
Statistical inference

Part 5

Likelihood, and related, inference

Michael Goldstein

Durham University



Interval assessment

So far, we have been concerned with developing estimators with good

properties.

We are now going to consider more general inferential questions.

We look at methods for constructing interval assessments and tests based on

such estimators and otherwise.

This will allow us to explore the interplay between Bayesian and frequency

based assessments.



Confidence procedures and confidence sets

We consider interval, or set, estimation.

Under the model E = {X ,Θ, fX(x | θ)}, for given data X = x, we wish to

construct a set C = C(x) ⊂ Θ

(If θ ∈ R then the set estimate is typically an interval.)

The inference is the statement that θ ∈ C .

Definition A random set C(X) is a level (1−α) confidence procedure when

P(θ ∈ C(X) | θ) ≥ 1− α

for all θ ∈ Θ.

C is an exact level 1− α confidence procedure if the probability equals 1− α
for all θ.



Coverage

The value P(θ ∈ C(X) | θ) is termed the coverage of C at θ.

Exact is a special case: typically P(θ ∈ C(X) | θ) will depend upon θ.

The procedure is thus conservative: for a given θ0 the coverage may be much

higher than 1− α.

Remember that X is the random quantity in the above definition, not θ.

The probability 1− α refers to the success rate of the procedure (averaged

over samples).

It is not the probability that, for the sample that we have seen, our inference is

correct.

[For example, a confidence interval might be empty.]



Example: uniform distribution

Let X1, . . . , Xn be independent and identically distributed Unif(0, θ) random

variables where θ > 0, so that

f(x|θ) = 1

θ
, 0 < x < θ

Let Y = max{X1, . . . , Xn}.

Comments

[1] Y is sufficient for θ. (check!)

[2] The uniform is a simple example of a distribution where the regularity

assumptions that we have been making for the MLE evaluations do not hold, as

the sample space depends on the parameter value.



Example:confidence sets

Compare two possible confidence sets:

(aY, bY ) where 1 ≤ a < b

For this choice,

P(θ ∈ (aY, bY ) | θ) =
(

1
a

)n −
(

1
b

)n
.

Thus, the coverage probability of the interval does not depend upon θ.

(Y + c, Y + d) where 0 ≤ c < d.

For this choice,

P(θ ∈ (Y + c, Y + d) | θ) =
(

1− c
θ

)n −
(

1− d
θ

)n
.

In this case, the coverage probability of the interval does depend upon θ.



Confidence sets

We distinguish between the confidence procedure C , which is a random

interval and so a function for each possible x, and the result when C is

evaluated at the observation x, which is a set in Θ.

Definition (Confidence set)

The observed C(x) is a level 1− α confidence set exactly when the random

C(X) is a level 1− α confidence procedure.

[If Θ ⊂ R and C(x) is an interval, then a confidence set (interval) is

represented by a lower and upper value.]

A technical challenge for confidence procedures is to construct one with a

specified level: to do this we start with the level and then construct a C
guaranteed to have this level.



Confidence procedures

Definition (Family of confidence procedures) C(X;α) is a family of

confidence procedures exactly when C(X;α) is a level-(1− α) confidence

procedure for every α ∈ [0, 1].

C is a nesting family exactly when α < α′ implies that C(x;α′) ⊂ C(x;α).

For X1, . . . , Xn iid Unif(0, θ), Y = max{X1, . . . , Xn} then

C(Y ;α) =

(

(

1− α

2

)

−1/n
Y,
(α

2

)

−1/n
Y

)

is a nesting family of exact confidence procedures.

For example, if n = 10 then

C(y; 0.10) = (1.0051y, 1.3493y); C(y; 0.05) = (1.0025y, 1.4461y).

If we start with a family of confidence procedures for a specified model, then we

can compute a confidence set for any level we choose.



Constructing confidence procedures: pivotal quantities

In the Uniform example, the coverage of the procedure (aY, bY ) does not

depend upon θ because the coverage probability could be expressed in terms

of T = Y/θ where the distribution of T did not depend upon θ.

T is an example of a pivot and confidence procedures are straightforward to

compute from a pivot.

Definition

A pivot for the model E = {X ,Θ, fX(x | θ)} is a random variable

Q(X1, . . . , Xn, θ) for which the distribution of Q does not depend upon θ.

