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Outline

The likelihood principle points us to the central importance of the likelihood

function for statistical inference.

In this section, we will explore the statistical properties of the likelihood function

and of the maximum likelihood and related estimators.

For simplicity, we will mainly restrict our discussion to problems with a single

parameter but these results are true in much greater generality.



Framework

Our framework is as follows.

We want to make inferences about a population, based on a sample from that

population.

Our model is that we observe data x = (x1, ..., xn).

The data is an iid sample of size n from distribution f(x|θ).

The probability distribution of x depends on the model parameter θ ∈ Θ.

We assume that the model is “true”, so that only θ ∈ Θ is unknown.



Likelihood

We wish to learn about θ from observations x.

If we observe x, then the likelihood function is

L(θ) = L(θ;x) = f(x | θ) =

n∏
i=1

f(xi|θ)

considered as a function of θ for fixed x.



Log likelihood

We often work with the log-likelihood

l(θ) = log(L(θ))

For a sample of size n, we may write this as

ln(θ) = l(θ;x) = log(L(θ;x)) =
n∑

i=1

log(f(xi|θ))

so that

ln(θ) = l(θ;x1) + ...+ l(θ;xn)



Maximum likelihood

The maximum likelihood estimate (MLE), θ̂(x), is the value of θ which

maximises L(θ), or equivalently which maximises l(θ).

When x comprises an independent sample, of size n, we often write the MLE

as θ̂n.

We will mainly be concerned with regular problems where ln(θ) is

differentiable, and the range of the sample space does not depend on θ.

In such cases, θ̂n can usually be found as a solution of the likelihood equation

l′n(θ) = 0



Example

Suppose X1, ..., Xn are an independent, identically distributed sample, of size

n from an exponential distribution, with parameter θ. The common density is

f(x | θ) =
exp(−x/θ)

θ
, 0 < x < ∞, 0 < θ < ∞

If X ∼ exp(θ), then

E(X) = θ, Var(X) = θ2

The density for the sample, x = (x1, ..., xn), is

L(θ) = f(x | θ) =
n∏

i=1

exp(−xi/θ)

θ
=

exp(−sn/θ)

θn

where sn = x1 + ...+ xn, the sufficient statistic for the sample.



Example: MLE

Therefore,

ln(θ) = −nlog(θ)−
sn
θ

so that

l′n(θ) = −
n

θ
+

sn
θ2

Therefore, the likelihood equation, l′n(θ) = 0, has the unique solution

θ̂ =
sn
n
.

Check that this is indeed a maximum from the second derivative

l′′n(θ) =
n

θ2
− 2

sn
θ3

so that

l′′n(θ̂) < 0



Example: unbiasedness and consistency

Our estimator is

θ̂n =
X1 + ...+Xn

n

Here are some sampling properties of θ̂n. As

E(X|θ) = θ

θ̂n is an unbiased estimator of θ for all n, i.e.

E(θ̂n|θ) = θ

Further, from the strong law of large numbers, almost surely,

θ̂n → θ

i.e. θ̂n is strongly consistent as an estimator of θ.



Some probability definitions

[See Essentials of Statistical Inference, Young and Smith (2005)]

A sequence of random variables Y1, Y2, ... is said to converge in probability

to real value a if the following:

given ǫ > 0, δ > 0, there exists an n0 = n0(δ, ǫ) such that, for all n > n0,

Pr(|Yn − a| > ǫ) < δ.

A sequence of random variables Y1, Y2, ... is said to converge almost surely

to real value a if the following:

given ǫ > 0, δ > 0, there exists an n0 = n0(δ, ǫ) such that

Pr(|Yn − a| > ǫ, for some n > n0) < δ.



Laws of large numbers

Let X1, X2, ... be independent, identically distributed random variables with

finite mean µ.

The strong law of large numbers (SLLN)

The sequence of random variables

Yn =
X1 + . . .+Xn

n

converges almost surely to µ, if and only if E|Xi| is finite.

