
APTS Statistical Computing 2023/24:
Practical Lab 1 (Tuesday)

Here are some practical problems which aim to explore and reinforce some of the course material. They all use R.
This is just for convenience: many real statistical numerical analysis tasks are approached with a mixture of compiled
code, using a statically typed language (like C, C++, Fortran, Java, Scala, . . .), together with code in a high level
language such as R, Python or Matlab. But for exploratory and pedagogic purposes, high level languages are often
convenient. Some languages (such as Scala and Julia) attempt avoid the “two language problem” by being both high
level and easy to develop in interactively, as well as fast and efficient.

Several problems here use simulated data: when developing statistical modelling code, it is often best to start out
with data where you know what the truth is (and can generate further replicates). Do not consult the solutions1 until
you’ve made good attempts.

1. Principal components analysis (PCA) of a multivariate data set was traditionally based on the eigen-decomposition
of the sample covariance matrix of the data. The matrix of eigenvectors can be used to rotate the (centred) data
observations to a set of uncorrelated random quantities ordered by decreasing variance. These rotated data are
often known as the scores. We can write a small function to implement this as follows.

pcScoresEig = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))
eig = eigen(crossprod(Xc)/(nrow(Xc)-1), symmetric=TRUE)
Xc %*% eig$vectors

}

We can test it on the infamous iris data, as follows.

Xi = iris[,-5]
scores = pcScoresEig(Xi)
plot(scores[,1], scores[,2], col=iris[,5], pch=19)

1Solutions will be made available from the course website before the end of the session.

1

−3 −2 −1 0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

scores[, 1]

sc
or

es
[,

2]

This is essentially how the princomp function in R is implemented, and we can verify this.

head(scores, 3)

[,1] [,2] [,3] [,4]
[1,] -2.684126 -0.3193972 0.02791483 0.002262437
[2,] -2.714142 0.1770012 0.21046427 0.099026550
[3,] -2.888991 0.1449494 -0.01790026 0.019968390

head(princomp(Xi)$scores, 3)

Comp.1 Comp.2 Comp.3 Comp.4
[1,] -2.684126 0.3193972 0.02791483 0.002262437
[2,] -2.714142 -0.1770012 0.21046427 0.099026550
[3,] -2.888991 -0.1449494 -0.01790026 0.019968390

(a) It turns out that the singular value decomposition of the (centred) data matrix can be used to construct
the scores directly as UD. Think about why this is true, and write an R function, pcScoresSvd to
implement this. Test it on the iris data, and don’t worry about a sign flip.

Xc = UDV' => Xc'Xc = VD^2V' which is the symmetric eigen decomp
So XcV = UDV'V = UD.

pcScoresSvd = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))

2

svx = svd(Xc)
t(t(svx$u)*svx$d) ## UD

}
scores2 = pcScoresSvd(Xi)
plot(scores2[,1], scores2[,2], col=iris[,5], pch=19)

−3 −2 −1 0 1 2 3 4

−
1.

0
0.

0
0.

5
1.

0

scores2[, 1]

sc
or

es
2[

, 2
]

(b) This SVD-based method is more numerically stable than the eigendecomposition method, although if we
are only interested in the first few components that is rarely a big deal. In the case of wide data (p > n)
SVD can also be substantially more efficient. It also gives some additional insight into what the PCA
“means”. This is essentially how the prcomp function in R is implemented (which is almost always
preferred to the princomp function). Compare your function with this.

head(scores2, 3)

[,1] [,2] [,3] [,4]
[1,] -2.684126 -0.3193972 0.02791483 0.002262437
[2,] -2.714142 0.1770012 0.21046427 0.099026550
[3,] -2.888991 0.1449494 -0.01790026 0.019968390

head(prcomp(Xi)$x, 3)

PC1 PC2 PC3 PC4
[1,] -2.684126 -0.3193972 0.02791483 0.002262437
[2,] -2.714142 0.1770012 0.21046427 0.099026550
[3,] -2.888991 0.1449494 -0.01790026 0.019968390

(c) Simulate some random (eg.) 5, 000× 1, 000 test data, and time your two implementations.

3

X = matrix(rnorm(5000*1000),ncol=1000)
system.time(pcScoresEig(X))

user system elapsed
0.836 0.064 0.901

system.time(pcScoresSvd(X))

user system elapsed
1.83 0.14 1.97

(d) Think about how to use the SVD to compute the variances or standard deviations of the principal com-
ponents. The variances would be given by the diagonal of the D matrix for the eigen-decomposition
approach, but this doesn’t quite work for the SVD approach. Modify your function to compute them.
Check it against prcomp for the iris data to make sure you’ve done it correctly.