For any set A, P(Q(X(1:n), θ) ∈ A | θ) does not depend on θ.

Hence, {θ : Q(x(1:n), θ) ∈ A} is an exact confidence procedure.



Example: location parameter

For any pdf f(x), the family of pdfs f(x− θ), indexed by location parameter θ,

is a location family with standard pdf f(x).

Suppose that X1, . . . , Xn are iid from f(x− θ).

Then the confidence set

C(x1, . . . , xn) = {θ : x− a < θ < x+ b}

for constants a, b ≥ 0 has a fixed coverage for all θ.



Example: location parameter

This is because

P(θ ∈ C(X1, . . . , Xn) | θ) = P(X − a < θ < X + b | θ)

= P

(

−b <
1

n

n
∑

i=1

Zi < a

∣

∣

∣

∣

∣

θ

)

does not depend on θ.

This is because each Zi = Xi − θ has pdf f(z) which does not depend on θ.

For location (and scale) parameters, we can easily find pivots but this is more

difficult in general.



Constructing approximate confidence intervals

From our discussion of large sample properties of MLE, we have that the

distribution of

θ̂ − θ
√

1
ni1(θ)

is approximately a standard normal distribution.

This doesn’t depend on θ so it acts as an approximate pivot, giving

approximate confidence interval, at level (1− α), as

θ̂ ± zα/2

√

1

ni1(θ̂)

where zα/2 is the upper α/2 value of the standard normal distribution.



Example: Hardy Weinberg equilibrium

If gene frequencies MM,MN,NN in a population are in equilibrium, then

genotypes occur in the population with frequencies

MM : p1 = (1− θ)2

MN : p2 = 2θ(1− θ)
NN : p3 = θ2

(where θ is the unknown proportion of N in the population)

Suppose that in a sample from a particular population, blood types occur with

the following frequencies.

MM : x1 = 342
MN : x2 = 500
NN : x3 = 187
Total : n = 1029
Questions

[1] Find the MLE, θ̂.

[2] Find an approximate, large sample confidence interval for θ.



Multinomial distribution

Our data is an example of the multinomial distribution.

General form as follows:

X takes possible values 1, 2, ...,m, where P(X = i) = pi, with

p1 + ...pm = 1.

Repeat the experiment, independently, n times.

Xi is the number of times that X = i.

Joint frequency of X1, ..., Xm is

f(x1, ..., xm|p1, ...pm) =
n!

x1!...xm!
px1

1 ...pxm

m

(with x1 + ...+ xm = n)



Example:log likelihood

In our example, the likelihood and log likelihood functions are

L(θ) = f(x|θ) = cpx1

1 px2

2 p3x3 = c′θx2+2x3(1− θ)2x1+x2

l(θ) = log(L(θ)) = c′′ + (2x1 + x2)log(1− θ) + (x2 + 2x3)log(θ)



Example:MLE

Therefore the derivative of the log likelihood is

l′(θ) = −2x1 + x2
1− θ

+
x2 + 2x3

θ
= 0

when

θ̂ =
x2 + 2x3

2n
= 0.4247

Check:

l′′(θ) = −2x1 + x2
(1− θ)2

− x2 + 2x3
θ2

< 0



Example: Information

Fisher’s information for a sample of size n=1 is

i1(θ) = −E(l′′(θ)) = E(
2X1 +X2

(1− θ)2
) +

X2 + 2X3

θ2

As n = 1, Xi ∼ Bi(1, pi), so E(Xi) = pi.

Therefore

i1(θ) =
2p1 + p2
(1− θ)2

+
p2 + 2p3

θ2
=

2

θ(1− θ)



Example: Confidence interval

Therefore, approximately,

θ̂ ∼ N(θ,
1

ni1(θ)
) = N(θ,

θ(1− θ)

2n
)

Therefore, an approximate 95% confidence interval for θ is

θ̂ ± 1.96

√

1

ni1(θ̂)
= θ̂ ± 1.96

√

θ̂(1− θ̂

2n
= θ̂ ± 1.96

√
0.010892 ≈ (0.403, 0.447)



Example: observed information

We can approximate ni1(θ) by the observed information −l′′(θ̂)

In our example,

l′′(θ) = −2x1 + x2
(1− θ)2

− x2 + 2x3
θ2

The data is x1 = 342, x2 = 500, x3 = 187 and θ̂ = 0.4247.

