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1 Introduction
The principal aim of these notes is to provide context and motivation for the APTS Computer Intensive
Statistics Module, and to make the module as self-contained as is feasible. Statistics is a broad discipline
and the APTS cohort naturally has a diverse range of backgrounds. If you have attended the earlier APTS
modules this year, especially Statistical Computing and Statistical Inference, then you should be well prepared
for this module.

Although it is likely that everyone attending the module will know everything they need to follow the lectures,
there is one area which will require some preparation if it’s something with which you are not already
comfortable. Indeed, there is one thing from which there is no escaping in computer intensive methods of
any sort: implementation. It’s impossible to really understand the ideas which we’ll be discussing without
experimenting with them yourself. As such, perhaps the most important prerequisite is competence with
basic computer programming. In addition to the material described here, it is important that you are able
to use the R (R Core Team 2013) programming language. If you haven’t already done so, then do please
complete the R Programming Course for APTS Students before the start of the APTS week itself.

Two appendices are provided. You might very well already know everything in these appendices—if that’s
the case, then great. If you have a less conventional statistical background and haven’t managed to attend
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the earlier APTS modules then you may find some parts of these notes less familiar in which case some
references are provided, but rest assured that the module should be accessible to anyone who is pursuing a
PhD in any aspect of statistics or applied probability (both interpreted broadly). Appendix A provides a
compact summary of some statistical tasks which we will aim to address in this module. It is likely that
anyone pursuing a PhD in statistics—especially anyone who has attended an APTS module on Statistical
Inference—will be familiar with this material, and (re)reading the notes provided for that module would
be good preparation for the present one, but it is also convenient to have a compact summary on hand.
Appendix B summarises some basic notions of convergence of stochastic quantities. This is here only to
ensure that everyone has had the opportunity to see these ideas before the week. If everything it contains is
obvious to you then great; if it’s not then don’t panic, we will make limited use of these results and their
friends to motivate and justify some of what we do in this module. But we won’t spend time proving them or
focussing heavily on their technical consequences1. If you’re prepared to believe, in particular, that sample
averages of collections of random variables might be expected to become close to the population average
for large enough samples of sufficiently regular random variables then you can dispense with the detailed
contents of Appendix B entirely. A few exercises are provided in each chapter for anyone who does want to
revise these ideas or gain some exposure to them.

Before going any further, we need to establish what, exactly, computer intensive statistics actually is. Clearly,
it is statistics and this must be borne in mind throughout: the computer is a tool which we are using to
resolve statistical problems as well as we are able to. When we can dispense with complicated computational
procedures without sacrificing accuracy or power then we should probably do so.

So what sorts of statistics are computer intensive? There are several situations in which we are likely to find
ourself needing substantial computing power:

Big Data. A current buzzword, sometimes unhelpful, but it would be negligent not to mention in the current
climate. Situations in which we have very large data sets necessarily involve substantial computational
challenges: storing the data produced in fractions of a second at the large hadron collider at CERN is already
a (computational) challenge; computing the sample moments of a set of 1012 observations is not trivial. Doing
anything interesting with such data is certainly computer intensive.

Big Models. If having a large and complicated data set is the characteristic of Big Data then the alternative
position of having a large and complicated model can presumably be characterised as having big models.
There are lots of subtly different situations which can be characterised as being difficult because of the
complexity of the model. These include:

• large, hierarchical Bayesian models with many levels of uncertainty and many latent variables;

• latent variable models such as phylogenetic trees in which we have a parametric generative model for
the process by which the tree was generated and observations of the leaves of the tree (the current
generation of a population) but no measurements of the intermediate variables;

• scientific models from which we can sample but which are so complicated that we can’t write down
the likelihood—think of models in climate science, numerically solved differential equation models in
physics and that sort of thing.

We will at least touch on all of these things at some point during the module. Roughly speaking, everything
which we will discuss can be thought of as being computer intensive for one of two reasons: because we want
to deal with so much data (in some sense) that doing anything with it is difficult or because what we want to
do is intrinsically complicated.

Acknowledgements These materials are closely based on those developed by previous module leaders, Dr
Paul Jenkins (University of Warwick) and Prof. Adam Johansen (University of Warwick), in turn based on a
course Prof. Johansen developed with Dr Ludger Evers (University of Glasgow).

