APTS ASP Exercises 2019

Markov chains and reversibility

1.

10.

11.

Show that a discrete-time Markov chain run backwards in time (from some time n and state 4) is
again a Markov chain (until time n).

Suppose that p, , are transition probabilities for a discrete state-space Markov chain satisfying
detailed balance. Show that if the system of probabilities given by m, satisfy the detailed balance
equations then they must also satisfy the equilibrium equations.

Show that unconstrained simple symmetric random walk has period 2. Show that simple symmetric
random walk subject to “prohibition” boundary conditions must be aperiodic.

Solve the equilibrium equations 7P = 7 for simple symmetric random walk on {0, 1, ..., k} subject
to “prohibition” boundary conditions.

Suppose that X, Xy, ..., is a simple symmetric random walk with “prohibition” boundary condi-
tions as above.

e Use the definition of conditional probability to compute

_ _P[Xn71:$7Xn:y]
Py ]P)[Xn = y] ’

e then show that
P[X’nfl =T, Xn = y] _ ]P)[X’nfl = m]pm,y

P[Xn:y] a P[Xn:y] ’

e now substitute, using P[X,, =] = k%_l for all i so p, , = pa,y-

e Use the symmetry of the kernel (p,, = py..) to show that the backwards kernel p, , is the
same as the forwards kernel p, , = py ..

. Show that if Xy, X1,..., is a simple asymmetric random walk with “prohibition” boundary condi-

tions, running in equilibrium, then it also has the same statistical behaviour as its reversed chain
(i.e. solve the detailed balance equations!).

. Show that detailed balance doesn’t work for the 3-state chain with transition probabilities % for

0—+1,1—-22—0and 2 for2—1,1-0,0—2.

. Use Burke’s theorem for a feed-forward -/M /1 queueing network (no loops) to show that in equi-

librium each queue viewed in isolation is M/M/1. This uses the fact that independent thinnings
and superpositions of Poisson processes are still Poisson . ...

. Work through the Random Chess example to compute the mean return time to a corner of the

chessboard.

Verify for the Ising model that

exp (_J Zj:jwi Sisj)
exp (J D i sisj) + exp (fJ D si5j>

P [s —s®

Se {s,s(i)}} =

Determine how this changes in the presence of an external field. Confirm that detailed balance
holds for the heat-bath Markov chain.

Write down the transition probabilities for the Metropolis-Hastings sampler. Verify that it has the
desired probability distribution as an equilibrium distribution.



Renewal processes and stationarity

1. Suppose that X is a simple symmetric random walk on Z, started from 0. Show that
T=inf{n>0:X, € {-10,10}}

is a stopping time (i.e. show that the event {T" < n} is determined by Xy, X1,...,X,,). What is
the value of P[T' < oo]? What is the distribution of Xp?

2. For a Markov chain (X,,)n>0 on a state-space S, fix i € S and let H(gi) =inf{n > 0: X, =i}. For
m > 0, let .
HY | =inf{n > HY : X,, = i}.

Show that H(gi), H{i), ... is a sequence of stopping times.

3. Check that it follows from the Strong Markov property that (H:L)+1 — H,(,i), m > 0) is a sequence

of i.i.d. random variables, independent of H(()i).

4. Suppose that (N(n)),>0 is a delayed renewal process with inter-arrival times Zy, Z1, ... where Zj is
a non-negative random variable, independent of Z7, Zs, ... which are i.i.d. strictly positive random
variables with common mean u. Use the Strong Law of Large Numbers for T}, = Zi‘c:o Z; to show
that

N(n) 1

—_ _> —

n I

Hint: note that Tn(y) < n < Tn(ny+1 s0 that N(n)/n can be sandwiched between N(n)/Tyn)+1
and N(n)/Tn(ny. Use this and the fact that N(n) — oo as n — oo.

a.s. as n — oQ.

5. Let (Y(n))n>o0 be the auxiliary Markov chain associated to a delayed renewal process (N (n)),>0
i.e. Y(n) = Tn(n—1) —n. Check that you agree with the transition probabilities given in the lecture
notes.

6. Let )
12

Check that v = (;);>0 defines a probability mass function.
7. Suppose that Z* has the size-biased distribution associated with the distribution of Z;, defined by

Pl —
Pz =i = BBzl oy
1
(a) Verify that this is a probability mass function.
(b) Given Z* =k, let L ~U{0,1,...,k — 1}. Show that, unconditionally, L ~ v.
Note that you can generate L starting from Z* by letting U ~ U[0,1] and then setting L =
\UZ*].
(c) What is the size-biased distribution associated with Po())?

8. Show that v is stationary for Y.
Hint: Y is clearly not reversible, so there’s no point trying detailed balance!

9. Check that if P[Z; = k] = (1—p)*~1p, for k > 1, the stationary distribution v for the time until the
next renewal is v; = (1 — p)ip, for i > 0. (In other words, if we flip a biased coin with probability
p of heads at times n = 0,1,2,... and let N(n) = #{0 < k < n : we see a head at time k} then
(N(n),n > 0) is a stationary delayed renewal process.)



Martingales

1. Let X be a martingale. Use the tower property for conditional expectation to deduce that

E[Xn+k|]:n]:Xn7 k=0,1,2,....

2. Recall Thackeray’s martingale: let Y7,Y5,... be a sequence of independent random variables, with
P[Y; =1] =P[Y; = —1] = 1/2. Define the Markov chain M by

1-2" Y1 =Yo=-- =Y, =—1,

My =0; M, = .
1 otherwise.

(a) Compute E [M,,] from first principles.
(b) What should be the value of E []/\\/fn} if M is computed as for M but stopping play if M hits

level 1 — 2NV?