Therefore, −l′′(θ̂) = −8356.425 and

Var(θ̂) ≈ − 1

l′′(θ̂)
= (0.01094)2

So our interval is θ̂ ± 1.96× 0.01094.

Compare this to the interval based on expected information, namely

θ̂ ± 1.96× 0.01089



Bayesian credible intervals

Confidence intervals describe the probabilistic properties of the process used

to generate the intervals.

They do not answer the question as to what is the probability that the actual

interval that you have obtained contains the parameter of interest.

Bayesian credible intervals do describe the probability that the actual interval

that you have obtained contains the parameter of interest.

This probability relates to the combination of prior judgements and data which

have been used to generate the interval.

Typically, we will use level sets type arguments to construct posterior credible

intervals, i.e. choosing all values of θ for which π(θ|x) > k, for some choice of

k.



Limiting posterior distributions

Large sample properties of Bayesian estimators are described by the following

theorem.

Theorem

Suppose that the prior pdf, π(θ) for the parameter θ is positive and

differentiable over Θ.

Suppose we have a sample x = (x1, . . . , xn), where n is large.

Then the posterior distribution π(θ|x) is approximately a normal distribution.

The mean of the posterior distribution is θ̂, approximately.

The variance is 1

ni1(θ̂)
, approximately.

[Note, therefore, that, for large samples, the Bayesian inference will be

approximately the same, whatever the choice of prior.]



Outline proof of limiting posterior form

Suppose a uniform prior π(θ) = 1. Then

π(θ|x) ∝ f(x|θ)
We take a Taylor expansion of l(θ;x) around θ̂.

l(θ;x) ≈ l(θ̂;x) +
1

2
(θ − θ̂)2l′′(θ̂;x)

as l′(θ̂;x) = 0.

As

l′′(θ̂;x) =
∑

i

l′′(θ̂;xi)

by the SLLN

l′′(θ̂;x) ≈ nEθ̂(l
′′(θ̂;x1)) = −ni1(θ̂) = −i(θ̂)



Proof continued

Therefore

π(θ|x) ∝ f(x|θ) ≈ c(x)exp(−1

2
(θ − θ̂)2i(θ̂))

(where c(.) is a function which does not depend on θ).

Therefore, if π(θ) is uniform, then π(θ|x) must be, approximately, a normal

density, mean θ̂, variance 1/i(θ̂).

For large n, under fairly general conditions, the likelihood is sharply peaked

around θ̂ falling off rapidly as the distance between θ and θ̂ increases.

Therefore, the likelihood dominates the prior and we can effectively suppose

that π(θ) is constant so the result follows. �



Large sample credible intervals

As the large sample posterior distribution for θ is, approximately,

N(θ̂,
1

ni1(θ̂)
)

it follows that an approximate credible interval, at level (1− α), is

θ̂ ± zα/2

√

1

ni1(θ̂)

Note that this is exactly the same as the large sample confidence interval we

derived earlier.

Therefore, for large samples, Fisher’s information based intervals inherit both

good frequentist and Bayesian properties which explains their potential

reliability.



Comment

Simulation experiments are helpful for exploring the quality of the

approximation for medium sample sizes.

There are three basic issues.

Firstly, is the likelihood sufficiently peaked that using different priors gives

roughly the same answer as using the uniform prior?

[Explore the effect of varying the prior away from the uniform.]

Secondly, using the uniform prior, how good is the approximation to the limiting

form?

[Do this exactly or through sampling and comparing the updates.]

Thirdly, how robust are the conclusions to modifications to the likelihood?

[Add extra parameters, to explore this exactly, or add some form of random

noise to your sampling experiments.]



Pre-posterior credible intervals

For moderate size samples, if the prior has been carefully chosen then

Bayesian credible intervals are directly meaningful. However, it is harder to give

a corresponding constructive meaning to confidence intervals.

There is one relationship between confidence and credible intervals which

holds in all cases, and may be helpful in certain problems, which is as follows.

A (1− α) level confidence interval is a pre-posterior credible interval at the

same level. The result is as follows.



Confidence intervals as prior credible intervals

Theorem Suppose that I(X) is a (1− α) level confidence interval for some

parameter θ. For any prior distribution for θ, the prior probability that θ ∈ I(X)
is (1− α).