The weak law of large numbers (WLLN)

If the Xi have finite variance, then Yn converges to µ in probability.



Asymptotic distribution of MLE 1

The consistency property of MLE in our example is true in great generality.

We have the following theorem.

Theorem Under suitable regularity conditions,

θ̂n is strongly consistent as an estimator of θ.

[ i.e. θ̂n → θ almost surely.]

This property is interesting in its own right and also as a key step to deriving

further properties of the MLE.



Concave and convex functions

To prove this result, we need Jensen’s inequality, which is a property of convex

and concave functions.

f(x) is a concave function if the chord between any two points on the curve

lies below the curve.

Equivalently, f is concave if f ′′(x) ≤ 0 over the range of x.

f is convex if the chord lies above the curve or equivalently if f ′′(x) ≥ 0

so a straight line is concave and convex.

(Strict concave/convex replaces above inequalities with strict inequalities.)



Jensen’s inequality

Jensen’s inequality is as follows.

Suppose that f(x) is a real function, X is a bounded random quantity.

If f is a concave function then E(f(X)) ≤ f(E(X))

If f is a convex function then E(f(X)) ≥ f(E(X))

(Strict concave/convex replaces above inequalities with strict inequalities when

X is not a constant.)



Jensen’s inequality: examples

Example 1

f(x) = x2

f ′′(x) = 2 > 0

so f(x) is convex so

E(X2) ≥ (E(X))2

So

Var(X) = E(X2)− (E(X))2 ≥ 0.



Jensen’s inequality: examples

Example 2

In decision theory, a person is said to be risk averse if, for any money gamble,

they have a preference for the expected money value of the gamble over the

gamble itself.

If U(.) is the utility function for random amounts of money X , then by Jensen’s

inequality, the person is risk averse if and only if U is a concave function so that

we must have

E(U(X)) ≤ U(E(X))

i.e. the utility of the expected value of the gamble is bigger than the utility of the

gamble (which is equal to its expected utility)



Jensen’s inequality: examples

Example 3

f(x) = log(x), x > 0.

As

f ′′(x) = −
1

x2
< 0,

log is a concave function and so

E(log(X)) ≤ log(E(X))

.

Comment Daniel Bernoulli (1738), discussed the St Petersburg paradox. A

ticket promises to pay the bearer £2k where k is the number of times a fair

coin is tossed until it first lands heads. How much is the ticket worth?

The expected payout is infinite, but it clearly is not worth infinity. Bernoulli,

discussing decreasing marginal value, suggested maximising “moral

expectation” of money, essentially log of money amount.



Outline proof of consistency of MLE

Suppose f(x|θ) is a family of probability densities or probability mass

functions and let θ0 denote the true value of the parameter θ.

Note that, for any θ, θ0

Eθ0(
f(X|θ)

f(X|θ0)
) =

∫
(
f(x|θ)

f(x|θ0)
)f(x|θ0)dx =

∫
f(x|θ)dx = 1

Therefore, for any θ 6= θ0, we have by Jensen’s inequality

Eθ0 log(
f(X|θ)

f(X|θ0)
) ≤ log(Eθ0(

f(X|θ)

f(X|θ0)
)) = 0,

The inequality is strict unless
f(X|θ)
f(X|θ0)

= 1 (almost everywhere),as a function of

X .



Proof ctd.

Fix δ > 0 and let

µ1 = Eθ0log(
f(X|θ0 − δ)

f(X|θ0)
) < 0

µ2 = Eθ0log(
f(X|θ0 + δ)

f(X|θ0)
) < 0

By the SLLN, as ln(θ) = l(θ;x1) + ...+ l(θ;xn),

ln(θ0 − δ)− ln(θ0)

n
→ µ1 < 0 (as)

Therefore, with probability 1, ln(θ0 − δ) < ln(θ0), for all n sufficiently large.