1Apologies to those of you who are disappointed by this. There will be copious references to places which do.
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2 Towards Computer Intensive Statistics
This chapter aims to introduce a few of the ideas which will be important in this module and to provide
some pointers to directions which will be looked at during the week.

There are a great many books on simulation-based computational statistics; some good examples are those of
Voss (2013) which provides a gentle introduction to simulation-based computational methods, Robert and
Casella (2004) which takes a rigorous but approachable look at the area from a mathematical/statistical
perspective and Liu (2001) which many with backgrounds in the natural sciences find to be very accessible.

2.1 Simulation and the Monte Carlo Method
Simulation will occupy most of our time in this module. The idea of drawing random variables from
specified distributions and using the resulting ensemble of realisations to approximate quantities of interest is
intoxicatingly powerful for a method which, at least in principle, is very simple.

Methods based around simulation are typically termed Monte Carlo2 methods, following Metropolis and
Ulam (1949). One characterization of such methods was given by Halton (1970):

Representing the solution of a problem as a parameter of a hypothetical population, and using
a random sequence of numbers to construct a sample of the population, from which statistical
estimates of the parameter can be obtained.

In some ways this is doing statistics backwards: rather than taking a real sample (of data) and attempting to
infer parameters of an underlying population using analytical techniques, we devise a representation of a
quantity of interest as a parameter of a hypothetical population and then obtain, artificially, a sample from
that population before using the properties of this sample as a proxy for those of the population itself.

Perhaps an example might make it clear how simple this approach really is. You may well have seen this
example before, but try to see it as a prototype for a general approach to approximate computation.

Example 2.1 (Computing π in the rain). Suppose we want to obtain an approximation of π using a
simple experiment. Assume that we are able to produce “uniform rain” on the square extending to ±1 in two
orthogonal directions, [−1, 1]2 = [−1, 1]× [−1, 1] = {(x, y) : x ∈ [−1, 1], y ∈ [−1, 1]}, such that the probability
of a raindrop falling into a region R ⊆ [−1, 1]2 is proportional to the area of R, but independent of the
position of R. It is easy to see that this is the case iff the two coordinates X,Y are independent realisations
of uniform distributions on the interval [−1, 1] (in short X,Y iid∼ U[−1,+1]).

Now consider the probability that a raindrop falls into the unit circle (see Figure 1). It is

P(drop within circle) = area of the unit circle
area of the square =

∫ ∫
{x2+y2≤1}

1 dxdy∫ ∫
{−1≤x,y≤1}

1 dxdy = π

2 · 2 = π

4 .

In other words,
π = 4 · P(drop within circle),

i.e. there is an expression for the desired quantity π as a function of a probability.

Of course we cannot compute P(drop within circle) without knowing π. However, we can estimate the
probability using our raindrop experiment. If we observe n raindrops, then the number of raindrops M that
fall inside the circle is a binomial random variable, M ∼ Bin (n, p) with p = P(drop within circle).

Thus, if we observe that m raindrops fall within the circle, we approximate p using its maximum-likelihood
estimate p̂ = m/n, and we can estimate π by π̂ = 4p̂ = 4 · mn . Assume we have observed, as in Figure 1, that

2Metropolis (1987) has this explanation: “It was at that time that I suggested an obvious name for the statistical method —
a suggestion not unrelated to the fact that Stan had an uncle who would borrow money from relatives because he ‘just had to go
to Monte Carlo.’ The name seems to have endured.”
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Figure 1: Illustration of the estimation π using uniform rain.

77 of the 100 raindrops were inside the circle. In this case, our estimate of π is π̂ = 4× 77/100 = 3.08, which
is clearly some way from the truth.

However the strong law of large numbers (Theorem B.2) guarantees that the estimator π̂ = 4M/n
converges almost surely to π. Figure 2 shows the estimate obtained after n iterations as a function of n for
n = 1, . . . , 2000. You can see that the estimate improves as n increases.

We can assess the quality of our estimate by computing a confidence interval for π. As we have X ∼ Bin (100, p),
we can obtain a 95% confidence interval for p using a Normal approximation:[

0.77− 1.96 ·
√

0.77 · (1− 0.77)
100 , 0.77 + 1.96 ·

√
0.77 · (1− 0.77)

100

]
= [0.6875, 0.8525],

As our estimate of π is four times the estimate of p, we now also have a confidence interval for π which is
simply [2.750, 3.410].

