
APTS Statistical Computing
Assessment 2022/23

The work provided here is intended to take up to half a week to complete. Students should talk
to their supervisors to find out whether or not their department requires this work as part of any
formal accreditation process. It is anticipated that departments will decide on the appropriate
level of assessment locally, and may choose to drop some (or indeed all) of the parts, accord-
ingly. So make sure that your supervisor or local organiser of APTS assessment has looked
at the assignment before you start, and has told you which parts of it to do. In order to avoid
undermining institutions’ local assessment procedures the module lecturer will not respond to
enquiries from students about this assignment.

The assignment is to develop an R function for efficiently and stably fitting a generalised linear model
(GLM) with a one-parameter exponential family observation model. We will first derive an appropriate
algorithm, then implement it, and test it for the important special case of logistic regression.

A one-parameter exponential family model with canonical parameter θ has a density (or mass function)
of the form

f(y|θ) = exp{θy − b(θ) + c(y)},

for some scalar functions b(·) and c(·). In a GLM, a linear predictor Xβ is used to model the canonical
parameter θ, for p-dimensional regression parameters β and an n×p design matrix X (here assumed fixed
and known). Assume an n-dimensional vector of observations y = (y1, y2, . . . , yn).

1. Show that the log-likelihood for this model (up to a constant) can be written in the form

l(β;y) = yTXβ − 1Tb(Xβ),

where 1 is an n-dimensional vector of 1s, T denotes transpose, and the function b(·) is “vectorised”.

2. Derive the gradient, ∇l(β), and Hessian matrix, ∇2l(β).

3. Use the gradients to derive a Newton–Raphson updating scheme for maximising this likelihood wrt β,
and show that the updates can be written in the form

βk+1 = βk + [XT diag{wk}X]−1XTzk,

where wk = b′′(Xβk) and zk = y − b′(Xβk).

4. By defining Xk = diag{wk}1/2X, show that the N–R update can alternatively be written implicitly in
the form

Rk(βk+1 − βk) = Qk
T(w

−1/2
k ◦ zk),

where Xk = QkRk is the QR decomposition of Xk and ◦ is the Hadamard (elementwise) product.

5. Write a function, glm1, to fit a one-parameter GLM to data using the above N–R scheme. It should
have as input parameters, y, the data, X, the design matrix, bp, the function b′(·) (assumed vec-
torised) and bpp, the function b′′(·) (also vectorised). The output should be the vector of regression
coefficients, β, at convergence.

• Your function should not call either of the built-in R functions lm, glm, or similar.

1



• It should also not use the function solve, either for explicit matrix inversion, or general solution
of an arbitrary linear system. You may use a substitution solver such as forwardsolve or
backsolve, as appropriate.

• Your function should not create or use any n × n matrices (even diagonal ones), should not
explicitly invert any matrix, and should not explicitly create matrices of the form XTX or XTDX
(for diagonal D).

• You will need to use an appropriate termination criterion for your iteration scheme.

6. Show that a Bernoulli observation model

f(y|p) = py(1− p)1−y, y ∈ {0, 1},

can be written in one-parameter exponential form with canonical parameter θ = log(p/(1−p)). Identify
the function b(·), and compute b′(·) and b′′(·).

7. A GLM with a Bernoulli observation model and canonical link is often known as a logistic regression
model. We are now ready to write a function to fit a logistic regression model, exploiting the function
glm1. We can use R’s model formula parsing functions to allow it to use friendly syntax as follows.

logReg <- function(formula, data)
{
mf=model.frame(formula, data = data)
y=model.response(mf)
if (is.factor(y))

y = as.numeric(y) - 1
X=model.matrix(formula, mf)
bp = function(th) {

e = exp(-th)
1/(e+1)

}
bpp = function(th) {

e = exp(-th)
e/((e+1)ˆ2)

}
glm1(y, X, bp, bpp)

}

We can now test this with an appropriate real or synthetic dataset and cross-check our fitted regres-
sion coefficients computed by R’s built-in glm function. For example, if you have the CRAN MASS
package installed, we can fit the Pima Indians dataset with:

logReg(type ˜ ., data = MASS::Pima.tr)

and compare results against glm’s with:

glm(type ˜ ., data = MASS::Pima.tr, family = "binomial")

Your fitted coefficients should match those of the glm function to several decimal places.

2