Similarly, with probability 1, ln(θ0 + δ) < ln(θ0), for all n sufficiently large.

Hence, for all n sufficiently large, there exists an estimator

θ̂n which maximises the log-likelihood on (θ0 − δ, θ0 + δ) for any δ > 0.

Therefore, the MLE is a strongly consistent estimator. �



The score function

We define the score function as

u(θ) = u(θ;x) =
∂

∂θ
l(θ;x) = l′(θ)

As x = (x1, ..., xn) is an independent sample, then

u(θ;x) = u(θ;x1) + ...+ u(θ;xn)

The likelihood equation is

u(θ̂) = 0



Expectation of score function

We now look at the properties of the score function as X varies.

We write U(θ) = u(θ;X). For regular problems, we have

Eθ(U(θ)) = 0

Proof For each θ

∫
f(x|θ)dx = 1

Therefore

∂

∂θ

∫
f(x|θ)dx =

∫
f ′(x|θ)

f(x|θ)
f(x|θ)dx = E(U(θ)) = 0, �

[By regular, we mean here that we can differentiate through the integral.

In particular, we suppose that the range of integration does not depend on θ.]



Variance of the Score function

Var(U(θ)) = Eθ((U(θ))2) = −Eθ(
∂2l(θ;X)

∂θ2
)

Proof

Eθ((
∂2

∂θ2
log(f(X|θ)))) = Eθ(

f(x|θ) ∂2

∂θ2
f(x|θ)− ( ∂

∂θ
f(X|θ))2

f2(X|θ)
)

= −Eθ((
∂

∂θ
log(f(X|θ))2)

as

0 =

∫
∂2

∂θ2
f(x|θ)dx = Eθ(

∂2

∂θ2
f(X|θ)

f(X|θ)
)) �



Fisher’s information

The variance of the score function, (Var(U(θ))) is often written as

i(θ) = −E(
∂2log(f(X|θ)

∂θ2
)

i(θ) is termed Fisher’s information, in a sample of size 1.

X = (X1, ..., Xn), where X1, ..., Xn are iid from f(x; θ). Therefore,

ln(θ) = l(θ;x1) + ...+ l(θ;xn)

Therefore in(θ), the information from a sample of size n, is

in(θ) = ni1(θ)



Example: score function

In our example, X1, ..., Xn are an independent, identically distributed sample,

of size n from an exponential distribution, with parameter θ.

We have found that,with sn = x1 + ...+ xn, the log-likelihood is

ln(θ) = −nlog(θ)−
sn
θ

Thefore, the score function is

un(θ) =
∂

∂θ
ln(θ) = −

n

θ
+

sn
θ2

As E(Xi) = θ, we have

E(Un(θ)) = 0

agreeing with our general result.



Example: Fisher’s information

un(θ) =
∂

∂θ
ln(θ) = −

n

θ
+

sn
θ2

As Var(Xi) = θ2, the variance of the score function, found directly, is

Var(Un(θ)) = Var(
Sn

θ2
) =

n

θ2

Compare the evaluation of the variance using Fisher’ information as

in(θ) = −E(l′′n(θ)) = −(
n

θ2
) + E(

2Sn

θ3
) =

n

θ2



Example: large sample distribution

In our example

θ̂n =
X1 + ...+Xn

n

So, as E(X) = θ, Var(X) = θ2, with θ = θ0, we have

E(θ̂n) = θ0

Var(θ̂n) =
θ20
n

=
1

ni1(θ0)

and the large sample distribution of θ̂n is approximately Gaussian, from the

central limit theorem, with the above mean and variance.



Asymptotic distribution of MLE 2

The large sample properties of MLE in our example are true in great generality.

