
APTS Statistical Computing 2023/24:
Practical Lab 2 (Thursday)

N.B. If at all possible, please do 1.(a) (installing an R package) in advance of the practical session, to avoid wasting
time, flattening your battery, and over-loading the Wi-Fi.

1. (a) For this exercise, we will use the FLtools package from:
https://bitbucket.org/finnlindgren/FLtools/

developed by Finn Lindgren (the previous lecturer for this course). You can install it with:

remotes::install_bitbucket("finnlindgren/FLtools")

If you don’t have the remotes package, first install it with:

install.packages("remotes")

Once you have installed the FLtools package, you should be able to load it with

library(FLtools)

Make sure you have this package installed before proceeding to the next step.

(b) Start the optimisation shiny app:

FLtools::optimisation()

This should start a Shiny web application. It will also attempt to start up a tab in your browser connected
to the session. If this doesn’t work, just connect your browser to the URL of the Shiny app. Make sure the
Shiny app is running in a browser window before proceeding to the next step.

(c) For the "Simple (1D)" and "Simple (2D)" functions, familiarise yourself with the "Step", "Converge", and
"Reset" buttons.

(d) Choose different optimisation starting points by clicking in the figure.

(e) Explore the different optimisation methods and what they display in the figure for each optimisation
step123. Also observe the diagnostic output box and how the number of function, gradient, and Hessian
evaluations differ between the methods.

(f) For the "Rosenbrock (2D)" function, observe the differences in convergence behaviour for the four differ-
ent optimisation methods.

(g) For the "Multimodal" functions, explore how the optimisation methods behave for different starting points.

(h) How far out can the optimisation start for the "Spiral" function? E.g., try the "Newton" method, starting
in the top right corner of the figure.

2. Write your own code to optimise Rosenbrock’s function by Newton’s method. Ensure that you have imple-
mented it correctly by comparing your output (and implementation) with that of the Shiny app from the first
exercise. For this question you will want to make use of the preliminary material for the course (and the
solutions).

1LS stands for “line search”.
2The simplex/triangle shapes are shown for each "Simplex" method step in blue. The "best" points for each simplex are connected (magenta).
3The Newton methods display the true quadratic Taylor approximations (red) as well as the approximations used to find the proposed steps

(blue).

1

https://bitbucket.org/finnlindgren/FLtools/
https://shiny.rstudio.com/

3. Consider the linear mixed model for a response vector y:

y = Xβ + Zb+ ϵ, b ∼ N(0, Iσ2
b), ϵ ∼ N(0, Iσ2)

X and Z are (fixed) model matrices, β, σ2
b and σ2 are parameters, and b and ϵ are independent.

(a) First simulate some data from a model of this sort, taking care to relate the code back to the mathematical
statement of the model. . .

set.seed(10)
n <- 100;n.b <- 10;n.beta <- 5
X and Z are fixed in the model, not random. Random numbers
used only to generate arbitrary examples, here....
X <- cbind(1,matrix(runif(n*n.beta-n),n,n.beta-1))
Z <- matrix(runif(n*n.b),n,n.b)
beta <- rep(1,n.beta)
b <- rnorm(n.b)
y <- X%*%beta + Z%*%b + rnorm(n)

You’ll use the data, y, simulated here, along with the corresponding X and Z, to experiment with fitting
linear mixed models (so from now on pretend that you don’t know what values β, σb and σ had).

(b) With pencil and paper, find the (marginal) expectation, µ, and covariance matrix, V, of y. State the
(marginal) distribution of y. Here we marginalise over the random effects, b, and the errors, but still
condition on everything else.