In more general terms, let π̂n = 4p̂n denote the estimate after having observed n raindrops. A (1 − 2α)
confidence interval for π is [

π̂n − z1−α

√
π̂n(4− π̂n)

n
, π̂n + z1−α

√
π̂n(4− π̂n)

n

]
.

Recall the main steps of this process:

• We have written the quantity of interest (in our case π) as an expectation (a probability is a special
case of an expectation as P(A) = E [IA] where IA(x) is the indicator function which takes value 1 if
x ∈ A and 0 otherwise).

• We have replaced this algebraic representation of the quantity of interest with a sample approximation.
The strong law of large numbers guaranteed that the sample approximation converges to the algebraic
representation, and thus to the quantity of interest. Furthermore, the central limit theorem (Theorem
B.3) allows us to assess the speed of convergence.

Of course we’d never use a method like this one to estimate π; there are much faster ways of getting good
estimates. Indeed, the rate of convergence here illustrates that these methods can be really computationally
intensive. One major advantage of such methods, as we shall see, is that the rate of convergence of Monte
Carlo estimates of expectations is independent of the dimension of the space on which the integral is defined,
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Figure 2: Estimate of π together with approximate confidence intervals resulting from the raindrop experiment.
Notice the jagged evolution of the confidence interval estimate: this is something which must be borne in
mind when using simulation, if we use uncertainty estimates based upon estimated values then the quality of
the estimate will determine also the quality of the *uncertainty* estimate. We can dramatically underestimate
our own uncertainty if we are not careful.
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unlike more traditional approaches to numerical integration, and it is for hard problems in which other
methods fail to produce any meaningful solution that simulation-based strategies are most useful.

2.2 Bootstrap Methods
Bootstrap methods are based around the, at first rather fanciful, idea that if we sample n times with
replacement from a simple random sample of size n then the relationship between our resampled set of n
points and the empirical distribution of the original sample is the same as the relationship between the
original sample and its true distribution. This can be justified, at least asymptotically under regularity
conditions via the Glivenko–Cantelli theorem (Theorem B.4) and its relatives. Sampling with replacement
from a sample is equivalent to sampling from the distribution with its empirical distribution function.

There are many applications of bootstrap techniques, and many variations on the basic idea. In broad terms,
the approach can be most useful when we want to construct confidence intervals without being able to
compute the distribution of the test statistic. They can allow us:

• to mitigate certain types of bias; and

• to obtain similar results to those yielded by higher order asymptotic theory without doing the analysis
that would be required to obtain them.

The paper of Efron (1979) is a reasonable first reference; a number of books on the subject have been written,
including Efron (1982). If you already have Wasserman (2004) then you may find the informal introduction
to these techniques presented in Chapter 8 helpful.

Bootstrap methods—and their strengths and limitations—will be discussed in the lectures.

2.3 Markov chains and Monte Carlo
Markov chains are objects with which you will become familiar during the APTS week, if you are not already.
Roughly speaking, a Markov chain is a stochastic process for which the distribution of its future states is
independent of its past given its current value. A more formal coverage of Markov chains was provided by
the Applied Stochastic Processes module which took place in the previous APTS week.

The ergodic hypothesis was originally the work of Boltzmann and was intended to provide a characterisation of
the long term average behaviour of a thermodynamic system. It said, approximately, that the time averaged
behaviour of the microscopic configuration of a system was the same as the instantaneous average over a
hypothetical ensemble of systems prepared in a particular way. In modern terms we would think of that
hypothetical ensemble as a way of describing a probability distribution and we could think of the ergodic
hypothesis as telling us (assuming it to be true) that the long-time-average behaviour of the stochastic
process describing the evolution of the system coincided with an expectation with respect to that probability
distribution.

