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Outline.

In this section, we discuss the evidence that is provided by data in a statistical

model.

We consider what (arguably) self-evident properties such evidence should

satisfy.

We then show that these “self-evident properties” imply the likelihood principle -

informally, that our inference should only depend on the likelihood function.

We will then explore some important implications of the likelihood principle.

As many standard statistical procedures do not obey the likelihood principle,

this raises some interesting issues.



Notation

Our notation for the experiment , E , is

E = {X ,Θ, fX(x | θ)}

where x ∈ X (typically vector valued) is the collection of possible observations

that we may make, or outcomes that we may observe.

The probability distribution of x depends on the model parameter θ ∈ Θ

and is of form fX(x | θ)

We assume that the model is true, so that only θ ∈ Θ is unknown.

We wish to learn about θ from observations x.



Reasoning about inferences

We consider a series of statistical principles for learning about θ from x.

The principles are meant to be either self-evident or logical implications of

principles which are self-evident.

In the experiment E = {X ,Θ, fX(x | θ)}, how the statistician chooses the

inference statements about the true value θ depends on the requirements of

the problem. For example:

• as a point or a set in Θ;

• as a choice among alternative sets or actions;

• or maybe as something more complicated.

We suppose that the statistician defines, a priori, a set of possible inferences

about θ. The task is to choose an element of this set based on E and x.



Inference

In this formulation, the statistician becomes a function Ev: a mapping from

(E , x) into a predefined set of inferences about θ.

(E , x) ✤
statistician, Ev

// Inference about θ.

For example, Ev(E , x) might be:

• the maximum likelihood estimator of θ
• a 95% confidence interval for θ

We call Ev the evidence from the experiment.



Birnbaum’s formulation

It was the inspiration of Allan Birnbaum (1923-1976) to see how to construct

and reason about statistical principles, given evidence from data, at a very

general level, in a way that applies to any form of evidence.

Our aim is not to identify a particular form of inference for any particular

problem, but rather to rule out certain kinds of inference for such problems.

Two particular features of interest are

(i) our attention is drawn to inferences based around properties of the likelihood

function,

(ii) this formulation appears to rule out many statistical procedures in current

practice.

Note In this section, we shall assume that the possible outcome set, X , is finite.

[This is to simplify our proofs - and real observations have finite outcome

spaces anyway.]



Equivalence of evidence

There can be different experiments with the same parameter θ.

Consider two experiments

E1 = {X1,Θ, fX1
(x1 | θ)} and

E2 = {X2,Θ, fX2
(x2 | θ)}.

Under some outcomes, we would agree that it is self-evident that these

different experiments provide the same evidence about θ.

The equality or equivalence of

Ev(E1, x1) and Ev(E2, x2) means that:

1. E1 and E2 are related to the same parameter θ.

2. Everything else being equal, the outcome x1 from E1 warrants the same

inference about θ as does the outcome x2 from E2.



Statistical principles

We now consider constructing statistical principles and demonstrate how these

principles imply other principles.

These principles all have the same form:

under such and such conditions, the evidence about θ should be the same in

two separate cases.

Thus they serve only to rule out inferences that satisfy the conditions but have

different evidences.

They do not tell us how to make an inference, only what to avoid.



Distribution principle (DP)

Our first principle, the distribution principle, sets up the constraints of our

inference.

The distribution principle is as follows.

Suppose that E = E ′ = {X ,Θ, fX(x | θ)}.

Then Ev(E , x) = Ev(E ′, x).

Interpretation The only aspects of an experiment which are relevant to our

inference are the sample space and the family of distributions over it.

[Therefore, any differences between the inferences for the two experiments

must be due to features which are not contained in the model description.]



Transformation Principle (TP)

The Transformation Principle is as follows.

Let E = {X ,Θ, fX(x | θ)}.

For the bijective g : X → Y , let

Eg = {Y ,Θ, fY (y | θ)},

denote the same experiment as E but expressed in terms of Y = g(X), rather

than X .

Then Ev(E , x) = Ev(Eg, g(x)).

Interpretation Inferences should not depend on the way in which the sample

space is labelled.

For example, we should form the same evidence if we recorded X or X−1.



Next steps

Assuming that we have accepted the distribution principle and the

transformation principle,

we will show that in combination they imply a further principle, the weak

indifference principle.

We will then add one further principle, the weak conditionality principle, which

again seems reasonably self evident.