3. Consider a branching process Y, where Yy = 1 and Y, 11 is the sum Z,, 411+ ...+ Zpq1y, of Yy
independent copies of a non-negative integer-valued family-size r.v. Z.

(a) Suppose E [Z] = p < co. Show that X,, =Y, /u™ is a martingale.

(b) Show that Y is itself a supermartingale if p < 1 and a submartingale if p > 1.

(c) Suppose E [s#] = G(s). Let n be the smallest non-negative root of the equation G(s) = s.
Show that ¥ defines a martingale.

(d) Let H,, = Yp+...+Y,, be the total of all populations up to time n. Show that s /(G(s)Hn-1)
is a martingale.

(e) How should these three expressions be altered if Yo = k > 17

4. Consider asymmetric simple random walk, stopped when it first returns to 0. Show that this
is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have non-
negative expectation (and therefore a martingale if jumps have zero expectation).

5. Consider Thackeray’s martingale based on asymmetric random walk. Show that this is a super-
martingale or submartingale depending on whether jumps have negative or positive expectation.

6. Show, using the conditional form of Jensen’s inequality, that if X is a martingale then |X| is a
submartingale.

7. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards
are turned over one at a time. Let B,, denote the number of black cards left just before the nt"

card is turned over. Let
By,

Y, =————.
r+b—(n-1)
(So Y, equals the proportion of black cards left just before the n'" card is revealed.) Show that Y’
is a martingale.

8. Suppose Ni, Na, ...are independent identically distributed normal random variables of mean 0
and variance o2, and put S, = N1 + ...+ N,,.
(a) Show that S is a martingale.
(b) Show that Y;, = exp (S,, — Z0?) is a martingale.
(¢) How should these expressions be altered if E [N;] = p # 07
9. Let X be a discrete-time Markov chain on a countable state-space S with transition probabil-

ities pgy. Let f : S — R be a bounded function. Let F,, contain all the information about
Xo, Xl, ce ,Xn. Show that

My = (X0) — F(X0) = 30 S () — F(X)pxy

=0 yes



defines a martingale. (Hint: first note that E [f(X;11) — f(X3)|Xa] = 32, cs(f(y) — F(Xi))px, y-
Using this and the Markov property of X, check that E [M,,+; — M,|F,] =0.)
10. Let Y be a discrete-time birth-death process absorbed at zero:
A . fork>0,with0< A<
= R k—1 = N T , W1 .
Pk.k+1 Xt 1 Pk,k—1 N+ w

(a) Show that Y is a supermartingale.
(b) Let T'=inf{n : Y, =0} (so T < oo a.s.), and define

w—A
X, = — ANT).
n/\T+('u+)\>(n )

Show that X is a non-negative supermartingale, converging to
-
Z- (“) T.
A

E[TYo =y] < (W)y

(¢) Deduce that

A

11. Let L(0; X, Xo,...,X,) be the likelihood of parameter 6 given a sample of independent and
identically distributed random variables, X1, X5,..., X,,.

(a) Check that if the “true” value of 6 is 6y then the likelihood ratio

o L(01;X1,X2,...,Xn)

M, =
" L(00; X1, Xa, ..., Xn)

defines a martingale with E [M,,] =1 for all n > 1.

(b) Using the strong law of large numbers and Jensen’s inequality, show that
1
—log M,, - —c as n — oo.
n

12. Let X be a simple symmetric random walk absorbed at boundaries a < b.

(a) Show that
f@) =22 zelab

T b—a

is a bounded harmonic function.

(b) Use the martingale convergence theorem and optional stopping theorem to show that

f(x) =P[X hits b before a| Xy = 2] .

Recurrence and rates of convergence

1. Recall that the total variation distance between two probability distributions ¢ and v on X is given
by
distry(,v) = sup {u(4) — v(A)}.
ACx

Show that this is equivalent to the distance (note the absolute value signs!)

sup |p(A) —v(A4)].
ACX



. Show that if X is discrete, then

distrv (p,v) = 5> [p(y) — v(y)|-

(Here we do need to use the absolute value on the RHS!)
Hint: consider A = {y : u(y) > v(y)}.

. Suppose now that p and v are density functions on R. Show that

distr () = 1= [ min{u(y).v(o)}dy.

Hint: remember that | — v| = p+ v — 2min{y, v}.

. Let X be a random walk on R, with increments given by the standard normal distribution. Recall
that any bounded set is small of lag 1. Does there exist k > 1 such that the whole state space is
small of lag k7

. Consider a Markov chain X with continuous transition density kernel. Show that it possesses many
small sets of lag 1.

. Consider a Vervaat perpetuity X, where
Xo = 0; X1 =Uns1(Xn +1),

and where Uy, Us, ... are independent Uniform(0, 1) (simulated below).

20 20 60 80 100
Find a small set for this chain.

. Recall the idea of regenerating when our chain hits a small set: suppose that C is a small set (with
lag 1) for a ¢-recurrent chain X, i.e. for z € C,

P[X; € A|Xo = 2] > av(A).

Suppose that X,, € C. Then with probability « let X,, ;1 ~ v, and otherwise let it have transition

distribution w

a ec a e latter expression really gives a probability distribution.
Check that the latt i lly gi bability distributi
ec at X, 1 constructed in this manner obeys the correct transition distribution from
b) Check that X, 4 tructed in thi beys th tt ition distribution fi
Xn-

. Define a reflected random walk as follows: X, 11 = max{X,, + Z,1,0}, for Z1, Zs,... i.i.d. with

continuous density f(z),
E[Z]<0 and P[Z >0]>0.

Show that the Foster-Lyapunov criterion for positive recurrence holds, using A(x) = .



