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Students should talk to their supervisors to find out whether or not their department requires
this work as part of any formal accreditation process (APTS itself has no resources to assess
or certify students). It is anticipated that departments will decide on the appropriate level of
assessment locally, and may choose to drop some (or indeed all) of the parts, accordingly.

0. If you have not already done so, complete both APTS week practical sessions.

1. (a) Show that AIC for a normal linear model with n responses, p explanatory variables
and unknown σ2 may be written as

n log σ̂2 + 2p + c

where σ̂2 = RSS/n is the maximum likelihood estimate of σ2 and c is a constant
which does not depend on the model under consideration, so may be omitted
without affecting model selection.

(b) If σ̂2
0 is the unbiased estimate under some fixed ‘correct’ model with q > p

covariates, show that AIC is equivalent to using

n log
{
1 + (σ̂2 − σ̂2

0)/σ̂2
0

}
+ 2p

as a model comparison criterion, and that this is approximately equal to

Cp = n
(
σ̂2/σ̂2

0 − 1
)

+ 2p,

a quantity known as Mallows’ Cp. Deduce that model selection using Mallows’ Cp

approximates that using AIC.

(c) In the same context as (b), show that Cp = (q − p)(F − 1) + p where F is the
F -statistic for comparison of the models with p and q > p covariates. Deduce
that if the model with p covariates is correct then E(Cp) .= p but that otherwise
E(Cp) > p.

2. The data frame bacteria are discussed in Chapter 10 of Modern Applied Statistics with
S (4th edition) by Venables and Ripley (Springer, 2002). They are available in R by
loading the library MASS. The response y indicates presence or absence of a particular
bacteria when assessed on 50 individuals (ID) at each of up to 6 time points (week).
Each individual has received one of three treatments (trt: placebo/drug/drug+).
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Model the dependence of y on trt and week using binary GLMs and GLMMs (to
account for intra-subject dependence in the response), fitted by maximum likelihood
and associated approximations. Functions which you might wish to investigate for
doing this include glmmPQL (from the MASS library) and glmer (from the lme4 library).
Use the library documentation provided to learn about the required arguments of these
functions. Compare the inferences obtained by different fitting methods (quadrature,
Laplace, PQL).

3. Suppose that we have binary data Y1, . . . , Yn, and a single explanatory variable xi,
which we model by using a logistic regression model

Yi ∼ Bernoulli(µi), logit(µi) = β0 + β1xi. (1)

In reality, suppose these binary variables have been generated according to whether an
unobserved continuous variable Y ∗

i exceeds 0, that is

Yi =
1 if Y ∗

i > 0
0 otherwise.

Suppose that
Y ∗

i = β∗
0 + β∗

1xi + ϵi,

where ϵi are independent and identically distributed error terms with E(ϵi) = 0 and
var(ϵi) = 1. We consider three possibilities for the error distribution:

• ϵi ∼ N(0, 1).
• ϵi have logistic distribution with mean zero and scale parameter s =

√
3/π, with

cumulative distribution function F (x) = logit−1(x/s).
• ϵi have uniform distribution between −

√
3 and

√
3.

(a) In each case, find an expression for µ(x) = E(Yi|xi = x) in terms of x and the
parameters β∗

0 and β∗
1 , and state whether or not the model (1) is correctly specified.

(b) Now suppose the data are generated with β∗
0 = 0 and β∗

1 = 1. In each case,
make plots of µ(x) and logit(µ(x)) for x between −2 and 2. For which true error
distribution do you think the model misspecification will be most serious?

(c) Suppose that the observed explanatory variables xi are uniformly distributed
between −1 and 1. Based on your plots of logit(µ(x)), make a guess about the
approximate limiting values of β̂0 and β̂1 as n → ∞ in each case.

(d) In each case, generate data in R according to the true data generating process with
a large n (e.g. n = 10 000), fit a logistic regression model to your simulated data,
and check whether your estimates are close to the limiting values you guessed in
part (c).

(e) We are often interested in the log odds ratio, which we can think of as the derivative
of logit(µ(x)) with respect to x. We estimate the log odds ratio as β̂1. In each
misspecified case, what is the range of true log odds ratio (for x in the range −1
to 1)? Where is the error in the estimated log odds ratio greatest?
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