(c) The following R function evaluates the log likelihood of θT = (βT, σ2
b , σ

2) given data y. Note that θ is
the first argument of the function.

logLik <- function(theta,y,X,Z) {
somewhat plodding linear mixed model log
likelihood with theta partitioned
[beta,sig2.b,sig2]

n <- length(y)
beta <- theta[1:ncol(X)]
theta <- theta[-(1:ncol(X))]
V <- diag(n)*theta[2] + Z %*% t(Z)*theta[1]
R <- chol(V)
z <- forwardsolve(t(R), y-X %*% beta)
ll <- -n*log(2*pi)/2 - sum(log(diag(R))) - sum(z*z)/2
ll

}

To maximise the log likelihood of the model using unconstrained methods, it is better to use a pa-
rameterization that guarantees positive variances.4 Modify the function to accept a parameter vector
θT = (βT, ρb, ρ) where ρ = log(σ) and ρb = log(σb).

(d) Use optim to maximise your likelihood (note that optim minimizes by default; see the documentation
for how to do maximisation, and for how to choose optimisation method).

4Such reparameterisation can often have the added benefit of leading posterior distributions closer to Gaussian, enabling accurate and
precise Bayesian approximations not relying on Monte Carlo simulations.

2

(e) In fact, using general purpose optimisation methods to find the optimising β is a bit wasteful. Given
the variance parameters, closed form expressions for the β maximising the likelihood are available, and
might as well be used. Then it is only necessary to use general methods for the variance parameters. The
likelihood considered only as a function of the variance parameters, with the corresponding MLEs of β
‘plugged in’ is termed a ‘profile likelihood’. Show that, given the variance parameters, the log-likelihood
is maximised by the β minimising

(y −Xβ)TV−1(y −Xβ) = ∥R−T(y −Xβ)∥2

where RTR = V. (∥x∥2 = xTx here.) Hence, produce a ‘profile log likelihood’ function equivalent to
your previous log likelihood function. Your function should accept a vector of variance parameters as its
first argument, and should return the corresponding profile log likelihood value. You might want to return
the corresponding β values as an attribute of the return value, e.g.

.

.
attr(ll,"beta") <- beta
ll

}

(f) Use optim to maximise your profiled log likelihood function (or copy the code from the online solu-
tions!), and confirm that you get near identical parameter estimates to those from part (d).

4. Note: base::chol() always returns a matrix in dense storage format, so use Matrix::chol() instead,
to obtain sparse storage output for sparse storage input.

(a) Run the following code that measures the time it takes to compute dense Cholesky factorisations for
matrices of varying size (from 10 to 1000):

An <- c(10, 20, 50, 100, 200, 500, 1000)
Atime <- c()
for (n in An) {
Use several repeated runs for small matrices:
loop.max <- max(1, 10000/n)
Construct a random symmetric positive definite matrix:
A <- matrix(rnorm(n^2), n, n); A <- t(A) %*% A
Compute and time the Cholesky calculations.
Use B <- A*1 to make sure R doesn't use any hidden
precomputations
Atime <- rbind(Atime,

system.time({
for (loop in 1:loop.max) {

B <- A*1
Matrix::chol(B)

}}) / loop.max)
}
Atime
plot(An, Atime[,1], log="")
plot(An, Atime[,1], type="l", log="xy")

3

(b) Adapt the code to measure the time it takes to compute dense Cholesky factorisations of covariance ma-
trices of an AR(1) process, for size n = 10 to 1000. Note that you can create such a matrix (for standard
deviation sd and auto-regressive parameter a ∈ [0, 1)) with something like:

S <- as.matrix(dist(0:(n - 1)))
S <- sd^2 * a^S

Choosing sd=10 and a=0.9 should be fine, but feel free to explore alternatives.

(c) Adapt the code to measure the time it takes to compute sparse Cholesky factorisations of precision matrices
of an AR(1) process. Let n vary between 10 and 106. Note that you can create such a matrix with
something like:

Q <- Matrix::sparseMatrix(i = c(1:n, 2:n, 1:(n - 1)),
j = c(1:n, 1:(n - 1), 2:n), x = rep(c(1, 1 + a^2,

1, -a), c(1, n - 2, 1, 2 * (n - 1)))/(1 - a^2)/sd^2,
dims = c(n, n))

(d) Graphically compare the computational costs of dense and sparse Cholesky factorisations.

4