Weak indifference and weak conditionality together will lead us to the strong

likelihood principle, (informally, that outcomes from two experiments with

proportional likelihoods should lead to the same inference) which therefore we

will show is a consequence of the three reasonably self evident principles.



Example: spinning coin twice

Suppose that we spin a coin twice, scoring 1 for heads, 0 for tails on each spin.

Denote the outcomes as x1 = (0, 0), x2 = (1, 0), x3 = (0, 1), x4 = (1, 1)
Note that, for all θ (the probability of heads), we have

fX(x2|θ) = θ(1− θ) = fX(x3|θ)

Now suppose that we switch x2 and x3 so,

g(x1) = x1, g(x2) = x3, g(x3) = x2, g(x4) = x4

Experiments E and Eg have the same outcome space, parameter space and

probability function. Therefore

Ev(E , x2) = Ev(Eg, x2) [by the DP]

= Ev(Eg, g(x3))

= Ev(E , x3) [by the TP]



Weak indifference principle (WIP)

The Weak Indifference Principle is as follows.

Let E = {X ,Θ, fX(x | θ)}.

If fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ

then Ev(E , x) = Ev(E , x′).

Example Suppose X = (X1, . . . , Xn) where the Xis are a series of

independent Bernoulli trials with parameter θ.

fX(x | θ) = fX(x′ | θ) for all θ ∈ Θ if x and x′ contain the same number of

successes.

Therefore, the two observations should lead to the same evidence.

Interpretation We are indifferent between two models of evidence if they differ

only in the manner of the labelling of sample points.



THEOREM: The Distribution and Transformation principles

imply the Weak Indifference principle

Proof Fix E , and suppose that x, x′ ∈ X satisfy

fX(x | θ) = fX(x′ | θ)

for all θ ∈ Θ, as in the condition of the WIP.

Let g : X → X be the function which switches x for x′, but leaves all of the

other elements of X unchanged. Then E = Eg and

Ev(E , x′) = Ev(Eg, x′) [by the DP]

= Ev(Eg, g(x))

= Ev(E , x), [by the TP]

which gives the WIP. �



Mixture experiments

• Consider experiments Ei = {Xi,Θ, fXi
(xi | θ)}, i = 1, 2, . . ., where the

parameter space Θ is the same for each experiment.

• Let p1, p2, . . . be a set of known probabilities so that pi ≥ 0 and
∑

i pi = 1.

Mixture experiment The mixture E∗ of the experiments E1, E2, . . . according

to mixture probabilities p1, p2, . . . is the two-stage experiment

1. A random selection of one of the experiments: Ei is selected with

probability pi.
2. The experiment selected in stage 1 is performed.

Thus, each outcome of the experiment E∗ is a pair (i, xi), where i = 1, 2, . . .
and xi ∈ Xi, and family of distributions

f∗((i, xi) | θ) = pifXi
(xi | θ).



Mixture experiments

A famous example of a mixture experiment is the ‘two instruments’ (see Section

2.3 of Cox and Hinkley (1974)).

There are two instruments in a laboratory, and one is accurate, the other less

so.

The accurate one is more in demand, and typically it is busy 80% of the time.

The inaccurate one is usually free.

So, a priori, there is a probability of p1 = 0.2 of getting the accurate

instrument, and p2 = 0.8 of getting the inaccurate one.

Once a measurement is made, there is no doubt about which of the two

instruments was used.

The following principle asserts what should be self-evident, namely that

inferences should be made according to which instrument was used and not

according to the a priori uncertainty.



Weak Conditionality Principle (WCP)

The Weak Conditionality Principle is as follows.

Let E∗ be the mixture of the experiments E1, E2 according to mixture

probabilities p1, p2 = 1− p1. Then

Ev (E∗, (i, xi)) = Ev(Ei, xi).

Interpretation The WCP says that inferences for θ depend only on the

experiment performed and not which experiments could have been performed.

Suppose that Ei is randomly chosen with probability pi and xi is observed.

The WCP states that the same evidence about θ would have been obtained if it

was decided non-randomly to perform Ei from the beginning and xi is

observed.

As Casella and Berger (2002, p293) state “the fact that this experiment was

performed rather than some other, has not increased, decreased, or changed

knowledge of θ.”



Example: spinning coin twice, again

E1: record heads. x1 = (0, 0), x2 = (1, 0), x3 = (0, 1), x4 = (1, 1)
E2: count number of heads. k0 = 0, k1 = 1, k2 = 2

Note that 2f1(x2|θ) = 2θ(1− θ) = f2(k1|θ)

Let E∗ be the mixture experiment E1 probability 2/3 and E2 probability 1/3.