Proof

P(θ ∈ I(X)) =

∫

P((θ ∈ I(X)|θ)π(θ)dθ

=

∫

(1− α)π(θ)dθ

= 1− α

and the result follows. �



Comment

Every confidence interval is a prior credible interval.

Whether it can function as a posterior credible interval, when you have seen the

interval, depends on how much relevant prior information you have that would

cause you to modify the observed interval.

In particular, in cases where you are simply using a given result of a standard

statistical analysis for some other purpose, using the preposterior credible

value may be a reasonable default.



Intervals and test

We are now going to turn our attention to hypothesis tests.

In particular, how such tests relate to interval estimates.

Again, we will pay particular attention to tests built around the likelihood

function.

And we will develop their large sample properties.



Likelihood ratio tests

Consider a hypothesis test where we have to decide either to accept that an

hypothesis H0 is true or to reject H0 in favour of an alternative hypothesis H1

based on a sample x ∈ X .

The set of x for which H0 is rejected is called the rejection region.

The complement, where H0 is accepted, is the acceptance region.

Comments on notation

Depending on context, we may replace reject/accept by reject/not reject

Also, we might construct a third region, where we are undecided.

And in a Bayesian formulation, we would report a posterior probability for the

truth of H0.



Likelihood ratio tests

Definition (Likelihood Ratio Test, LRT)

The likelihood ratio test (LRT) statistic for testing H0 : θ ∈ Θ0 versus

H1 : θ ∈ Θc
0, where Θ0 ∪Θc

0 = Θ, is

λ(x) =
supθ∈Θ0

LX(θ;x)

supθ∈Θ LX(θ;x)
=

L(θ̂0)

L(θ̂)
.

where θ̂0 is the MLE if θ ∈ Θ0, and θ̂ is the MLE if θ ∈ Θ.

A LRT at significance level α has a rejection region {x : λ(x) ≤ c}
where 0 ≤ c ≤ 1 is chosen so that P(Reject H0 | θ) ≤ α for all θ ∈ Θ0.



Example

Let X = (X1, . . . , Xn) and suppose that the Xi are independent and

identically distributed N(θ, σ2) random variables where σ2 is known.

Consider the likelihood ratio test for H0 : θ = θ0 versus H1 : θ 6= θ0.

As the maximum likelihood estimate of θ is x,

λ(x) =
LX(θ0;x)

LX(x;x)
= exp

{

− 1

2σ2

n
∑

i=1

(

(xi − θ0)
2 − (xi − x)2

)

}

= exp

{

− 1

2σ2
n(x− θ0)

2

}

.



Example ctd

Notice that, under H0,

√
n(X − θ0)

σ
∼ N(0, 1)

so that

−2 log λ(X) =
n(X − θ0)

2

σ2
∼ χ2

1,

the chi-squared distribution with one degree of freedom.

The rejection region is {x : λ(x) ≤ c} = {x : −2 log λ(x) ≥ k}.

Setting k = χ2
1,α, where P(χ2

1 ≥ χ2
1,α) = α, gives a test at the exact

significance level α.



Example ctd

The acceptance region of this test is {x : −2 log λ(x) < χ2
1,α} where

P

(

n(X − θ0)
2

σ2
< χ2

1,α

∣

∣

∣

∣

θ = θ0

)

= 1− α.

This holds for all θ0 and so, additionally rearranging,

P

(

X −
√

χ2
1,α

σ√
n
< θ < X +

√

χ2
1,α

σ√
n

∣

∣

∣

∣

θ

)

= 1− α.

Thus,

C(X) = (X −
√

χ2
1,α

σ√
n
,X +

√

χ2
1,α

σ√
n
)

is an exact level-(1− α) confidence procedure with C(x) the corresponding

confidence set.



Duality

Note that we obtained the level (1− α) confidence procedure by inverting the

acceptance region of the level α significance test.

This correspondence, or duality, between acceptance regions of tests and

confidence sets is a general property, as follows.

Theorem (Duality of Acceptance Regions and Confidence Sets)

1. For each θ0 ∈ Θ, let A(θ0) be the acceptance region of a test of

H0 : θ = θ0 at significance level α. For each x ∈ X , define

C(x) = {θ0 : x ∈ A(θ0)}. Then C(X) is a level-(1− α) confidence

procedure.