The previous paragraph appears to be hinting at something like a law of large numbers and, indeed, that’s
what a modern ergodic theorem describes. From a simulation point of view this is a tremendously powerful
concept and there is an enormous literature on Markov chain Monte Carlo methods in which the trajectories
of Markov chains are simulated for a long period of time and averages over these trajectories are calculated
as a proxy for the expectation with respect to a particular distribution. A major contributing factor to the
popularity and pre-eminence of these methods amongst computational statistics is that there exist recipes
for the construction of Markov chains whose ergodic averages coincide with expectations with respect to
essentially any distribution of interest, particularly the Metropolis (Metropolis et al. 1953) algorithm and its
variants such as the Metropolis–Hastings algorithm (Hastings 1970) and the reversible jump algorithm (Green
1995). For some well-behaved statistical problems, the so-called Gibbs sampler (Geman and Geman 1984)
provides what may seem an even more automatic approach, but it does come at the cost of some additional
human calculation.

During the course of the APTS week we’ll see how to construct Markov chains to answer particular questions
of interest and touch on all of the algorithms mentioned above.
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There are vast numbers of resources which provide information on Markov chain Monte Carlo methods. I
find that Robert and Casella (2004) covers this particular sub-field of Monte Carlo very well, but many other
resources exist. For many years Gilks, Richardson, and Spiegelhalter (1996) has been something of a canonical
reference, but has perhaps aged a little since its publication; perhaps less venerable but undoubtedly more up
to date is Brooks et al. (2011).

2.4 Big Data is a Big Problem
Here’s the description of a dataset from a piece of work in which one of us was involved (Chan, Jenkins, and
Song 2012):

We applied our method to samples from two populations of D. melanogaster (fruit flies): Raleigh,
USA (RAL) and Gikongoro, Rwanda (RG). The RAL dataset consisted of the genomes of 37
inbred lines sequenced at a coverage of ≥ 10× by the Drosophila Population Genomics Project.
The RG dataset comprised 22 genomes from haploid embryos sequenced at a coverage of ≥ 25× by
the Drosophila Population Genomics Project 2. . . we were able to designate the ancestral allele in
1,755,040 of 2,475,674 high quality (quality score Q ≥ 30) SNPs (single nucleotide polymorphisms)
in the RAL sample (70.9%), and 2,213,312 out of 3,134,295 high quality SNPs in the RG sample
(70.6%).

Each genome is summarised by its positions that differ from some other members of the sample (“SNPs”),
so the data can be summarised by tables of size 37× 2, 475, 674 (RAL) and 22× 3, 134, 295 (RG). By the
standards of modern statistics, these aren’t particularly large data sets, yet managing, storing and performing
inference for data sets on this scale required considerable thought and effort.

The need for tools which can deal efficiently with data sets of this magnitude (and, indeed, much larger ones)
is one of the reasons that computer intensive statistics is important. It would not be feasible to compute the
sample mean of a data set with a quarter of a million elements without making use of a computer; of course,
performing meaningful inference typically requires much more sophisticated computations than that.

A question to think about: from your personal perspective: how big is a large data set and how big is an
enormous data set?

2.5 Warm-Up Exercises
Exercise 2.1. (Preliminary Simulation). Familiarise yourself with the support provided by R for simple
simulation tasks. In particular:

1. Generate a large sample of N (3, 7) random variables (see rnorm); plot a histogram (hist with sensibly-
chosen bins) of your sample and overlay a normal density upon it (see dnorm, lines).

2. Use sample to simulate the rolling of 1,000 dice; use your sample to estimate the average value obtained
when rolling a standard die. Show how the estimate obtained using n dice behaves for n ∈ [0, 1000]
using a simple plot.

Exercise 2.2. (Towards Bootstrap Methods). Imagine that you have a sample of 1,000 values from a
population of unknown distribution (for our purposes, you can obtain such a sample using rnorm as in the
previous question and pretending that the distribution is unknown).

1. Write code to repeat the following 1,000 times:

(a) Sample 1,000 times with replacement from the original sample to obtain 1,000 resampled sets of
values.

(b) Compute the sample mean of your resampled set.

2. You now have 1,000 sample means for resampled subsets of your data. Find the 5th and 95th percentile
of this collection of resampled means.
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3. How does this compare with a standard 90% confidence interval for the mean of a sample of size 1,000
from your chosen distribution?

4. Repeat the above using the median rather than mean.

5. Why might this be a useful technique? Note that we haven’t done anything to justify the approach yet.

Exercise 2.3. (Transformation Methods). The Box–Muller method transforms a pair of uniformly-
distributed random variables to obtain a pair of independent standard normal random variates. If

U1, U2
iid∼ U[0, 1],

and
X1 =

√
−2 log(U1) · cos(2πU2),

X2 =
√
−2 log(U1) · sin(2πU2),

then X1, X2
iid∼ N (0, 1).