Suppose in E∗, we obtain experiment E1 and see outcome x2. This has

probability f∗(1, x2|θ) = (2/3)f1(x2|θ) = (2/3)θ(1− θ)

Similarly, suppose we obtain experiment E2 and see outcome k1. This has

probability f∗(2, k1|θ) = (1/3)f2(k1|θ) = (2/3)θ(1− θ).

Therefore f∗(1, x2|θ) = f∗(2, k1|θ), ∀θ

Therefore, by the weak indifference principle,

Ev(E∗, (1, x2)) = Ev(E∗, (2, k1))

Therefore, by weak conditionality principle

Ev(E1, x2) = Ev(E2, k1)



Likelihood notation

We have an experiment

E = {X ,Θ, fX(x | θ)}

where x ∈ X , is the collection of possible observations that we may make

The probability distribution of x depends on the model parameter θ ∈ Θ

and is of form fX(x | θ)

Notation For given x, the likelihood function is

L(θ) = LX(θ;x) = f(x | θ)

considered as a function of θ.



Strong Likelihood Principle (SLP)

The Strong Likelihood Principle, SLP is as follows.

Let E1 and E2 be two experiments which have the same parameter θ.

If x1 ∈ X1 and x2 ∈ X2 satisfy

fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ), ∀θ ∈ Θ,

or, equivalently,

LX1
(θ;x1) = c(x1, x2)LX2

(θ;x2)

for some function c > 0 for all θ ∈ Θ then

Ev(E1, x1) = Ev(E2, x2).

Interpretation The SLP states that if two likelihood functions for the same

parameter have the same shape, then the evidence is the same.



Likelihood inference

A fundamental corollary of the SLP is obtained by setting

E1 = E2 = E

We have that

Ev(E , x)

should depend on E and x only through LX(θ;x).

Many classical statistical procedures violate the SLP so this result was

something of the bombshell when it first emerged in the 1960s.



Birnbaum’s theorem

The following form is due to:

Birnbaum, A. (1972). More concepts of statistical evidence. Journal of the

American Statistical Association 67, 858–861.

Basu, D. (1975). Statistical information and likelihood. Sankhya 37(1), 1–71.

Birnbaum’s Theorem

(WIP ∧ WCP ) ↔ SLP.

Proof

Both SLP → WIP and SLP → WCP are straightforward.

The trick is to prove (WIP ∧ WCP ) → SLP.



Birnbaum’s theorem: Proof

Let E1 and E2 be two experiments which have the same parameter.

Suppose that x1 ∈ X1 and x2 ∈ X2 satisfy, for all θ,

fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ)

where the function c > 0.

Consider the mixture experiment with

E1 with probability p1 = 1/(1 + c)

and E2 with probability p2 = c/(1 + c).



Birnbaum’s theorem: Proof continued

f∗((1, x1) | θ) =
1

1 + c
fX1

(x1 | θ) =
c

1 + c
fX2

(x2 | θ) = f∗((2, x2) | θ)

Then the WIP implies that

Ev (E∗, (1, x1)) = Ev (E∗, (2, x2)).

Applying the WCP to each side we infer that

Ev(E1, x1) = Ev(E2, x2),

as required. �

Comment Either I accept the SLP, or I explain which of the two principles, WIP

and WCP, I refute.

Methods, which include many classical procedures, which violate the SLP face

exactly this challenge.



Coming up.

So far, we have derived the likelihood principle from some weak inferential

conditions.

We will now look at various implications of the likelihood pronciple.

Firstly, we consider sufficient statistics and whether it is appropriate to construct

inferences solely on their values.

Secondly, we consider the implications of the likelihood principle for stopping

rules in sequential sampling.

Finally, we consider the appropriate treatment of ancillary quantities in

inference.

Then we will consider further issues as to how the likelihood principle applies in

practice.



Sufficiency

Recall the idea of sufficiency:

S = s(X) is sufficient for θ if and only if

fX(x | θ) = fX|S(x | s)fS(s | θ)

where fX|S(x | s) does not depend upon θ.

A natural consequence of sufficiency is that two samples with the same value

for the sufficient statistic should result in the same inference.



The Sufficiency Principle

This suggests the following principle.

Weak Sufficiency Principle, WSP

If S = s(X) is a sufficient statistic for E = {X ,Θ, fX(x | θ)}
and

s(x) = s(x′)

then

Ev(E , x) = Ev(E , x′).



