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You probably won’t have time in the practical to complete all of these problems so feel free to choose whichever
you think most interesting.

If you’re an expert in these things already, then you might find it interesting to investigate the potential that
the compiler and Rcpp packages have for accelerating even these simple routines — or that ggplot2 has for
improving the appearance of output.

1. A warm-up which also appeared in the preliminary material; if you’ve never implemented something
like this before then this might be a useful preliminary step.

Transformation Methods: Recall the Box–Muller method which transforms pairs of uniformly-distributed
random variables to obtain a pair of independent standard normal random variates. If

U1, U2
iid∼ U[0, 1],

and
X1 =

√
−2 log(U1) · cos(2πU2),

X2 =
√
−2 log(U1) · sin(2πU2),

then X1, X2
iid∼ N (0, 1).

(a) Write a function which takes as arguments two vectors (U1,U2) and returns the two vectors
(X1,X2) obtained by applying the Box–Muller transform elementwise.

(b) The R function runif provides access to a PRNG. The type of PRNG can be identified using the
RNGkind command; by default it will be a Mersenne-Twister (http://en.wikipedia.org/wiki/Mers
enne_twister). Generate 10,000 U[0, 1] random variables using this function, and transform this
vector to two vectors each of 5,000 normal random variates.

(c) Check that the result from (b) is plausibly distributed as pairs of independent, standard normal
random variables, by creating a scatter plot of your data.

2. The Bootstrap: This question can be answered in two ways. The more direct (and perhaps more
informative, if you have the time to do so and the inclination to implement a bootstrap algorithm from
scratch) is to use the sample function to obtain bootstrap replicates, and to compute the required
confidence intervals by direct means (hint: set replace=TRUE). More pragmatically, the boot library
provides a function boot to obtain bootstrap samples and another, boot.ci, to provide various bootstrap
confidence intervals.

(a) The Nile dataset shows the annual flow rate of the Nile river. Use a histogram or other visualisation
to briefly explore this data.

(b) What are the mean and median annual flow of the Nile over the period recorded in this data set?
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(c) Treating the data as a simple random sample, appeal to asymptotic normality to construct a
confidence interval for the mean annual flow of the Nile.

(d) Using the boot::boot function to obtain the sample and boot::boot.ci to obtain confidence
intervals from that sample, or otherwise, obtain a bootstrap percentile interval for both the mean
and median of the Nile’s annual flow. For the median you may also wish to obtain the interval
obtained by an optimistic appeal to asymptotic normality combined with a bootstrap estimate of
the variance (boot::boot.ci will provide this).

Note the following: boot::boot does the actual bootstrap resampling. It needs a function of two
arguments to compute the statistic for each bootstrap sample: the first contains the original data
and the second the index of the values included in a particular bootstrap resampling.

(e) Are there any interesting qualitative differences between the various confidence intervals? How
does this relate to the data?

(f) Are your findings stable? If you repeat the bootstrap sampling do you recover similar behaviour?

(g) Are there any reasons to doubt the accuracy of these confidence intervals?

3. Convergence of Sample Approximations

(a) The stats::ecdf and stats::plot.ecdf functions compute and plot empirical distribution
functions from a provided sample.

(i) Show plots of the empirical distribution function of samples of a variety of sizes ranging from
10 to 10,000 from a U distribution. Add to your plots the distribution function of the U
distribution.

(ii) Repeat part (i) with a standard normal distribution.

(iii) Repeat part (i) with a Cauchy distribution.

(b) For each of the three distributions considered in the previous part, determine supx |F̂n(x)− F (x)|
for each n considered (for simplicity, consider the sup over only the sampled values of x) and plot
these quantities against n. Do you notice anything interesting?

4. Transformation, Rejection and Importance Sampling: The Kumaraswamy distribution1 with parameters
a > 0 and b > 0 describes a random variable with range [0, 1]. It has density:

fX(x; a, b) = abxa−1(1− xa)b−1 for x ∈ [0, 1].

(a) Transformation Method

(i) Verify that the distribution function is FX(x) = 1− (1− xa)b, and compute its inverse.

(ii) Implement a function which uses the inverse transform method to return a specified number
of samples from this distribution with specified a and b parameters, using runif as a source
of uniform random variables.