(a) Write a function which takes as arguments two vectors (U1,U2) of uniformly distributed random vari-
ables, and returns the two vectors (X1,X2) obtained by applying the Box–Muller transform elementwise.

(b) The R function runif provides access to a ‘pseudo-random number generator’ (PRNG), which we’ll
discuss further during the module. Generate 10,000 U[0, 1] random variables using this function, and
transform this vector to two vectors, each of 5,000 normal random variates.

(c) Check that the result from (b) is plausibly distributed as pairs of independent, standard normal random
variables, by creating a scatter plot of your data.

Exercise 2.4. (Simulating Markov chains). Consider a simple board game in which players take it in turns
to move around a circular board in which an annulus is divided into 40 segments. Players move by rolling two
standard dice and moving their playing piece, clockwise around the annulus, the number of spaces indicated.
For simplicity we’ll neglect the game’s other features.

1. All players begin in a common space. Write R code to simulate a player’s position after three moves of
the game and repeat this 1,000 or so times. Plot a histogram to show the distribution of player positions
after three moves. Is this consistent with your expectations?

2. Now modify your code to simulate the sequence of spaces occupied by a player over their first 10,000
moves. Plot a histogram to show the occupancy of each of the forty spaces during these 10,000 moves.
Are there any interesting features?

3. If a player’s score increases by 1 every time they land on the first space (the starting space), 2 every
time they land in the space after that and so on up to 40 for landing in the space immediately before
that space then approximately what would be the long-run average number of points per move (use your
simulation to obtain an approximate answer).

A Inference and Estimators
Computer intensive statistics is still statistics, and it is important not to lose sight of that fact. It’s necessary
to focus on the core ideas of computer intensive statistics in this module due to the limited time available,
but it is important to remember why we want to address the problems we consider.

One of the major tasks of computer intensive statistics is to provide (approximate) estimates in situations in
which the estimators of interest are analytically intractable. This chapter provides a short reminder of some
of the estimators of widespread use in statistics that will feature in this module.

Most if not all of this material was covered in much greater depth in the Statistical Inference module.
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A.1 Inference and Some Common Estimators
Computationally intensive methods are extremely prevalent in Bayesian statistics and people often make the
mistake of thinking the two are synonymous. This is not the case. We will see in this module that computer
intensive methods can be very useful in other areas of statistics, including likelihood-based inference. With
this in mind, it is useful to recall a number of common estimation tasks we might want to carry out. It is
very likely that you’ve come across all of these things before; the particular character of our interest is that
we shall seek to find approximate solutions to these estimation problems in settings in which they are not
analytically tractable (either because the computation is apparently not possible even in abstract terms or
because carrying it out would take many times the age of the universe).

A.1.1 Maximum Likelihood Estimates

Given a generative model for our data, X ∼ f(· | θ), the likelihood is the function L(θ;x) viewed as a
function of the parameter vector, θ, with the observed data, x, treated as fixed.

The maximum likelihood estimator is:

θ̂MLE := arg max
θ

L(θ;x).

It is common to work with the logarithm of the likelihood, `(θ;x) = logL(θ;x) for numerical reasons. In
particular, if x = (x1, . . . , xn) and Xi

iid∼ f(·|θ) then:

L(θ;x) =
n∏
i=1

f(xi | θ), `(θ;x) =
n∑
i=1

log f(xi | θ),

and it is typically much easier to work with ` than L. By the strict monotonicity of the logarithm (and
non-negativity of the likelihood) it is clear that:

arg max
θ

L(θ;x) = arg max
θ

`(θ;x).

For complex models, obtaining this maximiser analytically can be impossible; we’ll see that there are (at
least approximate) computational solutions to this problem during this module.

A.1.2 Confidence Intervals

A confidence interval is a random set which will contain the true value of the parameter with a specified
probability with respect to replication of the sampling experiment.

