sup
J∈J

∣∣∣∣
|P ∩ J|
N

− λ(J)

∣∣∣∣

D?N(P ) = sup
J∈J ?

∣∣∣∣
|P ∩ J|
N

− λ(J)

∣∣∣∣

where J are sets of the form
∏d
i=1[ai , bi) and J ? are

∏d
i=1[0, bi).

QMC: why not approximate integrals with low discrepancy

(not random) sequences?

The Koksma-Hlawka Inequality controls approximation error.
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QMC

Quasi Monte Carlo

Advantages

Can (dramatically) beat Monte Carlo’s
√
n-convergence rate.

Reduces dependency on random numbers.

Challenges

Constructing minimum discrepancy sequences.

Sequence extensibility.

Transformations (& preserving discrepancy)

c.f. Niederreiter, H. (1992) Random Number Generation and

Quasi-Monte Carlo Methods. Society for Industrial and Applied

Mathematics.
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Big Data

Dealing with Big Data

Distribution: sub-posteriors; consensus methods; medians of

medians.

Subsampling: unadjusted Langevin; zig-zag & bouncy

particle samplers. Give rise to non-reversible MCMC

algorithms that rely heavily on tractable properties of

piecewise deterministic Markov processes.

A whole lot of computer science.

c.f. Bardenet, Doucet and Holmes (2017). On Markov chain

Monte Carlo methods for tall data. Journal of Machine Learning

Research 18:1–43;

Fearnhead et al. (2018). Piecewise deterministic Markov

processes for continuous-time Monte Carlo. Statistical Science

33(3): 386–412.
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Big Data

Thank you!
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