Strong Sufficiency

A stronger version of the sufficiency principle is as follows.

Suppose that we record only the value of the sufficient statistic for an

experiment.

This results in a modified experiment

ES = {s(X ),Θ, fS(s | θ)}.

Is our reduced experiment the same as the original experiment?



The Strong Sufficiency Principle

The strong likelihood principle says that it is.

Strong Sufficiency Principle, SSP

If S = s(X) is a sufficient statistic for E = {X ,Θ, fX(x | θ)} then

Ev(E , x) = Ev(ES , s(x)).

What is the justification for these two principles?



Likelihood principle implies sufficiency principle

The strong likelihood principle implies the sufficiency principles as follows.

Theorem SLP → SSP → WSP.

Proof As s is sufficient,

fX(x | θ) = cfS(s | θ)

where c = fX|S(x | s) does not depend on θ.

Applying the SLP,

Ev(E , x) = Ev(ES , s(x))

which is the SSP.



Proof continued

Note, that from the SSP, if s(x) = s(x′), then

Ev(E , x) = Ev(ES , s(x)) (by the SSP)

= Ev(ES , s(x′)) (by the SLP)

= Ev(E , x′) (by the SSP)

We thus have the WSP.

�



Discussion

In practice, sufficiency principles are widely accepted and used, even within the

classical framework.

However, the basic rationale for sufficiency - that inference should not depend

on irrelevant randomisations - is similar in spirit to the likelihood principle itself.

Hence the formal link we have established.

Note that there are important considerations that we are excluding from the

strong sufficiency principle, such as testing goodness of fit of the model.

Like all of our principles in this section, these inferences take place within the

world in which the model is assumed true.



Stopping rules

Consider observing a sequence of random variables X1, X2, . . . where the

number of observations is not fixed in advance but depends on the values seen

so far.

• At time j, the decision to observe Xj+1 can be modelled by a probability

pj(x1, . . . , xj).
• We assume, resources being finite, that the experiment must stop at

specified time m, if it has not stopped already, hence pm(x1, . . . , xm) = 0.

The stopping rule may then be denoted as τ = (p1, . . . , pm). This gives an

experiment Eτ with distribution fn(x1, . . . , xn | θ) for n = 1, 2, . . ., where

consistency requires that

fn(x1, . . . , xn | θ) =
∑

xn+1

· · ·
∑

xm

fm(x1, . . . , xn, xn+1, . . . xm | θ).



Motivation for the stopping rule principle (Basu, 1975)

Consider four different coin-tossing experiments (with some finite limit on the

number of tosses).

E1 Toss the coin exactly 10 times;

E2 Continue tossing until 6 heads appear;

E3 Continue tossing until 3 consecutive heads appear;

E4 Continue tossing until the accumulated number of heads exceeds that of

tails by exactly 2.

Suppose that all four experiments have the same outcome

x = (T,H,T,T,H,H,T,H,H,H).
We may feel that the evidence for θ, the probability of heads, is the same in

every case.

Once the sequence of heads and tails is known, the intentions of the original

experimenter (i.e. the experiment she was doing) are immaterial to inference

about the probability of heads.

The simplest experiment E1 can be used for inference.



Stopping Rule Principle, SRP

The SRP is as follows.

In a sequential experiment Eτ , Ev (Eτ , (x1, . . . , xn)) does not depend on the

stopping rule τ .

Comment Basu (1975) claims the SRP is due to George Barnard.

If it is accepted, the SRP is revolutionary.

It implies that the intentions of the experimenter, represented by τ , are

irrelevant for making inferences about θ, once the observations (x1, . . . , xn)
are known. Once the data is observed, we can ignore the sampling plan.

The statistician could proceed as though the simplest possible stopping rule

were in effect, which is p1 = · · · = pn−1 = 1 and pn = 0, an experiment with

n fixed in advance, En = {X1:n,Θ, fn(x1:n | θ)}.

Can the SRP be justified?



The likelihood principle implies the stopping rule principle

Theorem

SLP → SRP

Proof Let τ be an arbitrary stopping rule, and consider the outcome

(x1, . . . , xn), which we will denote as x1:n.

We take the first observation with probability one.

For j = 1, . . . , n− 1, the (j + 1)th observation is taken with probability

pj(x1:j).
We stop after the nth observation with probability 1− pn(x1:n).

