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Outline.

In this introductory section, we will introduce some of the basic ideas that we

will be exploring during this series.

We will do this by example, to recall and refresh basic notation, definitions and

methods.

On the way, we will introduce some of the general questions that we will be

discussing.



What is statistical inference?

In statistical inference experimental or observational data are modelled as the

observed values of random variables, to provide a framework from which

inductive conclusions may be drawn about the mechanism giving rise to the

data.

[Essentials of Statistical Inference, Young and Smith, Cambridge (2005)]



What is statistical inference?

In statistical inference experimental or observational data are modelled as the

observed values of random variables, to provide a framework from which

inductive conclusions may be drawn about the mechanism giving rise to the

data.

[Essentials of Statistical Inference, Young and Smith, Cambridge (2005)]

What is statistical inference?

ChatGPT

Statistical inference is the process of drawing conclusions or making

predictions about a population based on a sample of data from that population.



Statistical inference

The whole of this appendix, and indeed the whole book, is concerned with

statistical inference.

The object is to provide ideas and methods for the critical analysis and, as far

as feasible, the interpretation of empirical data arising from a single

experimental or observational study or from a collection of broadly similar

studies bearing on a common target.

[Principles of Statistical Inference, Cox, Cambridge. (2006)]



Statistical versus scientific inference

The extremely challenging issues of scientific inference may be regarded as

those of synthesising very different kinds of conclusions if possible into a

coherent whole or theory and of placing specific analyses and conclusions

within that framework.

This process is surely subject to uncertainties beyond those of the component

pieces of information and, like statistical inference, has the features of

demanding stringent evaluation of the consistency of information with proposed

explanations.

The use, if any, in this process of simple quantitative notions of probability and

their numerical assessment is unclear and certainly outside the scope of the

present discussion.

[Principles of Statistical Inference, Cox, Cambridge.]



Statistical inference

This course will be largely guided by the traditional view of statistical inference

[because lots of interesting, important and essential results have been

developed within this viewpoint].

However, we must also keep an eye on the wider context of scientific inference

[because this is where many important problems are that we may need to

address.]



Statistical models

Much of the theory of statistical inference relates to the analysis of statistical

models.

In the simplest version of a statistical model, we have observed data x
(typically vector).

x is considered to be the realisation of random vector X .

The probability distribution of X depends on a (possibly vector) parameter θ.

We write this distribution as f(x|θ).

In the simplest case, we know everything about f(.|θ) except for the “true but

unknown” value of θ.

For example, x might be an independent sample from a population whose

possible distributions are indexed by parameter θ.



Questions

There are two basic types of question we must consider.

(i) Inside the model:

assuming the truth of the model, what information does x provide about θ?

(ii) Outside the model:

where did the model come from?

how reliable is it?

how does the within model inference relate to real world uncertainty?



Spinning coins

We introduce many of the core ideas by considering a simple example of a

statistical model and associated data.

Suppose that we spin a coin n times and observe each outcome as heads or

tails.

Notation Tosses X = (X1, X2, ..., Xn)

where Xi = 1 if heads, Xi = 0 otherwise.

Observed sample is X = x = (x1, x2, ..., xn)

We want to estimate θ, the probability of heads.

Questions The probability of heads means exactly what?

Does it have a real world meaning or is it simply a modelling construct?



The probability of heads

User

What does it mean to say that the probability of a coin landing heads is 1/2?

ChatGPT

Saying that the probability of a coin landing heads is 1/2 means that, in a fair

and unbiased coin toss, there is an equal chance of the coin landing heads (H)

as there is of it landing tails (T). The probability of 1/2 represents a 50% chance

that the outcome will be heads.



Chatting to Chat GPT

User

Is the probability that the coin lands heads a property of the coin or of our

knowledge about the coin?

ChatGPT

The probability that a coin lands heads is a property of our knowledge about

the coin and the way we model and understand the coin-tossing process. It is

not an inherent property of the physical coin itself.

... In summary, the probability of a coin landing heads is a subjective

assessment based on our knowledge, assumptions, and modeling of the

coin-tossing process.

It represents our best estimate of the likelihood of the coin landing heads under

the given circumstances.



Chatting to Chat GPT

User

Is there a true likelihood of the coin landing heads?

ChatGPT

The concept of a ”true likelihood” of a coin landing heads is a philosophical and

epistemological question that depends on how one interprets probability and

the nature of reality.



Independent outcomes

In many cases we will consider, the observations X = (X1, ..., Xn) are

independent given θ.

We say that (X1, ..., Xn) is an independent sample of size n.

If all observations are drawn from the same distribution f(x|θ) then we call X
an iid (independent and identically distributed) sample of n from f(.|θ).

