Computer Intensive Statistics: APTS 2022–23 Computer Practical 2 Markov Chains and Monte Carlo

Richard Everitt (richard.everitt@warwick.ac.uk)

May 2023

Contents

The first problem sheet contained several problems and if you want to continue working on those that is fine; this sheet just contains a couple of simple questions to give you a chance to try some Markov chain-based problems.

1. A warm-up which also appeared in the preliminary material; if you've never implemented something like this before then this might be a useful preliminary step.

In a simplified model of the game of Monopoly, we consider the motion of the piece around a loop of 40 spaces. We can model this as a Markov chain with a state space consisting of the integers $0, \ldots, 39$ in which the transition kernel adds the result of two six-sided dice to the current state modulo 40 to obtain the new state.

- (a) Implement a piece of R code which simulates this Markov chain.
- (b) Run the code for a large number of iterations, say 100,000, and plot a histogram of the states visited.
- (c) Based on the output of the chain, would you conjecture that there is an invariant distribution for this Markov chain? If so, what?
- (d) Write the transition kernel down mathematically.
- (e) Check whether the Markov kernel you have written down is invariant with respect to any distribution conjectured in part (c).
- 2. An actual Gibbs Sampler.

Recall the Poisson changepoint model discussed in lectures, and on p21-22 of the supporting notes, and think about the following closely related model: Observations y_1, \ldots, y_n comprise a sequence of M iid $N(\mu_1, 1)$ random variables followed by a second sequence of n-M iid $N(\mu_2, 1)$ random variables. M, μ_1 and μ_2 are unknown. The prior distribution over M is a discrete uniform distribution on $\{1, \ldots, n-1\}$ (there is at least one observation of each component). The prior distribution over μ_i (i = 1, 2) is $N(0, 10^2)$. The three parameters are treated as being a priori independent.

- (a) Write down the joint density of $y_1, \ldots, y_n, \mu_1, \mu_2$ and M, and obtain the posterior distribution of μ_1, μ_2 and M, up to proportionality, in as simple a form as you can.
- (b) Find the "full conditional" distributions of μ_1 , μ_2 and M. (i.e. the conditional distributions of each of these variables given all other variables).
- (c) Implement a Gibbs sampler making use of these full conditional distributions in order to target the posterior distribution identified in part (b).
- (d) Simulate some data from the model for various parameter values and test your Gibbs sampler.

(e) How might you extend this algorithm if instead of a changepoint model you had a mixture model in which every observation is drawn from a mixture, i.e.:

$$Y_1, \dots, Y_n \stackrel{\text{iid}}{\sim} pN(\cdot; \mu_1, 1) + (1 - p)N(\cdot; \mu_2, 1).$$

(The likelihood is now $\prod_{i=1}^n [p\mathsf{N}\,(y_i;\mu_1,1)+(1-p)\mathsf{N}\,(y_i;\mu_2,1)]$, with $p,\,\mu_1$, and μ_2 unknown (and M is no longer a parameter of the model.)

Consider the following things:

- (i) The prior distribution over p.
- (ii) Any other variables you may need to introduce.
- (iii) The resulting algorithm.

If you have time, implement the resulting algorithm and apply it to some simulated data.