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There are three principles, roughly expressible in the following terms: Every (measur-
able) set is nearly a finite sum of intervals; every function (of class Lp) is nearly con-
tinuous; every convergent sequence of functions is nearly uniformly convergent.

J. E. Littlewood
Lectures on the Theory of Functions

Every isometry is a direct sum of copies of the unilateral shift and a unitary operator.

The Wold–von Neumann decomposition theorem
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1 Introduction

Due to the ability of routinely collecting and storing large data sets in numerous application areas,
we have witnessed a dramatic surge of interest and activity in high-dimensional analysis in the last
two to three decades. Despite that the frenzy has been going on for decades, it is still, arguably,
the most important statistics research topic, and has been studied and adopted in most if not all
statistics research topics.

First of all, high-dimensional data are usually referred to those data sets having large dimensions,
i.e. the dimension of the data are comparable or even larger than the sample size. Formally speaking,
we say the dimension is a function of the sample size and is allowed to diverge as the sample size
grows unbounded. To deal with such data sets, classical statistics tools often fail and it requires
new methodology and theory.

Equally important, high-dimensional analysis also emphasises the non-asymptotic (also known
as fixed-sample) viewpoint. This is to say, it is not necessary to have high-dimensional data to
conduct high-dimensional analysis. As we shall see clearer throughout this module, the sample
size, the dimension, as well as other model parameters, are viewed as fixed, and high-probability
statements are made as a function of them (Wainwright, 2019).

Notation

For any matrix M ∈ Rp×q, let Mi and M j be the ith row and jth column of M , i ∈ {1, . . . , p},
j ∈ {1, . . . , q}.

1.1 Linear regression

The running example in this module is the linear regression problem. In this section, we use it to
demonstrate i) the limitation of classical results when the dimension is high, ii) what we mean by
a non-asymptotic viewpoint and iii) what is needed to deal with the high-dimension feature of the
data set.
Model. Let

Yi = X⊤
i β∗ + εi, i = 1, . . . , n, (1)

where
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• the coefficient vector β∗ ∈ Rp is unknown,

• the covariates {Xi}ni=1 ⊂ Rp with ΣX = n−1
!n

i=1XiX
⊤
i invertible, and

• the noise {εi}ni=1 ⊂ R with εi
i.i.d.∼ N (0,σ2).

For this model, we have the sample size n, the dimension p and the fluctuation level σ2.

Remark 1. Fixed and random designs.

The limitation of the LSE. Denote the least squares estimator of β∗ as "βLSE, which can be
written as

"βLSE = argmin
β∈Rp

n#

i=1

(Yi −X⊤
i β)2. (2)

Provided that "ΣX = n−1X⊤X = n−1
!n

i=1XiX
⊤
i is invertible, with Y = (Y1, . . . , Yn)

⊤ ∈ Rn, we
have that

"βLSE = (X⊤X)−1X⊤Y. (3)

Remark 2. Connections between LSE and MLE.

When p > n, i.e. the dimension is larger than the sample size, rank("ΣX) ≤ n < p and "ΣX is
not invertible. In fact, the true coefficient β∗ plus any p-dimensional vector which is perpendicular
to the linear space spanned by {Xi}ni=1, is a minimiser in this optimisation problem.

A non-asymptotic viewpoint. Before we proceed to discuss how to deal with the case when "ΣX

is not invertible, we first have a flavour of what a non-asymptotic viewpoint is. In classical theory,
we focus on the asymptotic performances of "βLSE. Under the assumptions we mentioned, and that
Xi’s and εi’s are independent, the dimension p is fixed, we have that

√
n("βLSE − β∗)

D→ N (0,σ2Σ−1), n → ∞,

where n−1XX⊤X → Σ, as n → ∞. The above statement is asymptotic, in the sense that it holds
when the sample size grows unbound. From a non-asymptotic point of view, we can in fact show
that for any triplet (n, p,σ2), if X⊤X = nI (we will discuss this further in the sequel), then for any
t > 0,

P{‖"βLSE − β∗‖∞ > t} ≤ p
p

max
j=1

P{|"βLSE
j − β∗

j | > t} ≤ p
p

max
j=1

P{|Xjε|/n > t} ≤ 2p exp

$
−nt2

σ2

%
.

What do we need to deal with the high dimensionality. When we allow p > n, then the
first problem we encounter is that (2) is an ill-defined problem. To overcome this issue, instead
of minimising over all β ∈ Rp, we can consider a smaller region, e.g. ‖β‖∞ ≤ M . The second
problem we encounter is that "ΣX is no longer invertible in (3). To overcome this issue, together
with a constraint on the solution region, we should be able to hope that a sub-matrix of X⊤X is
invertible.
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2 The Lasso in linear regression problems

Recall the model defined in (1). We consider the situation when the dimension p is potentially large
and cause problems in classical methods. From the problem we have pointed out in Section 1.1,
to have a well-defined problem, we should restrict our solutions into a lower-dimensional space.
Arguably, the simplest way to define a low-dimensional space is to assume that β∗ satisfies

‖β∗‖0 = s < n. (4)

This means that β∗ lies in an s-dimensional space and can be written as

β∗ ∈ B0(s) =

&
'

(β ∈ Rp;

p#

j=1

|β∗
j |0 ≤ s

)
*

+ ,

with the convention that 00 = 0. Based on this formulation, there are other types of low-dimensional
space, e.g. assuming that β∗ ∈ Bq(sq), q ∈ [0, 1], sq > 0. In this module, we focus on the case q = 0.
Denote

O = {j : β∗
j ∕= 0} ⊂ {1, . . . , p}.

Remark 3. Plots of different penalties.

Assuming (1) and (4), we study the Lasso estimator

"β = "β(λ) = argmin
β∈Rp

,
1

2n
‖Y −Xβ‖2 + λ‖β‖1

-
, λ > 0,

which is equivalent to the ℓ∞ constraints due to the Lagrangian duality. The term Lasso is coined
in Tibshirani (1996), but the idea is essentially the same as the basis pursuit studied in Chen
and Donoho (1994) and the Dantzig selector (Candes and Tao, 2007). The spirit roots in the
bias-variance tradeoff, with a connection to the super-efficiency of shrinkage estimators, studied by
Hodge, Pinsker, James, Stein, etc. The Lasso estimator is a convex relaxation of the ℓ0-penalized
estimator

.β = argmin
β∈Rp

,
1

2n
‖Y −Xβ‖2 + λ‖β‖0

-
,

which is an NP-hard optimisation problem.

Remark 4.

• Spectral clustering in community detection problems in the stochastic block models is also a
convex relaxation (e.g. Von Luxburg, 2007).

• The ℓ0 penalisation is not necessarily all NP-hard. We will revisit this in Section 5.

Lemma 1 (Basic inequality). We have that

‖X("β − β∗)‖2/n+ 2λ‖"β‖1 ≤ 2ε⊤X/n("β − β∗) + 2λ‖β∗‖1.

Remark 5. Lemma 1 is the starting point of analysing the Lasso estimator. More importantly,
this type of results is usually the starting point of analysing any penalised estimators.
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Proof of Lemma 1. It follows from the definition of the Lasso estimator that

1

2n
‖Y −X "β‖2 + λ‖"β‖1 ≤

1

2n
‖Y −Xβ∗‖2 + λ‖β∗‖1,

which leads to that

"β⊤X⊤X "β − 2Y ⊤X "β + 2nλ‖"β‖1 ≤ (β∗)⊤X⊤Xβ∗ − 2Y ⊤Xβ∗ + 2nλ‖β∗‖1.

Plugging in the fact that Y = Xβ∗ + ε concludes the proof.

In view of the basic inequality, conditional on the design X, the only random part is the term

2ε⊤X("β − β∗),

which can be upper bounded using the inequality

|2ε⊤X("β − β∗)| ≤ 2‖ε⊤X‖∞‖"β − β∗‖1.

(Question: why do we use the ∞-1 inequality? Can we use others, say 2-2? Hanson–
Wright inequality.) For any t > 0, define the event

E(t) =
/
‖ε⊤X‖∞ < t

0
.

Lemma 2. If assuming X to be fixed, then for any t > 0, we have that

P {E(t)} > 1− 2p exp

1
− t2

2σ2maxpj=1 ‖Xj‖2

2
.

If assuming Xi
i.i.d.∼ N (0,ΣX), where ΣX is a positive definite matrix, then for any t > 0 and

any t1 ∈ (nmaxpj=1(ΣX)jj , 2nminpj=1(ΣX)jj), we have that

P{E(t)} ≥
,
1− 2p exp

$
− t2

2σ2t1

%-
3

451− p
p

max
j=1

exp

&
6'

6(
−
n
/

t1
n(ΣX)jj

− 1
02

8

)
6*

6+

7

89 .