In such cases f(x|θ) factorises as

f(x|θ) = P((X1 = x1), ..., (Xn = xn)|θ) =
n
∏

i=1

P(Xi = xi|θ) =
n
∏

i=1

f(xi|θ)



Coin spinning

In the coin spinning example, for a single spin, X = 0 or X = 1 and

f(x|θ) = θx(1− θ)1−x

so

f(x|θ) =
n
∏

i=1

θxi(1− θ)1−xi = θk(1− θ)n−k

where k =
∑n

i=1 xi is the number of heads observed in the n spins.



Sufficiency

We say that statistic T (x1, ..., xn) (possibly a vector) is sufficient for

parameter θ if we can factorise the joint probability function as

P((X1 = x1), ..., (Xn = xn)|θ) = g(T (x1, ..., xn), θ)h(x1, ..., xn)

In our coin spinning experiment, we have

f(x|θ) = θk(1− θ)n−k

Therefore, we see that k, or equivalently

x =
1

n

n
∑

i=1

xi

is sufficient for our sampling problem.



Binomial sampling

Compare our formulation to estimating the parameter θ of a binomial

distribution.

Here Y is the number of successes in n independent trials each with

probability θ of success so that

P (Y = k|θ) = n!

k!(n− k)!
θk(1− θ)n−k

We write this as Y ∼ Bi(n, θ)

The only thing that we appear to lose is our ability to test the validity of the

model by examining the pattern of 1’s and 0’s in x.

Questions

Why and when should our inference only depend on the sufficient statistics?

When can we build a statistical model on the sufficient statistics alone?



Estimating θ

Let

X =
1

n
(X1 +X2 + ...+Xn)

be the sample average or, equivalently in our case, the proportion of heads in

the sample.

The observed value is

X = x =
x1 + ...+ xn

n
.

Let’s use x as an estimator of θ.

Questions

How do we choose good estimators?

And what does good mean?



Properties of our estimator: mean

Let’s find the mean and variance of our estimator.

E(X) = E(
1

n
(X1 +X2 + ...+Xn))

=
1

n
(E(X1) + E(X2) + ...+ E(Xn))

as expectation is linear:

E(aX + bY ) = aE(X) + bE(Y )



Bias

For each Xi, if the true parameter value is θ,

E(Xi) = 1× P (Xi = 1) + 0× P (Xi = 0) = θ

so

E(X) =
nθ

n
= θ

We say that our estimator X is unbiased:

the average of our estimator, for many repetitions of the experiment, “tends to

the true value”.

Question Is this property important for our single experiment?



Properties of our estimator:variance

Var(X) = Var(
1

n
(X1 +X2 + ...+Xn))

=
1

n2
(Var(X1) + Var(X2) + ...+Var(Xn))

=
Var(X)

n

as the variance of the sum of independent random quantities is the sum of the

variances of the individual quantities and Var(cX) = c2Var(X).

The general form is

Var(
∑

i

Yi) =
∑

i

Var(Yi) + 2
∑

i<j

Cov(Yi, Yj)



Variance

Var(Xi) = E(X2
i )− (E(Xi))

2

= θ − θ2

(as Xi = X2
i , so E(Xi) = E(X2

i ))

Var(X) =
Var(X)

n
=

θ(1− θ)

n



Properties of our estimator: large sample distribution

The proportion of heads in n spins is

X =
1

n
(X1 +X2 + ...+Xn)

The central limit theorem (CLT) says that, under weak conditions, the

probability distribution of the sum of a sequence of n independent, identically

distributed random quantities tends to a normal distribution as n increases.

Therefore, by the central limit theorem, the large sample distribution of X is

approximately Gaussian.



Properties of our estimator: large sample distribution

For every sample size n,

E(X) = θ, Var(X) =
θ(1− θ)

n

Therefore,

X ∼ N(θ,
θ(1− θ)

n
)

(approximately, for large n).

Questions

When will “good” estimators be approximately Gaussian, for large n?

For large n, is there a simple general way to identify roughly what the variance

of a “good” estimator will be, and will it be at least approximately unbiased?



Large sample confidence interval

As X ∼ N(θ, θ(1−θ)
n ) (approximately), we have, for any α that

1− α ≈ P (−zα/2 ≤
X − θ
√

θ(1−θ)
n

≤ zα/2)

where zα/2 is the upper α/2 value of a standard normal distribution.

Rearranging, we have

1− α ≈ P (X − zα/2

√

θ(1− θ)

n
≤ θ ≤ X + zα/2

√

θ(1− θ)

n
)

We substitute X as an approximation for θ in the variance estimate to give

X ± zα/2

√

X(1−X)

n

as an approximate large sample (1− α) confidence interval for θ.



Confidence intervals

X ± zα/2

√

X(1−X)

n

is an approximate large sample (1− α) confidence interval for θ.