Xc = UDV' => UD = VXc so cov(UD) = Vcov(Xc)V'. Substituting the empirical
cov(Xc) = Xc'Xc/(n-1), we have cov(UD) = VXc'XcV'/(n-1) = VV'D^2VV'/(n-1)
= D^2/(n-1). i.e. the singular values over sqrt(n-1) give the sd prcomp.

pcSdsSvd = function(X) {
Xc = sweep(as.matrix(X), 2, colMeans(X))
SVD = svd(Xc)
SVD$d/sqrt(nrow(Xc)-1)

}
pcSdsSvd(Xi)

[1] 2.0562689 0.4926162 0.2796596 0.1543862

prcomp(Xi)$sd

[1] 2.0562689 0.4926162 0.2796596 0.1543862

2. For a linear regression model,
y = Xβ + ϵ

we know that the quadratic loss L0(β) = ∥ϵ∥2 = ϵTϵ is minimised wrt β when β is a solution to the normal
equations,

XTXβ = XTy.

In ridge regression, the slightly modified quadratic loss function Lλ(β) = ∥ϵ∥2 + λ∥β∥2 is used, for some
ridge penalty λ > 0, which encourages shrinkage of the regression coefficients towards zero.

(a) Show that for a given fixed λ > 0, the loss Lλ(β) is minimised when β is a solution to

(XTX+ λI)β = XTy.

L = e'e + lb'b = (y-Xb)'(y-Xb) + lb'b = y'y - 2b'X'y + b'X'Xb + lb'b
grad L = -2X'y + 2X'Xb + 2lb = -2X'y + 2(X'X + lI)b
So grad L = 0 => (X'X + lI)b = X'y

4

(b) Starting from the singular value decomposition, X = UDVT, show that the optimal β̂λ can be written as

β̂λ = VDλU
Ty,

where Dλ is a diagonal matrix with entries dλi = di/(d
2
i + λ). Note that this means β̂λ can be computed

for as many different λ as desired, all for the cost of one single expensive SVD operation.

(X'X + lI)b = X'y
=> (VDU'UDV' + lI)b = VDU'y
=> (VDDV' + lI)b = VDU'y
=> V(DD + lI)V'b = VDU'y
=> b = V(DD + lI)^{-1}DU'y
=> b = V[(DD + lI)^{-1}D]U'y
=> b = VEU'y, where diagonal E = (DD + lI)^{-1}D

(c) In practice, both the data, y, and the covariate matrix X are centred before ridge regression is applied,
since then the model can be fit without an intercept, and typically you would not want to shrink the
intercept. Write a function,

ridge(y, X, lambda)

which expects an n-vector y, an n × p matrix X, and a q-vector of λ values where the ridge solution is
required. The function should return a p × q matrix of ridge regression parameters, with each column
representing a solution for a given λ.

ridge = function(y, X, lambda) {
y = y - mean(y)
X = sweep(as.matrix(X), 2, colMeans(X))
SVD = svd(X)
uty = as.vector(t(SVD$u) %*% y)
D = outer(SVD$d, lambda, function(d,l){d/(d*d+l)})
SVD$v %*% (D * uty) # 1st product is matrix, 2nd is elementwise

}

(d) For the trees dataset, regress volume on the other two variables for a range of shrinkage parameters.

ridge(trees[,3], trees[,1:2], c(0,exp(0:5)))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 4.7081605 4.6868475 4.6507090 4.5554535 4.3166299 3.7858307 2.8648009
[2,] 0.3392512 0.3444192 0.3531561 0.3760244 0.4322559 0.5504595 0.7226325

Ensure that your solution matches up with that of lm in the case λ = 0.

lm(as.vector(trees[,3]) ~ as.matrix(trees[,1:2]))$coefficients

(Intercept) as.matrix(trees[, 1:2])Girth
-57.9876589 4.7081605
as.matrix(trees[, 1:2])Height
0.3392512

3. This question revisits the third example in section 1.1 of the notes.

5

(a) Run the following code that reproduces the good and bad fits produced by calls to lm in the example.

First, simulate the data
set.seed(1)
x <- sort(runif(100)) + 100
y <- .2*(x-100 -.5)+(x-100 -.5)^2 + rnorm(100)*.1

lm manages to estimate the regression
plot(x,y)
b <- lm(y~x+I(x^2))
lines(x,fitted(b),lwd=2)

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

direct solution of the normal equations doesn't work
X <- model.matrix(b)

6

beta.hat <- solve(t(X)%*%X, t(X)%*%y)

Error in solve.default(t(X) %*% X, t(X) %*% y): system is computationally
singular: reciprocal condition number = 3.98647e-19

What if the x-values were even further away from zero?
In theory, this should still be able to represent the quadratic function.
x1 <- x+1000
plot(x,y)
b1 <- lm(y~x1+I(x1^2))
lines(x,fitted(b1),lwd=2)

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

lm fails without warning!