If we are interested in a (real-valued) parameter θ and a density f(x; θ) describing a data-generating process
then we seek random variables L(X) and U(X) such that P(L(X) ≤ θ ≤ U(X)) = 1−α for some confidence
level α. Note that θ is not treated as random here, but as fixed and unknown; it is L(X) and U(X) that are
random and the probability is with respect to their distribution under repeated realisations of the experiment
which realises the random variable X describing the data.

A level α confidence interval for θ, then, is a random interval [L(X), U(X)] which would contain the true
parameter a proportion (approximately / exactly) α of the time if we carried out the whole procedure (a very
large number of / infinitely many) times.

A.1.3 Hypothesis Tests

Closely related to the notion of a confidence interval is the hypothesis test. In order to distinguish between two
possible explanations for observed data, a default scenario H0 termed the null hypothesis and an alternative
H1, this procedure seeks to reject H0 when the data is in an appropriate sense unlikely to have arisen if H0 is
true and not to reject H0 otherwise.
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More precisely, given a test statistic T (X), we seek a set of values Cα such that

P(T (X) ∈ Cα | H0 is true) = α, P(T (X) ∈ Cα | H1 is true) > α.

Often Cα is obtained as the complement of an interval of values which are likely under the null hypothesis
(viewed relatively, contrasting with the plausibility of those values under the particular alternative hypothesis).
See Figure 3 for an illustration.

-

T

6
fT (t)

if H0

is true

Density of T under H0

�
�

��

Area = α
�
��� -

Cα

Figure 3: The critical or rejection region associated with a particular test; Cα = [c,∞) in this case.

Computing the distribution of T (X) under H0 can be difficult (essentially impossible) in complicated
situations. We will see that there are computational solutions to this problem.

A.1.4 Bayesian Point Estimates

In Bayesian statistics we summarise the state of knowledge about unknown variables using a probability
distribution. The prior distribution specifies the state of knowledge about an unknown parameter vector θ
prior to the current experiment; again a generative model f(x | θ) then describes the distribution of the data
given a particular value for this parameter. Combining these according to the standard probability calculus
gives rise to the celebrated Bayes rule:

p(θ | x) = p(θ)f(x | θ)
p(x) ,

which connects the posterior distribution p(θ | x) (summarising knowledge about the parameter vector after
the assimilation of the current data) to those quantities. Here, p(x) =

∫
p(θ)f(x | θ)dθ is sometimes known

as the evidence or marginal likelihood and allows the comparison of different models: it tells us how likely
particular data is given a particular model (and given a prior distribution over the parameters of that model).

There are some estimates which are very commonly used (posterior mean and median, for example) but
in principle one should proceed by specifying a loss (or cost) function C : Θ × Θ → [0,∞) where C(θ, ϑ)
specifies the cost of estimating a value of θ when the true parameter value is ϑ. See Robert (2001) for an in
depth discussion of this approach. We’ll settle in this module for obtaining approximations of these estimates
by computational methods.

A.1.5 Credible Intervals

Bayesian interval estimates are especially simple. A credible interval of level α for a real-valued parameter θ
is an interval [L(x), U(x)] that contains the parameter θ with probability α conditional upon having observed
the particular data x, i.e. P(θ ∈ [L(x), U(x)] | X = x) = α. As in the Bayesian paradigm, θ is itself a
random variable, so this probabilistic statement makes sense and credible intervals admit a much simpler
interpretation than the confidence intervals which they superficially resemble.

We’ll see that credible intervals can be obtained from essentially the same computational methods as Bayesian
point estimates.

A.2 Variability of Estimators and Uncertainty Quantification
A theme that turns out to be important in a number of forms in computer intensive statistics is the variability
of estimate and the quantification of uncertainty. In classical statistics, the sampling distribution of an
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estimator is often used to provide some measure of uncertainty, perhaps via confidence intervals. The sampling
distribution of a statistic T (X) is simply the distribution which it has under repeated sampling of the data
itself X from the model. In Bayesian statistics, the posterior distribution itself, p(θ | x), summarises the
uncertainty we have about the value of any parameter after incorporating the information contained in the
data we have available. Both of these are things which we may wish to estimate using computer intensive
statistics.

It is important to distinguish between the sampling distribution of a statistic or the posterior variance,
which summarise in different ways the degree of uncertainty which must accompany any point estimate, and
additional variability introduced by the procedure used to approximate an estimator. In particular, we will
see that we often introduce additional auxiliary stochasticity during the computational procedures we use;
this is undesirable and we seek to minimise it and to mitigate any influence it may have upon our estimation.