Remark 6. This is a usual ingredient in the high-dimensional analysis. First use the sub-Gaussian
and/or sub-Exponential tail bounds to control the noise fluctuation, and then discuss the rest of the
proof in these large-probability events.

Proof. Under the fixed design, we have that, for any t > 0,

P {E(t)} = 1− P
,

p
max
j=1

|ε⊤Xj | ≥ t

-
≥ 1−

p#

j=1

P
/
|ε⊤Xj | ≥ t

0

≥1− p
p

max
j=1

P
/
|ε⊤Xj | ≥ t

0
≥ 1− 2p exp

1
− t2

2σ2maxpj=1 ‖Xj‖2

2
, (5)

where the last inequality follows from the Hoeffding inequality (e.g. Proposition 2.5 in Wainwright,
2019).
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Under the random design, we have that, for any t, t1 > 0,

P{E(t)} ≥ Pε|X

,
E(t)|0 <

p
max
j=1

‖Xj‖2 ≤ t1

-
PX

,
0 <

p
max
j=1

‖Xj‖2 ≤ t1

-

≥
,
1− 2p exp

$
− t2

2σ2t1

%-
PX

,
0 <

p
max
j=1

‖Xj‖2 ≤ t1

-
,

where the second inequality follows (5).
In addition, we have that, for any

n
p

max
j=1

(ΣX)jj < t1 < 2n
p

min
j=1

(ΣX)jj ,

we have that

PX

,
0 <

p
max
j=1

‖Xj‖2 ≤ t1

-
≥ 1− p

p
max
j=1

P

:
n#

i=1

X2
ij − n(ΣX)jj > t1 − n(ΣX)jj

;

≥1− p
p

max
j=1

P

:
n−1

n#

i=1

X2
ij

(ΣX)jj
− 1 >

t1
n(ΣX)jj

− 1

;

≥1− p
p

max
j=1

exp

&
6'

6(
−
n
/

t1
n(ΣX)jj

− 1
02

8

)
6*

6+
,

where the last inequality follows from Bernstein’s inequality (e.g. Example 2.11 in Wainwright,
2019). We then conclude the proof.

We now conduct our analysis in the event

E = E(nλ/2).

In the event E , due to Lemma 1, we have that

‖X("β − β∗)‖2/n ≤ 2ε⊤X/n("β − β∗) + 2λ(‖β∗‖1 − ‖"β‖1)
≤λ‖"β − β∗‖1 + 2λ(‖β∗‖1 − ‖"β‖1),

which leads to

‖X("β − β∗)‖2/n+ λ‖"β − β∗‖1 ≤ 2λ‖"β − β∗‖1 + 2λ(‖β∗‖1 − ‖"β‖1).

Note that
|"βj − β∗

j |+ |β∗
j |− |"βj | = 0, j ∈ Oc = {1, . . . , p} \ O.

We have that

‖X("β − β∗)‖2/n+ λ‖"β − β∗‖1 ≤ 2λ‖("β − β∗)O‖1 + 2λ(‖β∗
O‖1 − ‖"βO‖1)

≤4λ‖("β − β∗)O‖1 ≤ 4λ
<

|O|‖("β − β∗)O‖ = 4λ
√
s‖("β − β∗)O‖.
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Up to now, we have
‖X("β − β∗)‖2/n ≤ 4λ

√
s‖("β − β∗)O‖ (6)

and
‖"β − β∗‖1 = ‖("β − β∗)O‖1 + ‖("β − β∗)Oc‖1 ≤ 4‖("β − β∗)O‖1,

which leads to

‖("β − β∗)Oc‖1 ≤ 3‖("β − β∗)O‖1 and ‖"β − β∗‖1 ≤ 4
√
s‖("β − β∗)O‖. (7)

To proceed further, if we have that X⊤X is invertible, then from (6) we have that

µmin(X
⊤X)‖"β − β∗‖2 ≤ ‖X("β − β∗)‖2 ≤ 4λn

√
s‖("β − β∗)O‖ ≤ 4λn

√
s‖"β − β∗‖,

which leads to that
‖"β − β∗‖ ≤ 4λn

√
s/µmin(X

⊤X).

However, when p > n, X⊤X is clearly singular. This prompts us to find new theoretical tools.

2.1 Restricted eigenvalue conditions

In this section, we start from the fixed design and then discuss the random design.

Assumption 1 (Restricted eigenvalue). There exists a constant κ > 0 such that, for any

θ ∈ C(O) =
=
θ ∈ Rp : ‖θ‖1 ≤ 4

√
s‖θO‖

>
,

it holds that
‖Xθ‖2/n ≥ κ‖θO‖2.

Remark 7. Assumption 1 is a very strong version of the restricted eigenvalue type conditions.
We adopt it here for illustration purpose. There are milder versions of restricted eigenvalue type
conditions, under the names of the Reisz condition, the compatibility condition, restricted isometry
property, etc.

Assumption 1 can also be stated in the space C(O) = {θ ∈ Rp : ‖θOc‖1 ≤ 3‖θO‖1}. In the fixed
design case, it is assumed that null(X) ∩ C = {0}.

A more interesting version of restricted eigenvalue condition is to impose on any arbitrary set
A ⊂ [p], |A| ≤ s, instead of only on a specific set O.

In view of Assumption 1, due to (7), we have that

‖("β − β∗)O‖1 ≤ ‖"β − β∗‖1 ≤ 4
√
s‖("β − β∗)O‖.

Under Assumption 1, due to (6), we have that

‖X("β − β∗)‖2/n ≤ 4λ
√
s‖("β − β∗)O‖ ≤ 4λ

?
s

nκ
‖X("β − β∗)‖ ≤ 8λ2s/κ+ ‖X("β − β∗)‖2/(2n),

which leads to that
‖X("β − β∗)‖2/n ≤ 16λ2s/κ.

Moreover, we have that

‖"β − β∗‖1 ≤ 4
√
s‖("β − β∗)O‖ ≤ 4

√
s‖X("β − β∗)‖/

√
nκ ≤ 16λs/κ.

To wrap up, we have the following theorem.
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Theorem 3. Assume that ‖Xj‖ = n, j = 1, . . . , n. With λ = Cσ
<

log(p)/n, C > 2
√
2, under

Assumption 1, we have that, with probability at least

1− 2p exp

$
−C2 log(p)

8

%
,

it holds that
‖X("β − β∗)‖2/n ≤ 16C2σ2 log(p)s/(nκ)

and
‖"β − β∗‖1 ≤ 16Cσs/κ

<
log(p)/n.

We then move on to random designs. When considering X to be random, we cannot assume
Assumption 1. One should, instead, prove that with high-probability, Assumption 1 holds. The
following theorem is from Raskutti et al. (2010).

Theorem 4. For any Gaussian random design X ∈ Rn×p with i.i.d. N (0,ΣX) rows, there are
universal positive constants c, c′ such that

n−1/2‖Xθ‖ ≥ 4−1‖Σ1/2
X θ‖ − 9

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n‖θ‖1, θ ∈ Rp,

with probability at least 1− c′ exp(−cn).

The implication of Theorem 4 is as follows. For any A ⊂ [p] with |A| ≤ s and any θ ∈ C(A)
defined in Assumption 1, it holds that

n−1/2‖Xθ‖ ≥ 4−1‖Σ1/2
X θ‖ − 9

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n‖θ‖1

≥ 4−1λ
1/2
min(ΣX)‖θ‖ − 9

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n‖θ‖1

= 4−1λ
1/2
min(ΣX)‖θ‖ − 9

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n(‖θA‖1 + ‖θAc‖1)

≥ 4−1λ
1/2
min(ΣX)‖θ‖ − 36

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n‖θA‖1

≥ 4−1λ
1/2
min(ΣX)‖θ‖ − 36

√
s

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n‖θA‖

≥
:
4−1λ

1/2
min(ΣX)− 36

√
s

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n

;
‖θ‖.

Provided that

4−1λ
1/2
min(ΣX)− 36

√
s

,
p

max
j=1

(ΣX)jj

-1/2<
log(p)/n ≥ κ,

we show that with large probability, n−1XX⊤ satisfies restricted eigenvalue conditions.
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2.2 What we did not cover in this section

• Tuning parameter selection: EBIC, cross-validation, 1se rule, etc.

• Algorithm: LARS, coordinate descent, etc.

• Selection consistency: irrepresentability condition, beta-min condition.