This means that, for any value θ, the chance of drawing a sample X for which

the above interval contains θ is (1− α) (approximately).

Therefore, the properties of a confidence interval derive from the process of

generating samples and creating the corresponding confidence intervals.

Question Is there a general way of constructing (large sample) confidence

intervals with good properties?

And what does “good” mean”?



Observed confidence intervals

Question How does the confidence property relate to what happens when we

make a particular sample X = x and create a particular interval

x± zα/2

√

x(1− x)

n

Note, in particular, that it does not mean that there is a probability of 1− α that

the true value of θ is within the actual interval obtained from our sample.

We can easily create confidence intervals which cannot contain the true

parameter values - for example, they might be empty.



Comment:Reliability of this approximation

X ± zα/2

√

X(1−X)

n

Question Is our particular approximation to the binomial confidence interval

reliable?

Reasonably, yes. But not for θ near zero or one.

There is an extensive literature on improving the approximation for this

particular problem.

See, for example, the Wikipedia page on the “Binomial proportion confidence

interval”.



Simulation experiments

In this course, we will discuss various large sample approximations.

Simulation experiments give a simple way to explore the reliability of such

approximations.

There are two basic types of simulation.

Firstly, “in model” simulations.

In the spinning coins example, for various choices of n and θ generate many

samples x and count the proportion of the samples for which our suggested

interval contains the corresponding value of θ.

You could develop your own rule of thumb for how big n needs to be, for

different choices of θ, for the result to be reliable.

For example, a common rule of thumb is to consider the normal approximation

to the binomial to be reasonable when nθ and n(1− θ) are both greater than

5. How does this translate into accuracy of the derived confidence intervals?



Out of model uncertainty simulations

Also important are “out of model” simulations.

By this, consider the most important ways in which the model might fail to

represent the random mechanisms generating the data.

Then build a representation of such alternative forms, say f∗(x|θ), embodying

the alternative random mechanisms and evaluate their effect by simulation

experiments.

For example, in the coin spinning experiment, we might allow the probability of

heads on spin i+ 1 to depend on the outcome of the spin i.

Or we might consider that the probability of heads θ is not constant but instead

varies (randomly or systematically) across the sequence of spins.



Out of model simulation experiments

Evaluations of f∗(x|θ) reveal how much structural error the model can support.

This may lead us to add some extra error to our model for f(x|θ) or to remodel

the problem or to be happy with the original model.

This will depend on the intended purpose of the model.

For example, do we want to learn about θ or to make forecasts for future

outcomes?

How good are the forecasts from f when compared with f∗?

Such considerations are strongly context specific and require careful thought

(which is a good thing!)



Stopping rules

So far, all of our analyses have been based on assuming that the sample size n
is fixed and known in advance. Suppose that this is not true.

Compare the following scenarios

(i) I spin the coin 20 times and see 5 heads (number of tosses fixed in advance).

(ii) I decide to keep tossing until I have seen 5 heads. I toss the coin 20 times.

(In this case, the number of tosses is the random variable.)

(iii) I use a random stopping mechanism (independent of p) which stops after

20 tosses. I have seen 5 heads.

(iv) The experiment stops after seeing 5 heads in 20 tosses, due to a random

event that was unforeseen and with unknown probability distribution

(independent of p).

In each case, I have tossed the coin 20 times and seen 5 heads.

Question Should my inference be the same or different for each case?



Bayesian formulation

In the Bayesian formulation, the parameters of the probability model (and any

other unknown quantities) are viewed as random quantities.

We assign a prior distribution, p(θ), for the parameter θ.

We update the prior distribution for θ to the posterior distribution for θ given

data x using Bayes theorem

p(θ|x) = p(x|θ)p(θ)
p(x)

∝ p(x|θ)p(θ)

where we find p(x) as

p(x) =

∫

p(x|θ)p(θ)dθ



General questions

In the Bayes approach, all of our inferences about θ are contained in p(θ|x)

Questions

What does p(θ) mean?

Why is p(θ|x) the inference from the data?

[And are the “in model” and “out of model” answers different?]



The beta distribution

For a simple Bayesian analysis of the coin spinning experiment, we will use the

convenience of a beta distribution prior.

We say that w has a Beta distribution with parameters α > 0 and β > 0,

if the probability density function of w is given by

p(w) =
Γ(α+ β)

Γ(α)Γ(β)
wα−1(1− w)β−1

for w ∈ [0, 1]. We write this as w ∼ Be(α, β).

Note that, if w ∼ Be(α, β) with α = β = 1, then

p(w) = 1, 0 ≤ w ≤ 1,

i.e. w has a uniform distribution on [0,1].