A.3 Warm-Up Exercises
The main purpose of the following is to show some places in which it quickly becomes difficult to proceed
analytically, but for which computational methods might work well, and to highlight the types of quantities
which we will want to be able to compute or approximate in this module.

Exercise A.1. What are the maximum likelihood estimators for the parameters in the following situations:

(a) X1, . . . , Xn
iid∼ N

(
µ, σ2) where µ and σ2 are unknown;

(b) X1, . . . , Xn
iid∼ U[0, θ] where θ is unknown.

(c) X1, . . . , Xn
iid∼ f(x;µ1, µ2, w) where f(x;µ1, µ2, w) := wN (x;µ1, 1) + (1−w)N (x;µ2, 1), with w ∈ (0, 1)

and µ1, µ2 ∈ R?

Exercise A.2. Find the estimators which minimise the posterior expected loss for the following loss functions
for continuous parameters:

(a) Squared-error (or quadratic) loss: C(θ, ϑ) = (θ − ϑ)2.

(b) Absolute-error loss: C(θ, ϑ) = |θ − ϑ|.

and for discrete parameters:

1. Squared-error (or quadratic) loss: C(θ, ϑ) = (θ − ϑ)2.

2. Zero-one loss:
C(θ, ϑ) =

{
0 if θ = ϑ
1 otherwise.

B Convergence
Recall that a sequence of real numbers, x1, x2, . . . is said to converge to a limit x, written limn→∞ xn = x or
xn → x, if for every ε > 0 there exists some n0 such that, for all n > n0 we have that |xn − x| < ε.

When we deal instead with stochastic objects—random variables or empirical distributions, for example—we
need to expand upon this idea somewhat and there are a number of natural extensions. Below we recall some
common stochastic notions of convergence together with some key theorems about these types of convergence.
These are of great importance in statistics in general and computational statistics in particular.

Here we consider only real-valued random variables. In computational statistics it is often necessary to
consider the convergence of more complicated stochastic quantities, but in the current module a qualitative
understanding of the following notions of convergence should be more than sufficient and so we avoid technical
details. There are many excellent books on these topics; Shiryaev (1995) provides a rigorous but accessible
treatment.
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B.1 A Word on Probability
We won’t see technical (measure theoretic) probability in this module—we can manage without it for our
purposes. There are a few places where this may cause us a slightly loss of generality, but these will be
highlighted.

When we talk about probability we assume that there is some underlying sample space, Ω, from which exactly
one outcome occurs every time our experiment is realised: an elementary event, ω ∈ Ω. A random variable
can be thought of as a measurement which we could make when the experiment is carried out and can be
modelled mathematically as a function which maps the sample space to the real numbers, X : Ω→ R (see
Figure 4).

X(ω)

AX−1(A) X

X

ω

Ω

R

Figure 4: Random variables as functions from the sample space, Ω, to R. If ω occurs in an experiment then
X will be measured as having the value X(ω). If we want to know whether X takes a value in the set A
(the green rectangle) then we need to check whether ω takes a value which X maps into A, this set is often
denoted X−1(A) and corresponds to the blue ellipse here.

When we talk about the probability of some event B ⊆ Ω we mean exactly P(B) := P(ω ∈ B), i.e. the
probability that the elementary outcome which occurs is contained within B. When we talk about the
probability of a random variable, X, taking a value in a set, e.g. P(X ∈ A) we really mean the probability
that the elementary outcome that occurs is such that X takes a value in A: P(X ∈ A) := P({ω : X(ω) ∈
A}) = P(ω ∈ X−1(A)) where X−1(A) denotes the pre-image of A under X, i.e. the collection of all points in
Ω which are mapped into A by X: X−1(A) = {ω : X(w) ∈ A}.

B.2 Convergence In Probability
A sequence of random variables X1, X2, . . . is said to converge in probability to a limiting value x, written
limn→∞Xn = x (in probability) or Xn

p→ x, if for every ε > 0 the probability that Xn is further from x than
ε converges to zero, i.e.

lim
n→∞

P (|Xn − x| > ε) = 0.

The first theoretical result of interest tells us that in this sense, averages obtained from simple samples will
converge to the population average.