• Other types of penalties: bridge, ridge, group, elastic net, MCP, SCAD, etc.

• Post-processing: restricted MLE, stability selection, etc.

• Beyond linear regression: generalised linear regression, cox regression, etc.

• Minimax lower bound.

• Other methods to quantify the uncertainty of Lasso-type estimators.

3 De-biased Lasso

The Lasso estimators enjoy both theoretical and numerical advantages and have been widely used
in many application areas. It, however, still suffers from limitations. Statistical inference based on
selection consistency theory typically requires a uniform signal strength condition that all nonzero
regression coefficients be greater tin magnitude than an inflated noise level to take model uncertainty
into account. This is unfortunately seldom supported by either the data or the underlying science
in applications when the presence of weak signals cannot be ruled out (Zhang and Zhang, 2014). In
addition, lasso estimators do not have a tractable limiting distribution. Even in the low-dimensional
settings, the limiting distribution depends on the unknown parameter and the convergence rate is
not uniform (Van de Geer et al., 2014). This means that it is impossible to construct confidence
intervals based on the lasso estimators.

The de-biased lasso estimator was developed independently by three groups of researchers,
resulting in three papers: Zhang and Zhang (2014), Van de Geer et al. (2014) and Javanmard and
Montanari (2014). The differences are subtle and they share the same spirit. In this module, we
will use a generic framework.

We first claim that Lasso is a biased estimator, for β∗
j , j ∈ O. To see this, we consider a

very simple toy example with orthonormal design, i.e. (Xj)⊤Xk = nδjk, where δjk = {j = k}.
Therefore, the jth Lasso estimator can be written as

"βj = argmin
βj∈R

,
1

2n
‖Y −Xjβj‖2 + λ|βj |

-
.

The least squares estimator of β∗
j is

"βLSE
j = Y ⊤Xj/n.

Some calculation shows that

"βj = argmin
βj∈R

,
1

2

@
"βLSE
j − βj

A2
+ λ|βj |

-
=

&
6'

6(

"βLSE
j − λ, "βLSE

j > λ,

0, |"βLSE
j | ≤ λ,

"βLSE
j + λ, "βLSE

j < −λ.
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From this toy example, we can see that the bias comes from the shrinkage λ and if we can de-
bias Lasso, then we should be able to wish for an unbiased estimator with a tractable limiting
distribution.

3.1 Bias corrected linear estimators

We can write the least squares estimator as

"βLSE
j = Y ⊤(Xj)⊥/(Xj)⊤(Xj)⊥, (8)

where (Xj)⊥ is the projection of Xj to the orthogonal complement of the column space of X−j =
(Xk, k ∕= j). In the case when p > n, rank(X−j) = n, for all j ∈ {1, . . . , p}. As a consequence,
(Xj)⊥ = 0 and (8) is undefined.

We notice that "βLSE
j defined in (8) is equivalent to solving the equation

((Xj)⊥)⊤(Y − βjX
j) = ((Xj)⊥)⊤Xk = 0, ∀k ∕= j.

For the case when p > n, we retain the main equation z⊤j (Y − βjX
j) = 0, but relax the constraint

z⊤j X
k = 0 for all k ∕= j. Based on this relaxation, we consider a linear estimator

"βlinear
j =

Y ⊤zj

z⊤j X
j
= β∗

j +
z⊤j ε

z⊤j X
j
+
#

k ∕=j

z⊤j X
kβk

z⊤j X
j

.

To correct the bias, we can start with a nonlinear initial estimator "βinitial and have the final estimator
as

"bj = "βinitial
j −

#

k ∕=j

z⊤j X
k "βinitial

k

z⊤j X
j

=
Y ⊤zj

z⊤j X
j
−

#

k ∕=j

z⊤j X
k "βinitial

k

z⊤j X
j

,

which can be interpreted as a one-step correction from the initial estimator. We can rewrite it as

"bj = "βinitial
j +

z⊤j {Y −X "βinitial}
z⊤j X

j
.

We have the decomposition that

"bj − β∗
j =

z⊤j ε

z⊤j X
j
+

#

k ∕=j

z⊤j X
k(βk − "βinitial

k )

z⊤j X
j

,

where the first term can be shown to by asymptotically normal and the second term can be expected
to be negligible provided the initial estimator "βinitial has a small ℓ1 error.

3.2 Another viewpoint

Recall the Lasso estimator

"β = "β(λ) = argmin
β∈Rp

,
1

2n
‖Y −Xβ‖2 + λ‖β‖1

-
.
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From convex optimisation theory, we know that "β satisfies the Karush–Kuhn–Tucker (KKT) con-
ditions

−X⊤(Y −X "β) + λn"s = 0,

‖"s‖∞ ≤ 1 and "sj = sign("βj) if "βj ∕= 0.

The vector "s is the weak derivative of ‖β‖1. We therefore have

λ"s = X⊤(Y −X "β)/n.

The KKT conditions can be rewritten with the notation "Σ = X⊤X/n that

"Σ("β − β∗) + λ"s = X⊤ε/n.

Let "Θ be a reasonable approximation of a relaxed form of an inverse of "Σ, in the sense that
"Θ"Σ ≈ I. We then have that

"β − β∗ + "Θλ"s = "ΘX⊤ε/n− ("Θ"Σ− I)("β − β∗).

Let
"b = "β + "Θλ"s = "β + "ΘX⊤(Y −X "β)/n.

We have that

√
n("b− β∗) = n−1/2"ΘX⊤ε−

√
n("Θ"Σ− I)("β − β∗)

= n−1/2ΣX⊤ε+ n−1/2("Θ− Σ)X⊤ε−
√
n("Θ"Σ− I)("β − β∗).

For each j ∈ {1, . . . , p}, if we can show that

• n−1/2ΣjX
⊤ε converges to a normal distribution, using CLT;

• ‖"Θ− Σ‖1‖n−1/2X⊤ε‖∞ → 0; and

• ‖
√
n("β − β∗)‖1‖"Θ"Σ− I‖∞ → 0,

then we can show that
√
n("b− β∗)j converges to a normal distribution.

3.3 What we did not cover in this section

• The estimator "Θ, which we will discuss in Section 4.

• Tuning parameter selection.

• Practical issues.

• Convergence rates.

• Other models.
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4 Graphical Lasso and graphical models

In Section 3, we discuss the de-biased Lasso but we do not discuss the estimator "Θ. To thoroughly
understand the choice of "Θ used in the de-biased Lasso, we start with Gaussian graphical models.

4.1 Gaussian graphical models

Let X ∈ Rp ∼ N (µ,Σ), with density

(2π)−p/2|Σ|−1/2 exp
/
−2−1(x− µ)⊤Σ−1(x− µ)

0
, x ∈ Rp.

Denote Θ = Σ−1 as the precision matrix or the concentration matrix. In terms of Θ, the density
function of N (µ,Σ) can be equivalently formulated as

exp
/
µ⊤Θx− 〈Θ, 2−1xx⊤〉 − p/2 log(2π) + 2−1 log(|Θ|)− 2−1µ⊤Θµ

0
,

which implies that the Gaussian distribution is an exponential family with canonical parameters
(−µ⊤Θ,Θ).

Partition the random vector X into two components XA ∈ Ra and XB ∈ Rb such that A⊔B =
{1, . . . , p}. Let µ and Σ be partitioned accordingly, i.e.

µ =

$
µA

µB

%
and Σ =

$
ΣA,A ΣA,B

ΣB,A ΣB,B

%
.

For any xA ∈ Ra and xB ∈ Rb, the conditional density is

f(xA|xB) ∝ exp

B
− 1

2
{xA − µA −Θ−1

A,AΘA,B(xB − µB)}⊤ΘA,A

× {xA − µA −Θ−1
A,AΘA,B(xB − µB)}

C
,

where Θ−1
A,A = ΣA,A − ΣA,B(ΣB,B)

−1ΣB,A. We therefore have that

XA|XB = xB ∼ N (µA|B,ΣA|B),

where

µA|B = µA + ΣA,B(ΣB,B)
−1(xB − µB) and ΣA|B = ΣA,A − ΣA,B(ΣB,B)

−1ΣB,A.

For any i, j ∈ {1, . . . , p}, i ∕= j, it holds that Xi ⊥ Xj if and only if Σi,j = 0. Based on the
formula above, we have that Xi ⊥ Xj |X−(i,j) if and only if (Σ(i,j)|−(i,j))1,2 = 0. Based on the above
derivation, it means that Xi ⊥ Xj |X−(i,j) if and only if (Σ−1)i,j = Θi,j = 0.

