
APTS Statistical Modelling: Practical 2

Helen Ogden

The data in the file hip.txt (available from the APTS web site) are taken from Crowder
and Hand (Analysis of Repeated Measures, 1990, Chapman and Hall) and can be read into R
by using
hip <- read.table("hip.txt",

col.names = c("y", "age", "sex", "subj", "time"))

Variable y represents measurements of response variable haematocrit on 30 patients (subj)
on up to three occasions (time), one before a hip-replacement operation, and two afterwards.
The age and sex (0=male, 1=female) of the patients is also recorded.

We will investigate these data using linear mixed models of the form yij ∼ N(µij, σ2) where
yij is the response for subject i, time j and

µij = xT
ijβ + zT

ijbi, bi ∼ N(0, Σb).

You should consider including age, sex and time (and possibly interactions) within xij and
time within zij. We will treat time as a categorical variable.

LMMs for clustered data can be fitted in R using the lmer function from the lme4 library:
library(lme4)

## Loading required package: Matrix

For example
hip_lmm1 <- lmer(y ~ age + sex + factor(time) + (1 | subj), data = hip)

fits the model with 1, age, sex, I(time=2) and I(time=3) in xij, and just the intercept 1
in zij.

The default estimation method is REML. If you want to obtain maximum likelihood estimates
(for example, for use in model comparison), they can be obtained using the additional
argument REML = FALSE.

You might find some of the following functions useful – they all take an lmer fit as their first
argument: summary, fitted, residuals, fixef (fixed effects estimates), ranef (random
effects estimates), VarCorr (variance estimates) coef (coefficient estimates at cluster level,
incorporating fixed and random effects), AIC, BIC and predict.
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Tasks
1. Plot the time profiles of the response variable for each subject on a single plot (as we

did for the rat growth data in Example 2.4 in the lecture notes). Do you think you
think it will be necessary to include a random intercept for the subject? What about a
random slope for time?

2. Find your preferred LMM for this data.
3. For your preferred LMM, plot the predicted haematocrit levels for each subject against

time.

2



Solutions
We can plot out the variation in the response over time for each subject:
plot(hip$time, hip$y, type="n", xlab="time", ylab="haemataocrit")
for (i in 1:30)

lines(hip$time[hip$subj==i], hip$y[hip$subj==i])
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We can then fit various possible LMMs. We use maximum likelihood rather than REML so
that we can compare models with AIC.
hip_lmm1_ML <- lmer(y ~ age + sex + factor(time) + (1|subj),

data = hip, REML = FALSE)
summary(hip_lmm1_ML)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ age + sex + factor(time) + (1 | subj)
## Data: hip
##
## AIC BIC logLik deviance df.resid
## 508.8 526.1 -247.4 494.8 81
##
## Scaled residuals:
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## Min 1Q Median 3Q Max
## -3.3004 -0.5844 0.0343 0.6366 1.7127
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 2.471 1.572
## Residual 14.052 3.749
## Number of obs: 88, groups: subj, 30
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 39.07979 3.80458 10.272
## age 0.03518 0.05630 0.625
## sex -1.91758 0.99871 -1.920
## factor(time)2 -9.75246 0.97756 -9.976
## factor(time)3 -7.34666 0.98714 -7.442
##
## Correlation of Fixed Effects:
## (Intr) age sex fct()2
## age -0.969
## sex -0.054 -0.093
## factor(tm)2 -0.150 0.022 -0.013
## factor(tm)3 -0.144 0.018 -0.027 0.505

The summary suggests to try dropping age, since it has the smallest t value.
hip_lmm2_ML <- lmer(y ~ sex + factor(time) + (1|subj),

data = hip, REML = FALSE)
summary(hip_lmm2_ML)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ sex + factor(time) + (1 | subj)
## Data: hip
##
## AIC BIC logLik deviance df.resid
## 507.1 522.0 -247.6 495.1 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2634 -0.5907 0.0413 0.6412 1.7047
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 2.567 1.602
## Residual 14.050 3.748
## Number of obs: 88, groups: subj, 30

4



##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 41.3844 0.9389 44.077
## sex -1.8595 1.0009 -1.858
## factor(time)2 -9.7657 0.9773 -9.992
## factor(time)3 -7.3578 0.9870 -7.455
##
## Correlation of Fixed Effects:
## (Intr) sex fct()2
## sex -0.592
## factor(tm)2 -0.524 -0.011
## factor(tm)3 -0.510 -0.026 0.505
hip_lmm3_ML <- lmer(y ~ factor(time) + (1|subj),

data = hip, REML = FALSE)
c(AIC(hip_lmm1_ML), AIC(hip_lmm2_ML), AIC(hip_lmm3_ML))

## [1] 508.7600 507.1478 508.4233

On the basis of AIC, we prefer hip_lmm2_ML of these models. We could also consider an
interaction between sex and time
hip_lmm4_ML <- lmer(y ~ sex*factor(time) + (1|subj),

data = hip, REML = FALSE)
c(AIC(hip_lmm2_ML), AIC(hip_lmm4_ML))

## [1] 507.1478 507.9042

AIC slightly prefers the model hip_lmm2_ML, without an interaction.

We could try including a random slope for time in the model:
hip_lmm5_ML <- lmer(y ~ factor(time) + (factor(time)|subj),

data = hip, REML = FALSE)

## Error: number of observations (=88) <= number of random effects (=90) for term (factor(time) | subj); the random-effects parameters and the residual variance (or scale parameter) are probably unidentifiable

We get an error message, because there are now too many different random effect terms in
the model to be able to estimate them all from the data available.

We can then refit our chosen model with REML:
hip_lmm2 <- lmer(y ~ sex + factor(time) + (1|subj), data = hip)
summary(hip_lmm2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ sex + factor(time) + (1 | subj)
## Data: hip
##
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## REML criterion at convergence: 489.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1899 -0.5637 0.0305 0.6154 1.6744
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj (Intercept) 2.92 1.709
## Residual 14.55 3.815
## Number of obs: 88, groups: subj, 30
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 41.3847 0.9661 42.838
## sex -1.8600 1.0360 -1.795
## factor(time)2 -9.7657 0.9947 -9.817
## factor(time)3 -7.3572 1.0047 -7.323
##
## Correlation of Fixed Effects:
## (Intr) sex fct()2
## sex -0.596
## factor(tm)2 -0.518 -0.011
## factor(tm)3 -0.504 -0.026 0.505

We can plot the predicted haematocrit levels for each of our subjects, and compare with our
earlier plot of actual haematocrit levels against time.
hip$pred_haematocrit <- predict(hip_lmm2)
plot(hip$time, hip$y, type="n", xlab="time", ylab="predicted haemataocrit")
for (i in 1:30)

lines(hip$time[hip$subj==i], hip$pred_haematocrit[hip$subj==i])
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We can also consider a linear model, without the random intercept term.
hip_lm2 <- lm(y ~ sex + factor(time), data = hip)
c(AIC(hip_lm2), AIC(hip_lmm2_ML))

## [1] 507.1334 507.1478

The AIC for the two models are very close, but AIC slightly prefers the simpler linear model,
without a random intercept. We can plot the predicted haematocrit levels for each of our
subjects according to this model, giving two lines, for male and female subjects:
hip$pred_haematocrit_lm2 <- predict(hip_lm2)
plot(hip$time, hip$y, type="n", xlab="time", ylab="predicted haemataocrit")
for (i in 1:30)

lines(hip$time[hip$subj==i], hip$pred_haematocrit_lm2[hip$subj==i])
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