2. Let C(X) be a level-(1− α) confidence procedure and, for any θ0 ∈ Θ,

define A(θ0) = {x : θ0 ∈ C(x)}. Then A(θ0) is the acceptance region

of a test of H0 : θ = θ0 at significance level α.



Proof

1. As we have a level α test for each θ0 ∈ Θ then

P(X ∈ A(θ0) | θ = θ0) ≥ 1− α.

Therefore, for all θ ∈ Θ,

P(θ ∈ C(X) | θ) = P(X ∈ A(θ) | θ) ≥ 1− α.

Hence, C(X) is a level-(1− α) confidence procedure.

2. For a test of H0 : θ = θ0, the probability of a Type I error (rejecting H0

when it is true) is

P(X /∈ A(θ0) | θ = θ0) = P(θ0 /∈ C(X), | θ = θ0) ≤ α

since C(X) is a level-(1− α) confidence procedure. Hence, we have a

test at significance level α. �



Relationship between intervals and tests

Another way to understand the relationship between significance tests and

confidence sets is as follows.

Define the set {(x, θ) : (x, θ) ∈ C̃} in the space X ×Θ where C̃ is also a

set in X ×Θ.

• For fixed x, define the confidence set as C(x) = {θ : (x, θ) ∈ C̃}.

• For fixed θ, define the acceptance region as A(θ) = {x : (x, θ) ∈ C̃}.



Example revisited

Letting x = (x1, . . . , xn), with z2α/2 = χ2
1,α, define the set

{(x, θ) : (x, θ) ∈ C̃} =
{

(x, θ) : −zα/2σ/
√
n < x− θ < zα/2σ/

√
n
}

.

The confidence set is then

C(x) =
{

θ : x− zα/2σ/
√
n < θ < x+ zα/2σ/

√
n
}

and acceptance region

A(θ) =
{

x : θ − zα/2σ/
√
n < x < θ + zα/2σ/

√
n
}

.



Asymptotic properties

For large samples, we may carry out tests using the asymptotic distribution of

the likelihood ratio test statistic

λ(x) =
L(θ̂0)

L(θ̂)

We have the following theorem.

Theorem

X1, ..., Xn are an independent random sample from distribution f(x|θ).
Under suitable regularity conditions, the null distribution of −2log(λ(x)), for

large n is approximately a χ2 distribution.

The degrees of freedom is D = dim(Θ)− dim(Θ0),
where dim(Θ), dim(Θ0) are the number of free parameters under Θ,Θ0

respectively.



Example

Let X = (X1, . . . , Xn) and suppose that the Xi are independent and

identically distributed N(θ, σ2) random variables where σ2 is known.

In this example, dim(Θ) = 1, dim(Θ0) = 0

In that special case, we have shown that −2log(λ(x)) ∼ χ2
1 exactly.



Proof in the case d = m = 1.

θ is a scalar and we may write H0 : θ = θ0 against H1 : θ unrestricted, for

some prescribed θ0. A Taylor expansion of the log likelihood about the

maximum likelihood estimate θ̂ gives

log(λ(x)) = 2(l(θ̂)− l(θ0)) = 2(θ̂ − θ0)l
′(θ̂)− (θ̂ − θ0)

2l′′(θ∗)

where θ∗ is some other value of θ lying between θ0 and θ̂ .

As l′(θ̂) = 0, we have

2log(λ(x)) = ni1(θ0)(θ̂ − θ0)U
∗V ∗

where

U∗ =
l′′(θ∗)

l′′(θ0)
, V ∗ =

l′′(θ0)

−ni1(θ0)

U∗, V ∗ both tend to one as n increases. Asymptotically ni1(θ0)(θ̂− θ0) is the

square ofa standard normal random variable, hence distributed as χ2
1. �



Example: Hardy Weinberg equilibrium

If gene frequencies MM,MN,NN in a population are in equilibrium, then

genotypes occur in the population with frequencies

MM : (1− θ)2 = p1
MN : 2θ(1− θ) = p2
NN : θ2 = p3
(where θ is the unknown proportion of N in the population)

Suppose that in a sample from a particular population, blood types occur with

the following frequencies.

MM : 342 = x1
MN : 500 = x2
NN : 187 = x3
Total : 1029 = n
Question

Does data suggest that population is not in Hardy Weinberg equilibrium?