Let G = (V,E) be an undirected graph with vertices V = {1, . . . , p} and edges E. A random
vector X ∈ Rp is said to satisfy the Gaussian graphical model with graph G, if X ∼ N (µ,Σ) with

Θi,j = (Σ−1)i,j = 0 if and only if (i, j) /∈ E.

Gaussian graphical models only model the pairwise interactions between nodes. Gaussian graph-
ical models are the continuous counterpart to Ising models.
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Remark 8.

• Markov random fields. Undirected graphical models are also known as Markov random fields
(MRF). An MRF is specified by an undirected graph G = (V,E), where V = {1, . . . , p}. The
structure of this graph encodes certain conditional independence assumptions among subsets
of the p-dimensional discrete random vector X = (X1, . . . , Xp)

⊤, where Xi is associated with
vertex i ∈ V . One important problem for such models is to estimate the underlying graph
from n i.i.d. samples {x(i)}ni=1 drawn from the distribution specified by some MRF.

• Pairwise MRF. Let X = (X1, . . . , Xp) denote a random vector with each variable Xs ∈ Xs.
Given an undirected graph G = (V,E), each Xs is associated with s ∈ V . The pairwise
Markov random field associated with the graph G over the random vector X is the family of
distributions of X which factorise as

P(x) ∝ exp

&
'

(
#

(s,t)∈E
φst(xs, xt)

)
*

+ ,

where for each edge (s, t) ∈ E, φst is a mapping from pairs (xs, xt) ∈ Xs ×Xt to the real line.

For models involving discrete random variables, the pairwise assumption involves no loss of
generality since any Markov random field with higher-order interactions can be converted (by
introducing additional variables) to an equivalent Markov random field with purely pairwise
interactions.

• Ising model is a special case that Xs ∈ {±1} and φst(xs, xt) = θ∗xsxt. The distribution takes
the form

Pθ∗(x) =
1

Z(θ∗)
exp

&
'

(
#

(s,t)∈E
θ∗stxsxt

)
*

+ , x ∈ {±1}⊗p.

A composite likelihood approach works on

pD

j=1

Pθ(xr|x−r) =

pD

j=1

&
'

(
exp

@
2xr

!
t∈V \{r} θrtxt

A

exp
@
2xr

!
t∈V \{r} θrtxt

A
+ 1

)
*

+ .

4.2 Graphical Lasso

To estimate the Gaussian graphical model, from 2006-2011, a series of papers have proposed similar
methods, in the spirit of utilising ℓ1 penalisation. These papers include Meinshausen and Bühlmann
(2006), Yuan and Lin (2007), Banerjee et al. (2008), Cai et al. (2011), etc.

Let X1, . . . , Xn
i.i.d.∼ N (µ,Σ). The likelihood for µ and Θ = Σ−1, based on {X1, . . . , Xn}, is

n

2
log(|Θ|)− 1

2

n#

i=1

(Xi − µ)⊤Θ(Xi − µ),

up to a constant not depending on µ or Θ. The maximum likelihood estimator of (µ,Σ) is (X,S),
with

X = n−1
n#

i=1

Xi and S = n−1
n#

i=1

(Xi −X)(Xi −X)⊤.

13



The precision (concentration) matrix can be naturally estimated by S−1, but this is not a good
estimator even if S is invertible when p is moderate. Before we consider further, we first investigate
the likelihood.

Since the MLE of µ is X, if we further assume the observations are centred, then the likelihood
can be written as (up to constants)

log(|Θ|)− 1

n

n#

i=1

X⊤
i ΘXi = log(|Θ|)− tr(ΘS).

If we know that the graph is sparse, then we can adapt the Lasso estimator and study

"Θ = argmax
M≻0

&
'

(log(|M |)− tr(MS)− λ

p#

i,j=1

|Mij |

)
*

+ .

There are also variants of the above, where the diagonals are not penalised.

Remark 9. Computational issues: the maxdet problem and quadratic approximations. Relationship
with Van de Geer et al. (2014).

4.3 Node-wise regression

It is also called neighbourhood selection. LetX ∼ N (µ,Σ). For any j ∈ {1, . . . , p}, consider optimal
prediction of Xj , given all the remaining variables. Let θj ∈ Rp be the vector of coefficients for
optimal prediction that

θj = argmin
θ∈Rp: θj=0

E

E

FXj −
#

k ∕=j

θkX
k

G

H
2

.

The elements of θj are determined by the precision matrix. For k ∈ {1, . . . , p} \ {j} and Θ = Σ−1,
it holds that θjk = −Θjk/Θkk.

Given data X1, . . . , Xn
i.i.d.∼ N (µ,Σ), considering the high-dimensionality, we encourage the

sparsity by a Lasso penalty that

"θj = argmin
θ∈Rp−1

,
1

2n
‖Xj −X−jθ‖2 + λ‖θ‖1

-
.

We now come back to the de-biased lasso. For simplicity, we consider fixed design here. Recall
that

√
n("b− β∗) = n−1/2ΣX⊤ε+ n−1/2("Θ− Σ)X⊤ε−

√
n("Θ"Σ− I)("β − β∗).

In order to show the asymptotic normality, we need

• ‖"Θ− Σ‖1‖n−1/2X⊤ε‖∞ → 0; and

• ‖
√
n("β − β∗)‖1‖"Θ"Σ− I‖∞ → 0.

14



This is to say that we need

‖"Θ− Σ‖1 = o(
<

log(p)) and ‖"Θ"Σ− I‖∞ = o(
<

log(p)).

With these goals in mind, we adopt the node-wise regression estimator to construct "Θ. For
each j ∈ {1, . . . , p}, let

"θj = argmin
θ∈Rp−1

,
1

2n
‖Xj −X−jθ‖2 + λj‖θ‖1

-
,

with components of "θj = {"θjk : k = 1, . . . , p, k ∕= j}. Denote by

"C =

E

IIIF

1 −"θ12 · · · −"θ1p
−"θ21 1 · · · −"θ2p
...

...
. . .

...

−"θp1 −"θp2 · · · 1

G

JJJH

and write
"T 2 = diag("τ21 , . . . , "τ2p ),

where for j = 1, . . . , p,
"τ2j = ‖Xj −X−j"θj‖2/n+ λj‖"θj‖1.

Then define
"Θ = "T−2 "C.

It follows from the KKT conditions that

−(X−j)⊤(Xj −X−j"θj)/n+ λj"sj = 0,

where "sj is the weak derivative. We therefore have that

"τ2j = ‖Xj −X−j"θj‖2/n+ λj‖"θj‖1
= (Xj)⊤(Xj −X−j"θj)/n− ("θj)⊤(X−j)⊤(Xj −X−j"θj)/n+ λj‖"θj‖1
= (Xj)⊤(Xj −X−j"θj)/n− λj("θj)⊤"sj + λj("θj)⊤"sj
= (Xj)⊤(Xj −X−j"θj)/n,

which leads to that
XjX "Θj/n = 1.

The KKT conditions also imply that

‖(X−j)⊤(Xj −X−j"θj)/n‖∞ ≤ λj ,

which is equivalent to
‖(X−j)⊤X "Θj‖∞/n ≤ λj/"τ2j .

We thus have
‖"Σ"Θ⊤

j − ej‖∞ ≤ λj/"τ2j .

Remark 10. Note that "Θ is not necessarily a symmetric matrix. Relationship with Zhang and
Zhang (2014).
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4.4 What we did not cover in this section

• Tuning parameter selection.

• CLIME

• Theoretical results

• Other large matrix estimation procedures: low rank, sparse, banded.

• Ising model, Markov random fields, pseudo-likelihood.

• Networks

• High-dimensional matrix estimation: banded, low-rank, etc.

• Factor analysis.

5 Fused Lasso and change point detection problems

In this section, we move on to consider the case that there exists a linear ordering among β1, . . . ,βp.
The methods we are discussing are under a number of different names: total variation penalisation,
fused lasso, generalised fused lasso, trend filtering, etc. At the end of this section, we will make
connections with change point detection problems.

5.1 Fused Lasso

The term fused Lasso is coined in Tibshirani et al. (2005). The idea was exploited earlier in Rudin
et al. (1992), Steidl et al. (2006) and others. Tibshirani et al. (2005) studied a high-dimensional
regression problem, where the coefficients β∗ are not only sparse, but also piece-wise constant. For
simplicity, in this module, we start with a much simpler problem

yi = θ0i + εi, i = 1, . . . , n,

where εi, i = 1, . . . , n, are i.i.d. sub-Gaussian random variables, and θ0 = (θ01, . . . , θ
0
n)

⊤ ∈ Rn is a
piece-wise constant mean sequence, having a set of change points

S0 = {i ∈ {2, . . . , n} : θ0i ∕= θ0i−1} = {η1, . . . , ηK}.