Theorem B.1. (Weak Law of Large Numbers; see, for example, Shiryaev (1995), p325). Let X1, X2, . . . be
a sequence of independent and identically distributed random variables and let ϕ : R→ R be a function of
interest. If E [|ϕ(X1)|] <∞ then, as n→∞,

1
n

n∑
i=1

ϕ(Xi)
p→ E[ϕ(X1)].
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B.3 Almost Sure Convergence
A sequence of random variables X1, X2, . . . is said to converge almost surely (a.s.) or converge with probability
1 to a limiting value x, written limn→∞Xn = x (a.s.) or Xn

a.s.→ x, if P (Xn → x) = P ({ω : Xn(ω)→ x}) = 1.

Almost sure convergence is strictly stronger than convergence in probability. We can, however, be sure that
under weak assumptions the average from a simple random sample will convergence almost surely to the
underlying population average.

Theorem B.2. (Strong Law of Large Numbers; see, for example, Shiryaev (1995), p391). Let X1, X2, . . . be a
sequence of independent and identically distributed random variables and let ϕ : R→ R with E [|ϕ(X1)|] <∞.
The sample average of ϕ converges, as n→∞, to its expectation under the common distribution of the Xi

with probability 1:
1
n

n∑
i=1

ϕ(Xi)
a.s.→ E [ϕ(X1)].

B.4 Some Ideas Related to Convergence of Distributions
B.4.1 Convergence In Distribution

A sequence of random variables X1, X2, . . . is said to converge in distribution to another random variable X
if, for every continuous bounded function ϕ : R→ R we have that E [ϕ(Xi)]→ E [ϕ(X)]. If we allow Fi to
denote the distribution function of Xi and F that of X then this mode of convergence is equivalent to the
pointwise convergence of Fi to F (except at an at most countable collection of points of discontinuity).

Although this may seem an esoteric idea, it’s really just telling us that the distribution of the sequence of
random variables becomes arbitrary close to that of X, eventually. Any statistician is familiar with the
following example of convergence in distribution.

Theorem B.3. (Central Limit Theorem; see Shao (1999), Corollary 1.2, for example). Let X1,X2, . . . be
independent and identically distributed k-dimensional random vectors (i.e. random elements in Rk which can
be viewed as a vector of K random variables) with finite covariance matrix Σ, then as n→∞,

√
n

[
1
n

n∑
i=1

Xi − E [X1]
]
D→ N (0,Σ),

where 0 denotes the zero element of Rk.

B.4.2 Glivenko–Cantelli Theorems

The following result isn’t cast as convergence in distribution but it does tell us something very closely related
and so it is included here. This result is perhaps slightly less widely known than those mentioned above, but
it is tremendously informative for many of the methods which we will consider in this module.

Theorem B.4. (Glivenko–Cantelli; see Athreya (2003) for a self-contained proof). Let X1, X2, . . . be a
sequence of independent and identically distributed random variables with distribution function F . Let Fn(x)
denote the empirical distribution functions associated with the first n elements in this sequence, i.e. let

Fn(x) = 1
n

n∑
i=1

I(−∞,Xi](x),

where
I(−∞,Xi](x) =

{
1 if x ∈ (−∞, Xi]
0 otherwise.

Then, as n→∞,
sup
x
|Fn(x)− F (x)| a.s.→ 0.
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This tells us that if we construct a probability distribution by placing a mass of 1/n at the location of every
one of a sample of n independent and identically distributed replicates of a random variable with a given
distribution function then, for large enough samples, that empirical distribution function converges uniformly
to the underlying distribution function. Which tells us in a precise sense something which we might intuitively
have believed: if we replace the original probability distribution with that obtained from a large enough
sample then for most practical purposes we will obtain a good approximation.

B.5 Warm-Up Exercises
If you feel like you could do with reminding yourself how these ideas of stochastic convergence work then you
might like to have a go at the following; if you already know how to answer them then don’t waste your time
and, similarly, if you have no interest in such things then it won’t be essential to the lectures for this module
that you have worked these out.

Exercise B.1. Given an example of a sequence of random variables which:

(a) converge to a limit with probability one;

(b) converge to a limit in probability but not almost surely; and

(c) converge to a limit in distribution but not in probability.
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