The gamma function

The Gamma function Γ is defined, for any real number z > 0 as

Γ(z) =

∫

∞

0
tz−1 exp(−t)dt

The Gamma function satisfies the following properties:

• if n is integer, then

Γ(n) = (n− 1)!

• for every z,

Γ(z + 1) = zΓ(z)

• more generally, if n is a positive integer and z > 0 then

Γ(z + n) = z(z + 1) · · · (z + n− 1)Γ(z)

• Γ(12) =
√
π.



Properties of the beta distribution

Suppose that w ∼ Be(α, β)

[1] The expectation of w is

E[w] =
α

α+ β

[2] The variance of w is

Var[w] =
αβ

(α+ β)2(α+ β + 1)

[3] If w ∼ Be(γ, δ), and if γ, δ are large, then unless γ >> δ or δ >> γ,

approximately

w ∼ N(
γ

γ + δ
,

γδ

(γ + δ)2(γ + δ + 1)
)



Binomial sampling

For binomial sampling, the likelihood is given by

P (X = k | w) =
(

n

k

)

wk(1− w)n−k = C ′wk(1− w)n−k

for k ∈ [0..n].

Viewed as a function of w, the binomial coefficient C ′ =
(

n
k

)

is a multiplicative

constant.

Therefore, the likelihood for binomial sampling is of the form

P (X = k | w) ∝ wk(1− w)n−k

.



Form of posterior distribution

Suppose that the prior distribution p on W = [0, 1] is a beta distribution of the

form

P (w) = C ′′wα−1(1− w)β−1 ∝ wα−1(1− w)β−1

where C ′′ is a multiplicative constant.

Applying Bayes theorem, the posterior is then of the form:

P (w | X = k) ∝ wα−1(1−w)β−1×wk(1−w)n−k ∝ wα+k−1(1−w)β+(n−k)−1

Hence, the posterior follows the same parametric form as the prior.

In other words, the passage from prior to posterior only involves a change in

the hyperparameters with no additional calculation.



Properties of beta binomial sampling

Therefore, if

X | w ∼ Bi(n,w)

and

w ∼ Be(α, β)

then

w | X = k ∼ Be(α+ k, β + n− k)



Conjugate Family: General Definition

Let X1, . . . , Xn be an independent sample of size n, each with likelihood

P (x | w).

A conjugate family for sampling from P (x | w) is a set M of distributions

with the following property:

if the prior for w is any member of M, then for any sample size n and any

sample values {Xi = xi}i∈[1..n], the posterior distribution for w is also a

member of M.

For example, the beta distributions are a conjugate family for binomial sampling.



Comments

Many sampling problems have natural conjugate families

Conjugate families contain a wide variety of probability distributions, so you

often find a distribution that provides a good approximation to your prior

knowledge within a conjugate family.

Also helpful for exploring the inferences over a wide range of differing prior

judgements.

You can use mixtures of conjugate priors for more complicated, eg multimodal

shapes.

We will find them particularly useful when we look at decision procedures,

where we need to make large numbers of updates a priori.



Limiting properties of beta binomial sampling

In our sampling problem, with prior Be(α, β) and observation k successes in n
spins, our posterior for θ is Be(γ, δ) where

γ = α+ k, δ = β + n− k

For large k, n, E(w|k),Var(w|k) are

γ

γ + δ
=

α+ k

α+ β + n
≈ k

n

γδ

(γ + δ)2(γ + δ + 1)
) =

(α+ k)(β + n− k)

(α+ β + n)2(α+ β + n+ 1)
≈ k(n− k)

n3



Normal approximation

If

w ∼ Be(γ, δ)

,

where γ, δ large, then approximately

w ∼ N(
γ

γ + δ
,

γδ

(γ + δ)2(γ + δ + 1)
)

so, approximately,

w ∼ N(x,
x(1− x)

n
)

(as x = k
n .)



Large sample credible interval

A (1− α) level credible interval for a parameter θ, given data x is one for

which the probability that θ is in the interval given probability distribution p(θ|x)
is (1− α).
We have shown that the posterior distribution for θ for large n is approximately

N(x,
x(1− x)

n
)

Therefore, the central (1− α) credible interval for θ is approximately

x± zα/2

√

x(1− x)

n

Questions

When do posterior distributions tend to normality?

Is there a general way of assessing the mean and variance of the normal

approximation that does not require the conjugate form?



Discussion

We have shown that the approximate large sample (1− α) confidence interval

for the binomial parameter θ is

x± zα/2

√

x(1− x)

n

We have also shown that the approximate large sample (1− α) credible

interval for θ, for any Beta prior, is

x± zα/2

√

x(1− x)

n

Question

The confidence interval and the credible interval are answering completely

different questions.

Why are they the same, and how general is this equivalence?
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