Let η0 = 1 and ηK+1 = n+ 1. The fused-lasso estimator is defined as

"θ = argmin
θ∈Rn

:
1

2

n#

i=1

(yi − θi)
2 + λ

n−1#

i=1

|θi − θi+1|
;
,

where λ > 0 is a tuning parameter. Let

∆ = min
i=1,...,K+1

(ηi − ηi−1) and κ = min
i=1,...,K

|θ0ηi − θ0ηi−1|
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be the minimal spacing and jump size. Let the incidence matrix be

D =

E

IIIF

−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

0 0 · · · −1 1

G

JJJH
.

We can rewrite the fused lasso estimator as

"θ = argmin
θ∈Rn

:
1

2

n#

i=1

(yi − θi)
2 + λ‖Dθ‖1

;
.

Remark 11. Incidence matrix. General graphs. Generalised fused lasso. Higher order trend
filtering.

We then to show the de-noising property of the fused Lasso estimator (Lin et al., 2017), that,
with λ = (n∆)1/4, with probability at least 1− exp(−Cγ), γ > 1, it holds that

‖"θ − θ0‖2 ≲ γ2σ2K

n

,
(log(K) + log log(n)) log(n) +

?
n

∆

-

and

E
@
‖"θ − θ0‖2

A
≲ σ2K

n

,
(log(K) + log log(n)) log(n) +

?
n

∆

-
.

We first remark that the minimax lower bound is

inf
!θ

sup
‖Dθ0‖0≤K

E
@
‖"θ − θ0‖2

A
≳ σ2K

n
log(n/K).

This means that when n/∆ ≲ log2(n), then the fused Lasso estimator is optimal up to logarithmic
factors.

The proof also starts with the basic inequality. It follows from the definition that

‖Y − "θ‖2 + 2λ‖D"θ‖1 ≤ ‖Y − θ0‖2 + 2λ‖Dθ0‖1,

which leads to that
‖"θ − θ0‖2 ≤ 2ε⊤("θ − θ0) + 2λ(‖Dθ0‖1 − ‖D"θ‖1).

Different from the Lasso case, the fluctuation process ε⊤("θ− θ0) needs more sophisticated control.
To be specific, we consider the decomposition

"θ − θ0 = "δ + "x,

where "δ = P0("θ−θ0) and "x = P1
"θ. The matrix P0 denotes the projection matrix onto the piecewise

constant structure inherent in θ0 and P1 = I − P0. With such notation, we have that

‖"θ − θ0‖2 = ‖"δ‖2 + ‖"x‖2 ≤ 2ε⊤"δ + 2ε⊤"x+ 2λ(‖Dθ0‖1 − ‖D"θ‖1)
=2ε⊤"δ + 2ε⊤"x+ 2λ(‖DS0θ

0‖1 − ‖DS0
"θ‖1 − ‖D−S0

"θ‖1)
≤2ε⊤"δ + 2ε⊤"x+ 2λ(‖DS0(θ

0 − "θ)‖1 − ‖D−S0
"θ‖1)
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≤2ε⊤"δ + 2ε⊤"x+ 2λ(‖DS0
"δ‖1 + ‖DS0"x‖1 − ‖D−S0"x‖1)

= 2ε⊤"δ + 2λ‖DS0
"δ‖1K LM N

A0

+2ε⊤"x+ 2λ(‖DS0"x‖1 − ‖D−S0"x‖1)K LM N
B0

.

We then bound the terms A0 and B0 separately. As for the term A0, which only involves "δ.
The quantity "δ lies in a low-dimensional subspace. The term B0 involves "x, which requires more
intricate argument.

Bounding A0. Note that

A0 = 2

1
|ε⊤"δ|
‖"δ‖

+ λ
‖DS0

"δ‖1
‖"δ‖

2
‖"δ‖

and

‖DS0
"δ‖1 =

K+1#

i=1

|"δηi − "δηi−1 | ≤ 2

K+1#

i=1

|"δηi | ≤ 2

OPPQ(K + 1)

K+1#

i=1

"δ2ηi

≤ 4

OPPQK

K+1#

i=1

ηi − ηi−1

∆
"δ2ηi ≤ 4

?
K

∆
‖"δ‖.

Consider the large probability event

Ω1 =

,
sup
δ∈R

ε⊤δ

‖δ‖ ≤ γC
√
K

-
,

where R = span{ B0 , . . . , BK
}, Bj = {ηj , . . . , ηj+1 − 1}. In the event Ω1, we have that

A0 ≤ 2(γc
√
K + 4λ

<
K/∆)‖"δ‖.

Bounding B0. In order to bound B0, we consider a lower interpolant "z to "x. This interpolant
approximates "x using 2K + 2 monotonic segments, and the corresponding fluctuation ε⊤"z can be
controlled. The residual from the interpolant approximation, denoted "w = "x − "z, can also be
controlled. Putting the results together, we bound the term B0.

We first define the class of vectors containing the lower interpolant. Let M be the set of
piecewise monotonic vectors z ∈ Rn, with the following properties, for each i ∈ {0, . . . ,K}:

(i) there exists a point t ∈ [ti, ti+1) such that the absolute value |zj | is non-increasing over the
segment j ∈ [ti, t] and non-decreasing over the segment j ∈ (t, ti+1);

(ii) the signs remain constant on the monotone pieces that

sign(zηi)sign(zj) ≥ 0, j ∈ [ηi, t]

and
sign(zηi+1)sign(zj) ≥ 0, j ∈ (t, ηi+1).
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With this notation, we first notice that, for any x ∈ Rn, there exists z ∈ M (not necessarily
unique), such that the following hold:

‖D−S0x‖1 = ‖D−S0z‖1 + ‖D−S0(x− z)‖1,

‖DS0x‖1 = ‖DS0z‖1 ≤ ‖D−S0z‖1 +
4
√
K√
∆

‖z‖,

‖z‖ ≤ ‖x‖ and ‖x− z‖ ≤ ‖x‖.

In order to control ε⊤"z, we have the following result

P
,
sup
z∈M

ε⊤z

‖z‖ > γc
<

(log(K) + loglog(n))K log(n)

-
≤ 2 exp

=
−Cγ2(log(K) + log log(n))

>
.

In order to control ε⊤ "w, we have the following result

P

:
sup

w∈R⊥

|ε⊤w|<
‖D−S0w‖1‖w‖

> γ(nK)1/4

;
≤ 2 exp(−Cγ2

√
K).

Remark 12.

• Computational cost.

• Optimality.

• General designs.

5.2 The ℓ0-penalisation and dynamic programming

In the Lasso estimation, we mention that the ℓ1 penalisation is a convex relaxation of the ℓ0
penalisation. In the linear regression problem we studied thereof, there is no ordering among the
covariates, therefore, finding a non-zero subset of {1, . . . , p}, is an NP-hard problem. In what we
discuss in this section, there is a linear ordering among θ01, . . . , θ

0
n, and therefore a polynomial time

algorithm is reachable.
Formally speaking, instead of studying the fused Lasso estimator, we study the ℓ0-penalised

estimator, also known as the Potts estimator, which is defined as

.θ = argmin
θ∈Rn

H(θ) = argmin
θ∈Rn

,
1

2
‖Y − θ‖2 + λ‖Dθ‖0

-
.

We first introduce the dynamic programming algorithm, which solves the above optimisation
problem (Friedrich et al., 2008). It starts with t = 2 and t0 = 0. At every time point t ≥ 2, it
computes

"t = argmax
s∈{t0+1,...,t−1}

:
t#

i=t0+1

(Yi − Y [t0+1,t])
2 −

s#

i=t0+1

(Yi − Y [t0+1,s])
2 −

t#

i=s+1

(Yi − Y [s+1,t])
2

;
.

If
t#

i=t0+1

(Yi − Y [t0+1,t])
2 −

!t#

i=t0+1

(Yi − Y [t0+1,!t])
2 −

t#

i=!t+1

(Yi − Y [!t+1,t])
2 ≥ λ,
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then we let t0 = "t, t = t+1 and include "t as a new change point; otherwise, we just update t = t+1.
The computational cost of this dynamic programming is of order O(n2). There are many

different variants of the dynamic programming, aiming to accelerate the algorithm. We remark that
without stronger model assumptions, all these variants in fact operate with the same computational
cost O(n2). Despite the larger computational cost, the ℓ0-penalised estimator is optimal in terms
of both the required condition and its change point estimator.