Consequently, the probability of this outcome under τ is

fτ (x1:n | θ) = f1(x1 | θ)







n−1
∏

j=1

pj(x1:j) fj+1(xj+1 |x1:j , θ)







(1− pn(x1:n))



Proof continued

fτ (x1:n | θ) =







n−1
∏

j=1

pj(x1:j)







(1− pn(x1:n)) f1(x1 | θ)
n
∏

j=2

fj(xj |x1:(j−1), θ)

=







n−1
∏

j=1

pj(x1:j)







(1− pn(x1:n)) fn(x1:n | θ).

Now observe that this equation has the form

fτ (x1:n | θ) = c(x1:n)fn(x1:n | θ) (1)

where c(x1:n) > 0.

Thus the SLP implies that Ev(Eτ , x1:n) = Ev(En, x1:n) where

En = {X1:n,Θ, fn(x1:n | θ)}. Since the choice of stopping rule was arbitrary,

equation (1) holds for all stopping rules, showing that the choice of stopping

rule is irrelevant. �



Discussion

A comment from Leonard Jimmie Savage, one of the great statisticians of the

Twentieth Century, captured the revolutionary and transformative nature of the

SRP.

May I digress to say publicly that I learned the stopping rule

principle from Professor Barnard, in conversation in the summer of

1952. Frankly, I then thought it a scandal that anyone in the

profession could advance an idea so patently wrong, even as today

I can scarcely believe that some people resist an idea so patently

right.

(Savage, 1962, Foundations of statistical inference)



Ancillarity

Consider the concept of ancillarity.

This has several different definitions in the Statistics literature; the one we use

is close to that of Cox and Hinkley (1974, Section 2.2) Theoretical Statistics.

Definition (Ancillarity)

Y is ancillary in the experiment E = {X ×Y ,Θ, fX,Y (x, y | θ)} exactly when

fX,Y factorises as

fX,Y (x, y | θ) = fY (y)fX|Y (x | y, θ).

The marginal distribution of Y is completely specified: it does not depend on θ.



Ancillarity examples

We have already considered versions of this.

A familiar example is that of a random sample size:

in a sample x = (x1, . . . , xn),

n may be the outcome of a random variable N .

We seldom concern ourselves with the distribution of N when we evaluate x;

instead we treat N as known.

Equivalently, we treat N as ancillary and condition on N = n.

Therefore, we consider that inferences drawn from observing (n, x) should be

the same as those for x conditioned on N = n.



Ancillarity in regression

Another common example arises when we perform a regression of Z on U ,

say to estimate the parameters in

z = βu+ α+ ǫ

from a sample of (U,Z) values.

Both U and Z are random, but U is treated as ancillary for the parameters in

fZ|U .

We model Z conditionally on U , treating U as known.

Therefore, we estimate the regression parameters, for example by least

squares, and then assess the estimation error treating U values as fixed.



Strong conditionality

When Y is ancillary, we can consider the conditional experiment

EX | y = {X ,Θ, fX |Y (x | y, θ)}.

That is, we treat Y as known, and treat X (conditional on Y = y) as the only

random variable.

Strong Conditionality Principle, SCP

If Y is ancillary in E , then Ev (E , (x, y)) = Ev(EX|y, x).

[The SCP implies the WCP, with the experiment indicator I ∈ {1, 2} being

ancillary.]



Ancillarity theorem

We have the following result.

Theorem SLP → SCP.

Proof Suppose that Y is ancillary in E = {X × Y ,Θ, fX,Y (x, y | θ)}. Thus,

for all θ ∈ Θ,

fX,Y (x, y | θ) = fY (y)fX|Y (x | y, θ)

= c(y)fX|Y (x | y, θ)

Then the SLP implies that

Ev (E , (x, y)) = Ev(EX|y, x),

as required. �



The Likelihood Principle in practice

Which inferential approaches respect the SLP?

A Bayesian statistical model adds prior π(θ) giving the collection

EB = {X ,Θ, fX(x | θ), π(θ)}.

The posterior distribution is π(θ |x) = c(x)fX(x | θ)π(θ) where c(x) is the

normalising constant,

c(x) =

{
∫

Θ
fX(x | θ)π(θ) dθ

}−1

.

All knowledge about θ given the data x is represented by π(θ |x).

Any inferences made about θ are derived from this distribution.