(iii) Use the system.time2 function to determine how long your implementation takes to obtain a
sample of size 100,000 from the Kumaraswamy distribution with a = b = 2. (You may wish to
run it a few times and take the average.)

(b) Rejection Sampling
1Kumaraswamy, P. (1980). “A generalized probability density function for double-bounded random processes". Journal of

Hydrology 46 (1-2): 79–88.
2system.time has poor rounding properties on Windows machines. A cheap alternative in Windows is to use Sys.time

instead, which just records the current date and time. You can take the difference of the return value of this function at the
beginning and the end of the period to be timed. The correspondence between the two timing methods is not fantastic. A better
alternative is to use the microbenchmark package.
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(i) Implement a function which uses rejection sampling to return a specified number of samples
from this distribution with specified a and b parameters, a, b ≥ 1, using runif as its sole
source of randomness (i.e. using a U proposal distribution). What would happen if a < 1 or
b < 1?

(ii) Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 from the Kumaraswamy distribution with a = b = 2.

(iii) Modify your function to record how many proposals are required to obtain this sample; how
do the empirical results compare with the theoretical acceptance rate?

(c) Importance Sampling

(i) Implement a function which uses a uniform proposal to return a weighted sample (i.e. both
the sampled values and the associated importance weights) of size 100,000 which is properly
weighted to target the Kumaraswamy distribution of parameters a = b = 2. Use the normalising
constants which you know in this case.

(ii) Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 targeting this distribution.

(iii) Produce a variant of your function which returns the self-normalised version of your weighted
sample (this is easy; just divide the importance weights by their mean value after producing
the original weighted sample).

(iv) Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 targeting this distribution.

(d) Comparison

(i) The inverse transformation and rejection algorithms both produce iid samples from the target
distribution and so the only thing which distinguishes them is the time it takes to run the two
algorithms. Which is preferable? How many uniform random variables do the two algorithms
require to produce the samples (this is, of course, a random quantity with rejection sampling,
but the average value is a good point of comparison) and how does this relate to their relative
computational costs?

(ii) To compare the importance sampling estimators with other algorithms it is necessary to
have some idea of how well they work. To this end, use all four algorithms to estimate the
expectation of X when X ∼ fX(·; a, b) using samples of size 100,000. (You might want to
make the sample smaller if your implementation takes too long to produce a result with this
sample size).

The algorithms which use iid samples from the target and the simple importance sampling
scheme are unbiased and so we can use their variance as a measure of how well they perform.
Noting that their variance scales with the reciprocal of sample size, an appropriate figure of
merit is the product of the estimator variance and computational cost (cheaper schemes could
be run for longer to reduce their variance without requiring any further computing).

We’re interested here not in the variance of the target distribution—which we could easily
estimate from a single sample—but in the estimator variance: a characterisation of the
variability between repeated runs of our algorithms. This Monte Carlo variance tells us how
much variability we introduce into the estimate by using Monte Carlo instead of the exact
population mean. To characterise it, run each of your algorithms a large number of times,
100, say, obtain an estimate from each run and compute the sample variance of the collection
of estimates you obtain.

How do the algorithms compare?

(iii) The self-normalized importance sampling scheme is biased and this further complicates the
comparison.
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First obtain its variance as you did for the other algorithms.

Now estimate its bias: what is the average difference between the estimates you obtained with
this algorithm and the average result obtained with one of the unbiased schemes?

The mean squared error can be expressed as the sum of variance and bias squared.

Perform a comparison of the algorithms which considers MSE as well as computational cost.

5. Simple Bayesian Inference

Consider a scenario in which you wish to estimate an unknown probability given n realisations of a
Bernoulli random variable of success probability p. You can view your likelihood as being Bin( n,p
). The traditional way to proceed is to impose a Beta prior on p and to exploit conjugacy. Consider
instead a setting in which you wish to use a Kumaraswamy distribution with a = 3 and b = 1 as a prior
distribution (perhaps you’re dealing with a problem related to hydrology).

(a) Develop a simple Monte Carlo algorithm which allows you to compute expectations with respect
to the posterior distribution.

(b) Use your algorithm to compare the prior mean and variance of p with its posterior mean and
variance in two settings: if n = 10 and you observe 3 successes and if n = 100 and you observe 30
successes.

(c) How does your algorithm behave if n is much larger (and we observe 3n/10 successes)?

(d) How might you address this problem?
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