In the change point analysis problem, our goal is to obtain consistent change point estimators
{"η1, . . . , "η !K}, with "η1 < . . . "η !K , such that

"K = K and max
k=1,..., !K

|"ηk − ηk| = ε,

where ε/n → 0, with probability tending to 1 as n → ∞.
In order to quantify the difficulty of the problem, we rely on the quantity κ

√
∆/σ, which is a

signal-to-noise ratio. It is established that, if

κ
√
∆/σ <

<
log(n),

then in the minimax sense, there is no consistent estimator of change points. Based on this minimax
lower bound, in order to claim that .θ is optimal in terms of condition, then we need to show that
.θ is consistent provided that

κ
√
∆/σ ≳ log1/2(n).

In addition, it is also established that

inf
!η

sup
P :κ

√
∆/σ≳log1/2(n)

EP {H("η, η)} ≥ cσ2κ−2,

where H(·, ·) denotes the two-sided Hausdorff distance. Based on this minimax lower bound, in
order to claim that .θ is optimal in terms of estimation, then we need to show that the change points
induced by θ has the localisation error rate of order σ2κ−2.

To show the optimality of .θ, we show provided that

κ
√
∆/σ ≥ C

<
log(n)an,

where an is any arbitrarily diverging sequence, with λ = Cλσ
2 log(n), it holds that

P
/
.K = K and |.ηk − ηk| ≤ Cσ2 log(n)/κ2k, ∀k

0
≥ 1− n−c,

where

• {.ηk}
"K
k=1 is the collection of change points induced by .θ and

• κk = |θηk − θηk−1|.

Remark 13. Optimality.

The proof of the above result is conducted in the large probability event defined below

A =

,
max

0≤a<b<c≤n

?
(b− a)(c− b)

c− a

RRY [a+1,b] − θ∗[a+1,b] + Y [b+1,c] − θ∗[b+1,c]

RR ≤ σ
<

Cλ log(n)

-
.

Let .P be the partition induced by .θ. In order to show the performances of .θ, we let [s, e] be any
member of .P and complete the proof in the following four steps.

20



S1. The interval [s, e] contains no more than two true change points.

S2. If [s, e] contains exactly two true change points, say ηk and ηk+1, then

ηk − s ≤ Cσ2 log(n)/κ2k and e− ηk+1 ≤ Cσ2 log(n)/κ2k+1.

S3. If [s, e] contains only one true change point, say ηk, without loss of generality, letting ηk−s ≤
e− ηk, then it must hold that

s ≤ ηk ≤ e ≤ ηk+1, ηk − s ≤ Cσ2 log(n)/κ2k and e− ηk+1 ≤ Cσ2 log(n)/κ2k+1.

S4. If [s, e] contains no true change point, then there must exist two true change points, say ηk
and ηk+1, satisfying that

ηk < s < e < ηk+1, s− ηk ≤ Cσ2 log(n)/κ2k and ηk+1 − e ≤ Cσ2 log(n)/κ2k+1.

See detailed proofs in Wang et al. (2020). We prove S1. here for an illustration. We first observe
that, for any two disjoint intervals I1, I2 ⊂ {1, . . . , n} , I = I1 ∪ I2, it holds that

#

i∈I
(Yi − Y I)

2 =
#

i∈I1

(Yi − Y I1)
2 +

#

i∈I2

(Yi − Y I2)
2 +

|I1||I2|
|I1|+ |I2|

(Y I1 − Y I2)
2.

To show S1., we prove by contradiction and assume that there exists I ∈ .P containing at least
three true change points. This implies that there exists ηk ∈ I satisfying that

min{e− ηk, ηk − s} > ∆.

Denote I1 = [s, ηk −∆/3], I2 = (ηk −∆/3, ηk), I3 = [ηk, ηk +∆/3] and I4 = (ηk +∆/3, e]. Let .P1

be such that
.P1 = .P ∪ {I1, I2, I3, I4} \ {I}

and u be the piecewise constant vector induced by .P1. By the definition of .θ, it holds that

0 ≥ H("θ)−H(u) = −3λ+
#

i∈I
(Yi − Y I)

2 −
#

i∈I1

(Yi − Y I1)
2

−
#

i∈I2

(Yi − Y I2)
2 −

#

i∈I3

(Yi − Y I3)
2 −

#

i∈I4

(Yi − Y I4)
2

≥ −3λ+
|I2||I3|

|I2|+ |I3|
(Y I2 − Y I3)

2

= −3λ+
|I2||I3|

|I2|+ |I3|
{(Y I2 − θηk)− (Y I3 − θηk+1

) + (θηk − θηk+1
)}2

≥ −3λ+
∆

12
(θηk − θηk+1

)2 − |I2||I3|
|I2|+ |I3|

{(Y I2 − θηk)− (Y I3 − θηk+1
)}2

≥ −4λ+
∆

12
κ2k > 0,

which leads to the contradiction.
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5.3 Change point detection in high-dimensional linear regression models

Now we consider a more challenging problem, which will bring what we have learnt together. Let
the data {(xt, yt)}nt=1 ⊂ Rp × R satisfy the model

yt = x⊤t β
∗
t + εt, t = 1, . . . , n,

where {β∗
t }nt=1 ⊂ Rp are the unknown coefficient vectors, {xt}nt=1 are i.i.d. mean-zero sub-Gaussian

random vectors with E(xtx⊤t ) = Σ, and {εt}nt=1 are independent mean-zero sub-Gaussian random
variables with sub-Gaussian parameters upper bounded by σ2 and independent of {xt}nt=1. In
addition, there exists a sequence of change points 1 = η0 < η1 < . . . ηK ≤ n < ηK+1 = n + 1 such
that β∗

t ∕= β∗
t+1, if and only if t ∈ {ηk}Kk=1.

We can solve this problem using an ℓ0-penalisation framework with ℓ1-penalisation sub-routine.
To be specific, we let

"P ∈ argmin
P

:
#

I∈P
L(I) + γ|P|

;
,

where

• the minimisation is over all possible interval partitions of {1, . . . , n},

• the loss function
L(I) =

#

t∈I
(yt − x⊤t

"βλ
I )

2,

with

"βλ
I = argmin

v∈Rp

:
#

t∈I
(yt − x⊤t v)

2 + λ
<

max{|I|, log(n ∨ p)}‖v‖1

;
.

Remark 14. Optimality.

To refine "P , we can have a further step to prompt the optimality, that is

(.β1, .β2, .ηk) = argmin
η∈{sk+1,...,ek−1}
β1,β2∈Rp,β1 ∕=β2

, η#

t=sk+1

‖yt − β⊤
1 xt‖2 +

ek#

t=η+1

‖yt − β2xt‖2

+ ζ

p#

i=1

S
(η − sk)(β1)

2
i + (ek − η)(β2)2i

-
,

where sk = 2"ηk−1/3 + "ηk/3 and ek = "ηk/3 + 2"ηk+1/3, ζ > 0 is a tuning parameter.

Remark 15. Group lasso penalty.

5.4 What we did not cover in this section

• Dyadic CART

• Binary segmentation

• Minimax lower bounds
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• Tuning parameter selection

• General graphs, lattices

• Dependence in data

• Testing results

6 Functional linear regression and reproducing kernel Hilbert spaces

In terms of the types of linear regression, we have already seen the case where both the predictors
and responses are vectors/scalars. More generally speaking, there are more complicated linear
regressions, where the predictors and/or responses are functions.

In terms of the types of penalisation, we have already seen ℓ0 and ℓ1 penalisations. Although we
have seen that they can be solved in some scenarios, in the whole real line, neither is differentiable.
Considering the computations, ℓ2 penalisation, also known as ridge regression, is a more natural
choice.

In this section, we consider a functional linear regression problem, utilising both ℓ2 and ℓ1
penalisations, also requiring knowledge in reproducing kernel Hilbert spaces (RKHS).

The model we consider in this model is

Yt(r) =

T

[0,1]
A∗(r, s)Xt(s) ds+

p#

j=1

Ztjβ
∗
j (r) + εt(r), r ∈ [0, 1], t ∈ {1, . . . , T}, r ∈ [0, 1],

where

• Yt(·) : [0, 1] → R is the functional response,

• Xt(·) : [0, 1] → R is the functional covariate,

• Zt = (Ztj)
p
j=1 ∈ Rp is the vector covariate,

• εt(·) : [0, 1] → R is the functional noise,

• A∗(·, ·) : [0, 1]× [0, 1] → R is a bivariate coefficient function, and

• {β∗
j (·) : [0, 1] → R}pj=1 is a collection of p univariate coefficient functions.

