APTS Statistical Modelling: Practical 1

Helen Ogden

Suppose

$$
y_{i m} \sim \operatorname{Poisson}\left(\mu\left(x_{i m}\right)\right),
$$

independently, for $i=1, \ldots, n$ and $m=1, \ldots, M$, where

$$
\mu\left(x_{i m}\right)=8 \exp \left(w\left(x_{i m}\right)\right),
$$

for some function $w($.$) .$
Suppose $M=3$,

$$
x_{i m}=x_{i}=-10+20 \frac{i-1}{n-1}
$$

and

$$
w(x)=0.001\left(100+x+x^{2}+x^{3}\right) .
$$

Consider the following simulation study. For $b=1, \ldots, B$:

- For $i=1, \ldots, n$ and $m=1, \ldots, M$, generate

$$
y_{i m} \sim \operatorname{Poisson}\left(\mu\left(x_{i m}\right)\right)
$$

- Record the AIC for models

$$
y_{i m} \sim \operatorname{Poisson}\left(\mu\left(x_{i m}\right)\right), \quad \mu\left(x_{i m}\right)=\exp \left(\sum_{j=1}^{p} \beta_{j} x_{i m}^{j-1}\right)
$$

for $p=1, \ldots, p_{\max }$, where $p_{\max }=20$.
You can run this simulation study with the following code:

```
B <- 1000
n <- }100
M <- 3
pmax <- 20
w <- function(x) {
    0.001 * (100 + x + x^2 + x^3)
}
```

```
mu <- function(x) {
    8* exp(w(x))
}
x <- rep(seq(from = -10, to = 10, length = n), each = M)
aics <- matrix(0, nrow = B, ncol = pmax)
for(b in 1:B){
    y <- rpois(n = M * n, lambda = mu(x))
    mod <- glm(y ~ 1, family = poisson)
    aics[b, 1] <- AIC(mod)
    for(p in 2:pmax) {
        modp <- glm(y ~ poly(x, p - 1), family = poisson)
        aics[b,p] <- AIC(modp)
    }
}
AICorder <- apply(aics, 1, which.min) - 1
tAIC <- table(AICorder)
tAIC
```


Tasks

1. Modify the code above to investigate the performance of AIC as a model selection tool for $n=25,50,100,1000$. If your simulation study is taking too long to run, try reducing B to 100 .
2. Vary the simulation model, using

$$
w(x)=\frac{1.2}{1+\exp (-x)},
$$

to see how AIC performs when the fitted models do not include the simulation model.
3. Modify the code to compute the values of BIC. Repeat the simulation studies from parts 1 and 2, using BIC to compare models. How do the results with AIC and BIC compare?

Solutions

We may put the code from the simulation study into a general function to allow us to vary n, $M, p_{\max }, B$, the function $w($.$) and the information criteria used.$

```
runsim <- function(n, M = 3, pmax = 20, B = 1000,
    w = function(x){0.001 * (100 + x + x^2 + x^3)},
    crit = AIC) {
    mu <- function(x) {
        8* exp(w(x))
    }
    x <- rep(seq(from = -10, to = 10, length = n), each = M)
    ics <- matrix(0, nrow = B, ncol = pmax)
    for(b in 1:B){
        y <- rpois(n = M * n, lambda = mu(x))
        mod <- glm(y ~ 1, family = poisson)
        ics[b, 1] <- crit(mod)
        for(p in 2:pmax) {
            modp <- glm(y ~ poly(x, p - 1), family = poisson)
            ics[b,p] <- crit(modp)
        }
    }
    ICorder <- apply(ics, 1, which.min) - 1
    table(ICorder)
}
```

1. runsim(n $=25$)

```
## 
## 734 110
runsim(n = 1000)
## ICorder
##
## 730
```

The behaviour is similar for different n. In all cases, the correct (cubic) model is preferred most of the time, but the probability of it being selected does not tend to one as $n \rightarrow \infty$.
2. w2 <- function(x) \{

$$
1.2 /(1+\exp (-\mathrm{x}))
$$

\}
runsim(n = 25, w = w2)
\#\# ICorder
\#\# $\begin{array}{llllllllllllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
\#\# 90
runsim($\mathrm{n}=50$, $\mathrm{w}=\mathrm{w} 2$)
\#\# ICorder
\#\# $\begin{array}{llllllllllllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
\#\# $\left.\quad 6 \quad 2 \begin{array}{lllllllllllllll} & 220 & 68 & 325 & 82 & 132 & 45 & 49 & 16 & 18 & 11 & 3 & 8 & 6 & 5\end{array}\right) 4$
runsim($\mathrm{n}=100$, $\mathrm{w}=\mathrm{w} 2$)
\#\# ICorder
\#\# $\begin{array}{llllllllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
\#\# $65 \quad 23 \quad 327 \quad 85 \quad 224 \quad 59 \quad 87$
runsim($\mathrm{n}=1000$, $\mathrm{w}=\mathrm{w} 2$)
\#\# ICorder
\#\# $\quad 9 \quad 10$
\#\# $107 \quad 45374 \begin{array}{lllllllll}107 & 37 & 192 & 43 & 76 & 29 & 23 & 11 & 17\end{array}$
As n increases, AIC tends to select increasingly complex models, which provide a better approximation to the true distribution which generated the data, which is not a polynomial model.
3. We can redo all calculations for both cases of the function $w($.$) for BIC. For the case$ where the cubic model is correct:

```
runsim(n = 25, crit = BIC)
## ICorder
```

```
## 1rrrlllll
runsim(n = 50, crit = BIC)
## ICorder
## 3 4
## 975 25
runsim(n = 100, crit = BIC)
## ICorder
## 3 4 5
## 979 19 2
runsim(n = 1000, crit = BIC)
## ICorder
## 3 4
## 996 4
```

As n increases, the probability that BIC selects the correct (cubic) model tends to 1 .
For the case $\mathrm{w}=\mathrm{w} 2$, where none of the models are correct:

```
runsim(n = 25, w = w2, crit = BIC)
## ICorder
##
## 
runsim(n = 50, w = w2, crit = BIC)
## ICorder
## 
## 163 23 598
runsim(n = 100, w = w2, crit = BIC)
## ICorder
##
## 11 2 2 580
runsim(n = 1000, w = w2, crit = BIC)
## ICorder
##
```


BIC prefers simpler models to AIC, although it still tends to prefer more complex models as n increases in this case.