Bayesian models

Consider two Bayesian models with the same prior distribution, π(θ),

EB,1 = {X1,Θ, fX1
(x1 | θ), π(θ)}

EB,2 = {X2,Θ, fX2
(x2 | θ), π(θ)}

Suppose that fX1
(x1 | θ) = c(x1, x2)fX2

(x2 | θ). Then

π1(θ |x1) = c(x1)fX1
(x1 | θ)π(θ) = c(x1)c(x1, x2)fX2

(x2 | θ)π(θ)

= π2(θ |x2)

Hence, the posterior distributions are the same.

Consequently, the same inferences are drawn from either model and so the

Bayesian approach satisfies the SLP.



Comment

This argument assumes that π(θ) does not depend upon the form of the data.

Some methods for making ”default” choices for π(θ) depend on fX(x | θ).

For example, Jeffreys priors and reference priors.

These methods violate the SLP.



Violating the LP

Maximum likelihood estimation clearly satisfies the SLP and methods, such as

penalised likelihood theory, have been generated to satisfy the SLP.

However, inference tools used in the classical approach typically violate the

SLP.

These inference techniques depend upon the sampling distribution and

therefore depend on the whole sample space X and not just the observed

x ∈ X .

The sampling distribution depends on values of fX other than

L(θ;x) = fX(x | θ).

For example, a statistic T (X), chosen on the basis of a criterion such as

MSE(T | θ) = V ar(T | θ) + bias(T | θ)2

depends upon the first and second moments of the distribution of T | θ.



Binomial and Negative Binomial example

Here’s a simple example of the ways in which traditional inferences can

contradict the likelihood principle.

We wish to test the hypothesis H0 : θ = 1
2 versus H1 : θ < 1

2 where θ is the

probability that a single random trial is a success.

Experiment one: n independent trials. Count the number of successes X .

Experiment two: count the number of independent trials Y until the number of

successes is r.



Binomial and Negative Binomial example

Let E1 = {X ,Θ, fX(x | θ)}, where X | θ ∼ Bin(n, θ) so that

fX(x | θ) =

(

n

x

)

θx(1− θ)n−x, x = 0, 1, . . . , n.

Let E2 = {Y ,Θ, fY (y | θ)}, where Y | θ ∼ Nbin(r, θ), so that

fY (y | θ) =

(

y − 1

r − 1

)

θr(1− θ)y−r, y = r, r + 1, . . . .



Example ctd

Suppose we observe x = r = 3 and y = n = 12, so that in each experiment

there were 12 trials and 3 successes. Therefore

fX(3 | θ) =

(

12

3

)

θ3(1− θ)9

fY (12 | θ) =

(

11

2

)

θ3(1− θ)9

Thus, fX(3 | θ) ∝ fY (12 | θ).

SLP implies each experiment should reach the same conclusion, as we have

seen in our discussion of stopping rules.

Suppose we assess the hypothesis test H0 : θ = 1
2 versus H1 : θ < 1

2 by

carrying out a significance test, at conventional significance level 5%, for each

experiment.



Example ctd

Let Ev(E1, 3) be the result of the hypothesis test for the Binomial model where

small values of X support H1

P(X ≤ 3 | θ = 1/2) =
3

∑

x=0

fX(x | θ = 1/2) = 0.0730.

Thus, Ev(E1, 3) is to not reject H0, using conventional 5% significance.

Let Ev(E2, 12) be the result of the hypothesis test for the Negative Binomial

model where large values of Y support H1

P(Y ≥ 12 | θ = 1/2) =
∞
∑

y=12

fY (y | θ = 1/2) = 0.0327.

Thus, Ev(E2, 12) is to reject H0. This inference method does not respect the

SLP: the choice of the model is relevant to the inference.



Discussion 1

Any inferential method which relies on values of f(x′|θ) other than the

observed value of x (like significance tests) will violate the likelihood principle.

Among the difficulties with violating the SLP are the following:

To reject the SLP is to reject at least one of the WIP and the WCP.

Yet both of these principles seem self-evident.

Therefore it is hard to justify violating the SLP.

In their everyday practice, statisticians use the SRP (ignoring the intentions of

the experimenter) and the SCP (conditioning on ancillary statistics) .

These are not self-evident, but they are implied by the SLP.

If the SLP is violated, they need an alternative justification which has not yet

been forthcoming.



Discussion 2

Our framework assumes the truth of the model and that the evidence that we

shall produce has been decided before we conduct the experiment.

All that we don’t know is the experimental outcome.

In this formulation, the statistician sets up the framework and then leaves.

Issues around the likelihood principle (and many other statistical principles) are

more complicated when the statistician stays around!
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