We consider a discretised observations of the functions. To be specific, assume the data are

{Xt(si), Zt, Yt(rj)}T,n1,n2
t=1,i=1,j=1.

In order to provide theoretical guarantees, we need some regularity conditions on the behaviours
of the functions.
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6.1 Reproducing kernel Hilbert spaces (RKHS)

Let L2 = L2([0, 1]) be the space of all square integrable functions with respect to the uniform
distribution on [0, 1], i.e. L2 = {f : [0, 1] → R, ‖f‖2L2 =

U
[0,1] f

2(s) ds < ∞}. We consider a Hilbert

space H ⊂ L2 and an associated inner product 〈·, ·〉H, under which H is complete. We assume that
there exists a continuous symmetric nonnegative-definite kernel functions K : [0, 1] × [0, 1] → R+

such that the space H is an RKHS, in the sense that for each s ∈ [0, 1], the function K(·, s) ∈ H
and g(s) = 〈g(·),K(·, s)〉H, for all g ∈ H.

It follows from Mercer’s theorem (Mercer, 1909) that there exists an orthonormal basis of L2,
{φk}∞k=1 ⊂ L2, such that K(·, ·) has the representation K(s, t) =

!∞
k=1 µkφk(s)φk(t), s, t ∈ [0, 1],

where µ1 ≥ µ2 ≥ · · · ≥ 0 are the eigenvalues ofK and {φk}∞k=1 are the corresponding eigen-functions.
We further denote Φk =

√
µkφk and note that ‖Φk‖H = 1, for k ∈ N.

Any function f ∈ H can be then written as

f(s) =

∞#

k=1

:T

[0,1]
f(s)φk(s) ds

;
φk(s) =

∞#

k=1

akφk(s), s ∈ [0, 1].

Its RKHS norm is defined as ‖f‖H =
S!∞

k=1 a
2
k/µk. For the eigen-functions, we have ‖φk‖2H = µ−1

k .

Remark 16.

• RKHS vs. Functional PCA.

• SVD

• Choice of kernel functions.

We now consider the class of Hilbert–Schmidt operators, which is an important subclass of
compact linear operators.

For any compact linear operator A2 : H → H, denote

A2[f, g] = 〈A2[g], f〉H, f, g ∈ H.

Note that A2[f, g] is well defined for any f, g ∈ H due to the compactness of A2. Define aij =
A2[Φi,Φj ] = 〈A2[Φj ],Φi〉H, i, j ∈ N. We thus have for any f, g ∈ H, it holds that

A2[f, g] = 〈A2[g], f〉H =

∞#

i=1

〈f,Φi〉H〈A2[g],Φi〉H =

∞#

i=1

〈f,Φi〉H〈A2

3

5
∞#

j=1

〈g,Φj〉HΦj

7

9 ,Φi〉H

=

∞#

i,j=1

〈f,Φi〉H〈g,Φj〉H〈A2[Φj ],Φi〉H =

∞#

i,j=1

aij〈f,Φi〉H〈g,Φj〉H.

Therefore, we can define a bivariate function A1(r, s), r, s ∈ [0, 1], affiliated with the compact linear
operator A2. Plugging f = K(r, ·) and g = K(s, ·) into the above, we have that

A1(r, s) =

∞#

i,j=1

aij〈K(r, ·),Φi〉H〈K(s, ·),Φj〉H =

∞#

i,j=1

aijΦi(r)Φj(s).
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Furthermore, it is straightforward to verify that for any v ∈ H, we have that

A2[v](r) = 〈A1(r, ·), v(·)〉H, r ∈ [0, 1].

Thus, we have established an equivalence between a compact linear operator A2 and its correspond-
ing bivariate function A1(r, s), therefore any compact linear operator A2 : H → H can be viewed
as a bivariate function A1 : [0, 1]× [0, 1] → R.

6.2 The penalised estimator and the representer theorem

Given absolute constants CA, Cβ > 0 and two RKHS’s H and Hβ , we define

CA = {A : H → H, ‖A‖F ≤ CA} and Cβ =

&
'

({βj}pj=1 ⊂ Hβ :

p#

j=1

‖βj‖2Hβ
≤ Cβ

)
*

+ ,

where ‖A‖2F =
!∞

i,j=1〈A[Φj ],Φi〉2H.
The constrained/penalised least squares estimator is

( "A, "β) = argmin
A∈CA

{βj}pj=1∈Cβ

3

5 1

Tn2

T#

t=1

n2#

j=1

:
Yt(rj)−

1

n1

n1#

i=1

A(rj , si)Xt(si)− 〈β(rj), Zt〉p

;2

+ λ

p#

j=1

‖βj‖n2

7

9 ,

where

• 〈·, ·〉p denotes the p-dimensional vector inner product;

• ‖ ·‖n denotes the discretised ℓ2-norm; to be specific, given an observation grid {ti}ni=1 ⊂ [0, 1],
‖f‖n =

<
n−1

!n
i=1 f

2(ti).

This is an infinite dimensional optimisation problem. Fortunately, a form of the representer
theorem states that the estimator ( "A, "β) can in fact be written as linear combinations of their
corresponding kernel functions evaluated at the discrete grids {si}n1

i=1 and {rj}n2
j=1.

Denote K and Kβ as the RKHS kernels of H and Hβ respectively. There always exists a

minimiser ( "A, "β) such that

"A(r, s) =

n1#

i=1

n2#

j=1

"aijK(r, rj)K(s, si), (r, s) ∈ [0, 1]× [0, 1], {"aij}n1,n2
i,j=1 ⊂ R,

and

"βl(r) =
n2#

j=1

"bljKβ(rj , r), r ∈ [0, 1], l ∈ {1, . . . , p}, {"blj}p,n2

l=1,j=1 ⊂ R.

Due to the equivalence between constrained and penalised optimisation, we can formulate the
above into a penalised optimisation such that

( "A, "β) = argmin
A,β

V
T#

t=1

n2#

j=1

:
Yt(rj)−

1

n1

n1#

i=1

A(rj , si)Xt(si)− 〈β(rj), Zt〉p

;2
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+ λ1‖A‖2F + λ2

p#

l=1

‖βl‖2H + λ3

p#

l=1

‖βl‖n2

W
.

The representer theorem is a very powerful tool, which is used almost everywhere when the
kernels are used. We present a proof here.

For any linear subspaces R,S ⊂ H, let PR and PS be the projection mappings of the spaces
R and S, respectively, with respect to ‖ · ‖H. For any f, g ∈ H and any compact linear operator
A : H → H, denote

A|R×S [f, g] = A[PRf,PSg].

Let ( "B, "α) be any solution to the optimisation problem. Let R1 = span{Kβ(rj , ·)}nj=1 ⊂ Hβ ,

R = span{K(rj , ·)}nj=1 ⊂ H and S = span{K(sj , ·)}nj=1 ⊂ H. Denote "βl = PR("αl), l ∈ {1, . . . , p}
and "A[·, ·] = "B|R×S [·, ·] = "B[PR·,PS ·].

Let S⊥ and R⊥ be the orthogonal complements of S and R in H. Then for any compact linear
operator A, we have the decomposition

A = A|R×S +A|R×S⊥ +A|R⊥×S +A|R⊥×S⊥ .

We can show that there exist {aij}ni,j=1 ⊂ R such that

A|R×S [f, g] =

n#

i,j=1

aij〈K(ri, ·), f〉H〈K(sj , ·), g〉H.

To complete the proof, we proceed in four steps.

S1. In this step, we are to show that for any compact linear operator A, its associate bivariate
function A(·, ·) satisfies that {A(ri, sj)}ni,j=1 only depend on A|R×S . This is because

A|R×S⊥(ri, sj) = A|R×S⊥ [K(ri, ·),K(sj , ·)] = A[PRK(ri, ·),PS⊥K(sj , ·)] = 0.

Similar arguments also lead to that A|R⊥×S(ri, sj) = A|R⊥×S⊥(ri, sj) = 0.

S2. By S1. we have that "A(ri, sj) = "B(ri, sj), i, j = 1, . . . , n, which implies that, there exists
{aij}ni,j=1 ⊂ R such that for any f, g ∈ H,

"A[f, g] =
n#

i,j=1

"aij〈K(ri, ·), f〉H〈K(sj , ·), g〉H.