We have the following theorem describing the large sample behaviour of the

MLE

Theorem Under suitable regularity conditions, for given value θ0, for large n,

the distribution of θ̂n is approximately normal,

with mean θ0

and variance

1

in(θ0)
=

1

ni1(θ0)



Reminder: Taylor expansions

The Taylor expansion for a function f(x) of a single real variable about x = a
is given by

f(x) =
f(a)+ f (1)(a)(x− a)+ 1

2!f
(2)(a)(x− a)2+ ..+ 1

n!f
(n)(a)(x− a)n+Rn,

where f (k)(a) is the kth derivative of f(x) evaluated at x = a, and the

remainder is

Rn =
1

(n+ 1)!
f (n+1)(c)(x− a)n+1

for some c ∈ [a, x].



Outline proof of asymptotic normality of MLE

We assume that ln(θ) is twice differentiable on a neighbourhood of θ0.

From the proof of consistency of the MLE, there exists a sequence of local

maxima θ̂n such that l′n(θ̂n) = 0, and θ̂n → θ0, almost surely.

We carry out a Taylor expansion of the score function

u(θ, x) =
∂

∂θ
l(θ;x)

around θ0, evaluated at θ̂

0 = u(θ̂) ≈ u(θ0) + (θ̂ − θ0)u
′(θ0)

So

θ̂ − θ0 ≈ −
u(θ0)

u′(θ0)



Proof continued

θ̂ − θ0 ≈ −
u(θ0)

u′(θ0)

As

u(θ;x) = u(θ;x1) + ...+ u(θ;xn)

by the CLT, approximately,

u(θ0) ∼ N(0, ni1(θ0))

By SLLN,

u′(θ0) ≈ E(u′(θ0)) = −ni1(θ0)

and the result follows. �



Cramer-Rao lower bound

Let W (X) be any estimator of θ. Let

m(θ) = Eθ(W (X)).

The Cramer-Rao lower bound (CRLB) for the variance of W (X) for a regular

likelihood is

Var(W (X)) ≥
(m′(θ))2

i(θ)

In particular, if W (X) is an unbiased estimator for θ, so that m(θ) = θ, then

the CRLB is

Var(W (X)) ≥
1

i(θ)

Unbiased estimators which achieve this lower bound are termed efficient.



Proof of bound

Cov(W (X), U(θ,X)) =

∫
w(x)

∂

∂θ
log(f(x; θ)f(x; θ)dx

=
∂

∂θ

∫
w(x)f(x; θ)dx = m′(θ)

Therefore as

(Cov(W (X), U(θ,X)))2 ≤ Var(W (X)),Var(U(θ,X))

and

Var(U(θ,X)) = i(θ)

it follows that

Var(W (X) ≥
(m′(θ))2

i(θ)
�



Example: efficiency

In our example, we have already shown that, for all n, our estimator θ̂ is

unbiased with variance equal to 1
i(θ) .

Therefore θ̂ is efficient, for all sample sizes.

Comment If we had parametrised the density as

f(x|θ) = θexp(−θx), x > 0

,

then the MLE would not attain the Cramer Rao lower bound. [Check!]

[For the Cramer Rao lower bound to be attained, we need to be sampling from

the general exponential family of distributions with a particular, natural

parametrisation.]



Discussion: large samples

We have shown that, under suitable regularity conditions, for large n, the

distribution of θ̂n is approximately normal, with mean θ0 and variance 1
i(θ0)

.

Therefore, asymptotically, θ̂n is an unbiased estimator which achieves the

Cramer-Rao lower bound, and so is “asymptotically efficient”.

Therefore, we have that

(i) θ̂n is asymptotically consistent

(ii) θ̂n is asymptotically unbiased

(iii) θ̂n is asymptotically efficient.

And, we have more (and better!) large sample properties to come!

All this explains why usually maximum likelihood is a strong method for large

samples.



Discussion: small samples

For small samples, the situation is much more complicated.

Plotting the likelihood function should give you some idea as to how much

evidence is provided by your sample.

[Unimodal or multimodal? Concentrated around the peak or diffuse?

maximised in a scientifically plausible region?]

Simulation experiments can help you to decide whether your sample size is big

enough to rely on the large sample approximations and whether your sample

outcomes are typical reflections of the large sample properties.