[Note this hypothesis test is a goodness of fit of the model test.]



Example:likelihood

f(x1, x2, x3|p1, p2, p3) =
n!

x1!x2!x3!
px1

1 px2

2 px3

3

If θ ∈ Θ0, then we’ve already found that

θ̂0 =
x2 + 2x3

n
= 0.4247

We now need to find θ̂.



Multinomial MLE

Theorem

f(x1, ..., xm|p1, ...pm) =
n!

x1!...xm!
px1

1 ...pxm

m

The MLE for each pi is

p̂i =
xi
n

(Proof - exercise. Maximise log likelihood under constraint p1 + ...+ pm = 1)



Example:LR statistic

λ(x) =

3
∏

i=1

(
pi(θ̂0)

p̂i
)xi

where

p̂i =
xi
n

p1(θ̂0) = (1− θ̂0)
2, p2(θ̂0) = 2θ̂0(1− θ̂0), p3(θ̂0) = θ̂20

so that

−2log(λ(x)) = −2
3
∑

i=1

xilog(
npi(θ̂0)

xi
) = 0.032

This can be compared with an appropriate choice of upper α% point of χ2
1.

Clearly not significant.



General form

In the general version of this goodness of fit problem, we have r categories and

we count the number of observations, Oi in each category.

[In our example, r = 3, Oi = xi]
The probability of each observation falling in category i is pi.
Under H0 each pi = pi(θ).
The expected number Ei of observations falling in category i is Ei = npi.
Under H0, this is estimated as Ei = npi(θ̂0)
The LR test statistic is

λ(x) =
r
∏

i=1

(
pi(θ̂0)

p̂i
)Oi

where p̂i =
Oi

n .

Therefore, our test statistic, evaluate as Chi-square with DF r − 1− dim(Θ0)
is

−2log(λ(x)) = 2

r
∑

i=1

Oilog(
Oi

Ei
)



Chi-square goodness of fit test

Compare the chi-square goodness of fit test for the same data set.

We have a set of r categories and we count the number of observations, Oi

that we observe in each category.

We compare each Oi with the expected number Ei of observations given the

model.

We then evaluate the χ2 goodness of fit test statistic

χ2 =
r
∑

i=1

(Oi − Ei)
2

Ei

whose null distribution, given the model, is a χ2 distribution with degrees of

freedom equal to r − 1− c where c is the number of parameters that we have

estimated.

In our problem, c = 1 so r − 1− c = 1. The value of χ2 for our data is 0.0319

(check!).

Notice that this is almost exactly the same as the value we obtained for

−2log(λ(x)) = 0.032



Asymptotic equivalence of tests

The two tests, with very high probability, gave about the same value.

This is generally the case for large n.

We have the following theorem.

Theorem The two tests

2log(λ(x)) = 2
r
∑

i=1

Oilog(
Oi

Ei
)

and

χ2 =

r
∑

i=1

(Oi − Ei)
2

Ei

are asymptotically equivalent given H0.

[so the chi-square goodness of fit test is approximately a likelihood ratio test]



Outline Proof

Under H0, if n large, then p̂i ≈ pi(θ̂) so
xi

n ≈ pi(θ̂). Therefore

Oi ≈ Ei

With Oi = x,Ei = x0 carry out a Taylor expansion around x0 of

f(x) = xlog(
x

x0
)

.

This is

f(x) = f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)

2 + ...

which evaluates as

f(x) = 0 + (x− x0) +
1

2x0
(x− x0)

2 + ...



Outline Proof ctd

Summing over i gives

−2log(λ = 2[
∑

i

(Oi −Ei) +
∑

i

1

2Ei
(Oi − Ei)

2] + ...

As
∑

i

(Oi − Ei) = 0

this gives

−2log(λ) ≈
∑

i

1

Ei
(Oi −Ei)

2

�



Comparing experiments:tea tasting

Imagine carrying out Fisher’s famous tea-tasting experiment.

Here an individual, Joan say, claims to be able to tell whether the milk or the tea

has been added first in a cup of tea.

We perform the experiment of preparing ten cups of tea, choosing each time on

a coin flip whether to add the milk or tea first.

Joan then tastes each cup and gives an opinion as to which ingredient was

added first.