Therefore, the associated bivariate function satisfies that, for all r, s ∈ [0, 1],

"A(r, s) =
∞#

i,j=1

"A[Φi,Φj ]Φi(r)Φj(s) =

∞#

i,j=1

n#

k,l=1

"aklΦi(rk)Φj(sl)Φi(r)Φj(s)

=

n#

k,l=1

"akl

: ∞#

i=1

Φi(r)Φi(rk)

;: ∞#

i=1

Φi(s)Φi(sl)

;
=

n#

k,l=1

"aklK(r, rk)K(s, sl).

S3. Similar arguments lead to that, for any j ∈ {1, . . . , n} and l ∈ {1, . . . , p}, we have that

"αl(rj) = 〈"αl,Kβ(rj , ·)〉Hβ
= "βl(rj).
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S4. We now have that

1

Tn

T#

t=1

n#

i=1

&
'

(Yt(ri)−
1

n

n#

j=1

"A(ri, sj)Xt(sj)− 〈"β(ri), Zt〉p

)
*

+

2

+ λ

p#

l=1

‖"βl‖n

=
1

Tn

T#

t=1

n#

i=1

&
'

(Yt(ri)−
1

n

n#

j=1

"B(ri, sj)Xt(sj)− 〈"α(ri), Zt〉p

)
*

+

2

+ λ

p#

l=1

‖"αl‖n,

‖ "A‖F ≤ ‖ "B‖F ≤ CA and

p#

l=1

‖"βl‖Hβ
≤

p#

l=1

‖"αl‖Hβ
≤ Cβ .

We now discuss the numerical issues. For any r, s ∈ [0, 1], denote the RKHS kernels as

k1(r) = [K(r, r1),K(r, r2), · · · ,K(r, rn2)]
⊤ ∈ Rn2 and k2(s) = [K(s, s1),K(s, s2), · · · ,K(s, sn1)]

⊤ ∈ Rn1 .

DenoteK1 = [k1(r1), k1(r2), · · · , k1(rn2)] ∈ Rn2×n2 andK2 = [k2(s1), k2(s2), · · · , k2(sn1)] ∈ Rn1×n1 .
Note that K1 = 〈k1(r), k1(r)⊤〉H and K2 = 〈k2(s), k2(s)⊤〉H, thus both are symmetric and positive
definite matrices.

By the representer theorem, we have the minimier taking the form

A(r, s) = k1(r)
⊤Rk2(s) and βl(r) = k1(r)

⊤bl, l = 1, · · · , p,

where R ∈ Rn2×n1 is an n2×n1 matrix and bl = [bl1, bl2, · · · , bln2 ]
⊤ ∈ Rn2 is an n2-dimensional vec-

tor for l = 1, · · · , p. Denote β(r) = [β1(r),β2(r), · · · ,βp(r)]⊤ = [b1,b2, · · · ,bp]
⊤k1(r) = B⊤k1(r),

where B = [b1,b2, · · · ,bp] ∈ Rn2×p. For t = 1, . . . , T , denote

Yt = [Yt(r1), Yt(r2), · · · , Yt(rn2)]
⊤ ∈ Rn2 and Xt = [Xt(s1), Xt(s2), · · · , Xt(sn1)]

⊤ ∈ Rn1 .

Define Y = [Y1, · · · , YT ] ∈ Rn2×T , X = [X1, · · · , XT ] ∈ Rn1×T and Z = [Z1, · · · , ZT ] ∈ Rp×T .
With the notation defined above, in the following, we rewrite the penalized optimization problem

as a function of R and B = [b1,b2, · · · ,bp].

• The squared loss can be rewritten as

T#

t=1

n2#

j=1

1
Yt(rj)−

1

n1

n1#

i=1

A(rj , si)Xt(si)− 〈β(rj), Zt〉p

22

=

T#

t=1

XXXXYt −
1

n1
K⊤

1 RK2Xt −K⊤
1 BZt

XXXX
2

2

=

XXXXY − 1

n1
K1RK2X −K1BZ

XXXX
2

F

,

where ‖ ·‖2 and ‖ ·‖F are the Euclidean norm of a vector and the Frobenius norm of a matrix.

• As for the Frobenius norm penalty ‖A‖2F , first, it is easy to see A⊤(r, s) = k1(s)
⊤Rk2(r),

where A⊤ is the adjoint operator of A. Let u(s) = k2(s)
⊤c, for any c ∈ Rn1 . We have that

A⊤A[u](s) = 〈A⊤(s, r), A[u](r)〉H = 〈k1(r)⊤Rk2(s), A[u](r)〉H
=〈k2(s)⊤R⊤k1(r), 〈A(r, s), u(s)〉H〉H = k2(s)

⊤R⊤〈k1(r), k1(r)⊤〉HR〈k2(s), u(s)〉H
=k2(s)

⊤R⊤K1RK2c.

Thus, the eigenvalues of A⊤A are the same as those of R⊤K1RK2 and ‖A‖2F = tr(R⊤K1RK2).
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• As for the H-norm penalty ‖βl‖2H and the group Lasso-type penalty ‖βl‖n2 , we have ‖βl‖2H =
〈βl(r),βl(r)〉H = b⊤

l K1bl and

‖βl‖n2 =

OPPQ 1

n2

n2#

j=1

β2
l (rj) =

OPPQ 1

n2

n2#

j=1

b⊤
l k1(rj)k1(rj)

⊤bl

=

OPPQb⊤
l

1

n2

n2#

j=1

k1(rj)k1(rj)⊤bl =

?
1

n2
b⊤
l K

2
1bl, for l = 1, . . . , p.

Combining all the components, the optimization can be written as

XXXXY − 1

n1
K1RK2X −K1BZ

XXXX
2

F

+ λ1tr(R
⊤K1RK2) + λ2

p#

l=1

b⊤
l K1bl + λ3

p#

l=1

?
1

n2
b⊤
l K

2
1bl.

Elementary algebra shows that the above is a convex function of R and B = [b1,b2, · · · ,bp]. Note
that the first three terms of the above are quadratic functions and can be handled easily, while the

main difficulty of the optimisation lies in the group Lasso-type penalty λ3
!p

l=1

S
1
n2
b⊤
l K

2
1bl.

Remark 17. Ridge regression. Iterative coordinate descent.

6.3 Different measurements of space complexity

In order to provide theoretical guarantees of the penalised estimators, we need more regularity
conditions, which are down to the complexity of the spaces. There are many different ways to
characterise the complexity. Roughly speaking, we can name three categories:

• distribution-free notions, e.g. packing number , covering number, Vapnik–Chervonenkis di-
mension;

• distribution-dependent notions, e.g. packing number, covering number, Vapnik–Chervonenkis
dimension in the L2(P ) distance;

• data-dependent notions, e.g. Rademacher complexity, Gaussian complexity.

In this section, we introduce the Rademacher complexity, but we remark that in order to provide
sharp analysis in functional linear regression, one in fact needs the notion of local Rademacher
complexity. The Rademacher complexity provides global estimates of the complexity of the function
class, that is, they do not reflect the fact that the algorithm will likely pick functions that have a
small error, and in particular, only a small subset of the function class will be used. We refer to
Bartlett et al. (2005), Mendelson (2002) and Mendelson and Vershynin (2002), for more detailed
explanations.

Let (X , P ) be a probability space. Denote by F a class of measurable functions from X to R,
and set X1, . . . , Xn to be independent random variables distributed according to P . Let σ1, . . . ,σn
be n independent Rademacher random variables, that is P{σ1 = 1} = P{σi = −1} = 1/2.

For a function f : X → R, define

Pnf =
1

n

n#

i=1

f(Xi), Pf = E{f(X)} and Rnf =
1

n

n#

i=1

σif(Xi).
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For a class F , set
RnF = sup

f∈F
Rnf.

Define Eσ to be the expectation with respect to the random variables {σi}ni=1, conditional on all
of the other random variables. The Rademacher average of F is E(RnF) and the empirical (or
conditional) Rademacher averages of F are

EσRnF =
1

n
E

:
sup
f∈F

n#

i=1

σif(Xi)|X1, . . . , Xn

;
.

A standard fact is that the expected deviation of the empirical means from the actual ones can
be controlled by the Rademacher averages of the class. That is, for any class of functions F , it
holds that

max

:
E sup

f∈F
(Pf − Pnf), E sup

f∈F
(Pnf − Pf)

;
≤ 2ERnF .

6.4 What we did not cover in this section

• Tuning parameter selection

• Kernel selection

• Theoretical results

• Testing

• Estimation

• Different observation grids

• Different RKHS’s

7 What we did not cover in this module

• Robustness

• Privacy

• Missing-ness

• Testing & confidence region

• Nonparametric statistics

• Causal inference

• Topological data anlysis

• and many many other topics...
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