[Simulate repeatedly from the model, assumed true, for a range of different

parameter values.]

[While you are doing these simulations, add in some simulations from

“noise-modified” versions of the model to see how robust your conclusions are.]



Observed information

Given a sample x, we may estimate the information i(θ) by i(θ̂).

An alternative estimate is based on the idea of observed information.

The quantity

j(θ) = −
∂2log(f(x|θ))

∂θ2

for the observed sample x is called the observed information.

Note that

i(θ) = Eθ(j(θ))

We estimate j(θ) from sample x as j(θ̂).



Example ctd: estimating information

In our exponential distribution example, we found that i(θ) = n
θ2

Given a sample, we may estimate the information using the MLE, θ̂ = sn
n

as

i(θ̂) =
n3

s2n

Compare the observed information, which we evaluate from

j(θ) = −l′′(θ) = −(
n

θ2
− 2

sn
θ3

)

as

j(θ̂) = −
n3

s2n
+ 2

n3sn
s3n

=
n3

s2n



Comparing observed and expected information

There is an extensive literature on which is the better choice. In many situations

observed information is more reliable.

“ At first sight it may seem that it would be preferable to use the theoretical

Fisher information matrix, if it were easy to calculate, but in fact an extensive

body of theory and practice suggests that in most cases the inverse of the

observed information matrix gives a better approximation to the true covariance

matrix of the estimators, and this is therefore the preferred method in most

applications. An especially important reference here is Efron and Hinkley

(1978).”

[See Essentials of Statistical Inference, Young and Smith]



MLE summary

The MLE, θ̂, is the solution of the equation

u(θ) = 0

where u(θ) = l′(θ;x).

Note that

E(U(θ)) = 0, ∀θ

θ̂ is a consistent estimator with, asymptotically,

θ̂ ∼ N(θ,
1

E(U2)
)



MLE issues

In some problems, either

(i) we do not have access to the whole likelihood function, but only to some

properties of it, or

(ii) we have a likelihood function, but we are concerned with the robustness of

inferences based on assuming that the likelihood form is exactly correct.

For such problems we may consider estimates based on a wider class of

estimating equations which share many of the large sample properties of the

MLE.



Estimating equations

For data x and parameter θ, we define the estimator θ∗ as the solution to the

estimating equation

h(θ;x) = 0

We often restrict attention to unbiased estimating equations, that is

E(h(θ;X)) = 0, ∀θ



Large sample properties of estimating equations

Under the same regularity assumptions as before, θ∗ is a consistent estimator

with, asymptotically,

θ∗ ∼ N(θ,
E(h2)

(E(h′))2
)

where

E(h2)

(E(h′))2
≥

1

E(U2)
=

1

i(θ)

(equality if h = U )



Estimating equations: example

Suppose that Xi is a count of events occuring in an interval of length ti.

We might model each Xi as Poisson parameter tiθ.

However, we might consider that the counts could be over-dispersed relative to

the Poisson.

A simple modification would be to suppose that

(i) E(Xi) = tiθ

(ii) Var(Xi) = δtiθ

where δ is an “overdispersion” parameter.

We will use (i) to set up our estimating equation - there will be many possible

choices.

Use (ii) to choose between these choices.



Example continued

Possible unbiased estimating equations, using E(Xi) = tiθ, are of form

h(θ,X) =
n∑

i=1

ci(Xi − tiθ)

We want to minimise the large sample variance of θ∗, which given (i) and (ii) is

E(h2)

(E(h′))2
=

∑
i c

2
i δtiθ

(
∑

i citi)
2

This is minimised when all of the ci are equal, so that the estimator is

θ∗ =

∑
iXi∑
i ti

This is the same estimator as if we had assumed a Poisson distribution and

used MLE.

However the variance will differ (by a factor of δ) and the properties of the

estimator will not rely on the Poisson assumption.
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