7

(b) Examine the condition numbers of the model matrices in the two cases (lm computes the fit using the QR
decomposition approach, not by direct solution of the normal equations). Why was the second lm fit so
bad?

d <- svd(X)$d
d[1]/d[3] ## manageable

[1] 1560769713

X1 <- model.matrix(b1)
d <- svd(X1)$d
d[1]/d[3] ## very high

[1] 2.242481e+13

...could also use function kappa, to *estimate* condition number.

(c) Plot the second and third columns of the model matrix against each other for the two cases, and use cor
to examine their correlation. Why are the condition numbers so high here?

plot(X[,2],X[,3],main=cor(X[,2],X[,3])) ## near rank deficient

8

100.0 100.2 100.4 100.6 100.8 101.0

10
00

0
10

05
0

10
10

0
10

15
0

10
20

0

0.999999253094384

X[, 2]

X
[,

3]

plot(X1[,2],X1[,3],main=cor(X1[,2],X1[,3])) ## even nearer!

9

1100.0 1100.2 1100.4 1100.6 1100.8 1101.0

12
10

00
0

12
10

50
0

12
11

00
0

12
11

50
0

12
12

00
0

0.999999993770255

X1[, 2]

X
1[

, 3
]

(d) Since the linear model says simply that the expected value vector E(y) lies in the space spanned by
the columns of X, one possibility is to attempt to arrive at a better conditioned X by linear rescaling
and/or recombination of its columns. This is always equivalent to a linear re-parameterization. Try this on
the model matrix of the model that causes lm to fail. In particular, for each column (except the intercept
column) subtract the column mean. Then divide each column (except the intercept column) by its standard
deviation. Find the condition number of the new model matrix. Fit the model with this model matrix using
something like lm(y ~ Xs - 1) where Xs is the re-scaled model matrix. Produce a plot that confirms
that the resulting fit is sensible now.

Xs <- X1
Xs[,2:3] <- sweep(Xs[,2:3],2, colMeans(Xs[,2:3]))
Xs[,2] <- Xs[,2]/sd(Xs[,2])
Xs[,3] <- Xs[,3]/sd(Xs[,3])

10

bs <- lm(y ~ Xs-1)
plot(x,y)
lines(x,fitted(bs),lwd=2)

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

(e) An alternative fix is to subtract the mean x value from the original x vector before fitting. Try this and see
what happens to the condition number and column correlations of the model matrix now.

x2 <- x - mean(x)
b2 <- lm(y ~ x2 + I(x2^2))
plot(x,y)
lines(x,fitted(b2),lwd=2)

11

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

X2 <- model.matrix(b2)
d <- svd(X2)$d
d[1]/d[3]

[1] 15.36915

(f) If we want good condition numbers then the best thing would be have a model matrix made up of columns
from an orthogonal matrix. Orthogonal polynomials provide a way of achieving this. Try fitting with
lm(y~poly(x,2)) to see these in action. Look at the correlation between the model matrix columns
now, and the condition number.

bp <- lm(y~poly(x,2))
plot(x,y)
lines(x,fitted(bp),lwd=2)

12

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

Xp <- model.matrix(bp)
d <- svd(Xp)$d
d[1]/d[3]

[1] 10

...perhaps plot columns too, and look at correlation
plot(Xp[,2],Xp[,3],main=cor(Xp[,2],Xp[,3])) ## orthogonal; no linear correlation

13

−0.2 −0.1 0.0 0.1

−
0.

1
0.

0
0.

1
0.

2

−3.14791324517588e−17

Xp[, 2]

X
p[

, 3
]

(g) The model matrix produced in the last part is not quite (column) orthogonal (meaning orthonormal), but
to correct this we could rescale and use a model matrix X <- cbind(n^-.5,poly(x,2)) where
n is the number of data. Without computing anything new, find a QR decomposition of this new model
matrix? Show how the new model matrix can be used directly to find the fitted values in this case, without
any need for an lm call. Check that it works.

g) Then poly can produce perfectly conditioned model matrices
X <- cbind(length(x)^-.5,poly(x,2))
t(X) %*% X ## orthogonal

1 2
1.000000e+00 -2.676717e-17 5.829481e-17
1 -2.676717e-17 1.000000e+00 9.590758e-17

14

2 5.829481e-17 9.590758e-17 1.000000e+00

So QR factorization is trivial! (It's Q=X R=I) =>
mu <- X %*% (t(X) %*% y)
plot(x,y)
lines(x,mu)

100.0 100.2 100.4 100.6 100.8 101.0

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

x

y

15