We count the number, X , of correct assessments. Suppose, for example, that

X = 9.



Comparing experiments: ESP

Now compare the tea-tasting experiment to an experiment where an individual,

Harry say, claims to have ESP as demonstrated by being able to forecast the

outcome of fair coin flips.

We test Harry by getting forecasts for ten flips.

Let X be the number of correct forecasts.

Suppose that, again, X = 9.



Comparing the experiments

Within the traditional view of statistics, we might accept the same formalism for

the two experiments.

For each experiment, each assessment is independent with probability p of

success.

In each case, X has a binomial distribution parameters 10 and p, where

p = 1/2 corresponds to pure guessing.

Within the traditional approach, the likelihood is the same, the point null is the

same if we carry out a test for whether p = 1/2, and confidence intervals for p

will be the same.



Comparing the experiments

However, even without carrying out formal calculations, I would be fairly

convinced of Joan’s tea tasting powers while remaining unconvinced that Harry

has ESP.

You might decide differently, but that is because you might make different prior

judgements.

Traditional statistical assessment of a positive result on a highly significant, very

powerful test is not, of itself, a convincing inference.

The prior assessment of the plausibility of the new hypothesis can be converted

into a posterior assessment, and without such an assessment there is no

inference.



Bayes factors

The Bayesian approach for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0, where

Θ0 ∪Θc
0 = Θ, adds two ingredients.

Firstly, we must specify prior probabilities, P(H0),P(H1) .

Secondly, we must specify prior distributions π0(θ), for θ ∈ Θ0 and π1(θ), for

θ ∈ Θc
0.

Then, from Bayes theorem, we have

P(H0|x)
P(H1|x)

=
P(x|Ho)

P(x|H1)
× P(H0)

P(H1)

where

P(x|Ho) =

∫

f(x|θ)π0(θ)dθ, P(x|H1) =

∫

f(x|θ)π1(θ)dθ

.



General discussion

Our Bayesian updating rule is that

posterior odds ratio = integrated likelihood ratio × prior odds ratio

The integrated likelihood ratio

LΘ =
P(x|Ho)

P(x|H1)

is often called the Bayes factor.

This formulation combines

(i) the prior judgements as to the relative plausibility of the two hypotheses [the

prior odds ratio]

(ii) the evidence from the data [the Bayes factor].



Asymptotics

The asymptotic relationship between the integrated likelihood ratio LΘ and the

likelihood ratio test discussed earlier is as follows :

−2 log(
P(x|Ho)

P(x|H1)
) ≈ −2 log

L(θ̂0)

L(θ̂1)
− d log(n)

(where d = dim(Θ)− dim(Θ0).)

This relationship allows us to move between Bayesian weight of evidence and

the evidence in the test statistic.

(see Schwarz (1978) Estimating the dimension of a model, Ann Statist,

and the general discussion in Kass and Raftery (1995), Bayes Factors, JASA)


	Interval assessment
	Confidence procedures and confidence sets
	Coverage
	Example: uniform distribution
	Example:confidence sets
	Confidence sets
	Confidence procedures
	Constructing confidence procedures: pivotal quantities
	Example: location parameter
	Example: location parameter
	Constructing approximate confidence intervals
	Example: Hardy Weinberg equilibrium
	Multinomial distribution
	Example:log likelihood
	Example:MLE
	Example: Information
	Example: Confidence interval
	Example: observed information
	Bayesian credible intervals
	Limiting posterior distributions
	Outline proof of limiting posterior form
	Proof continued
	Large sample credible intervals
	 Comment
	Pre-posterior credible intervals
	Confidence intervals as prior credible intervals
	 Comment
	Intervals and test
	Likelihood ratio tests
	Likelihood ratio tests
	Example
	Example ctd
	Example ctd
	Duality
	Proof
	Relationship between intervals and tests
	Example revisited
	Asymptotic properties
	Example
	Proof in the case redd = m = 1.
	Example: Hardy Weinberg equilibrium
	Example:likelihood
	Multinomial MLE
	Example:LR statistic
	General form
	Chi-square goodness of fit test
	Asymptotic equivalence of tests
	Outline Proof
	Outline Proof ctd
	Comparing experiments:tea tasting
	Comparing experiments: ESP
	Comparing the experiments
	Comparing the experiments
	Bayes factors
	General discussion
	Asymptotics

