APTS Assignment: High-Dimensional Statistics

July 2024
Please e-mail pll28@cam.ac.uk with any corrections.

Problem 1.

(a) Suppose X_{1}, \ldots, X_{m} are zero-mean, sub-Gaussian random variables each with parameter σ. Prove that

$$
\mathbb{P}\left(\max _{1 \leq j \leq m}\left|X_{i}\right| \geq \sqrt{2 \sigma^{2} \log m}+u\right) \leq 2 \exp \left(-\frac{u^{2}}{2 \sigma^{2}}\right), \quad \forall u>0 .
$$

(b) Using the result of part (a), fill in the following missing detail in the probabilistic analysis of ℓ_{2}-bounds for the Lasso: Suppose $X \in \mathbb{R}^{n \times p}$ is a fixed design matrix which is column-normalized, so $\max _{1 \leq j \leq p} \frac{\left\|X_{j}\right\|_{2}}{\sqrt{n}} \leq C$, where X_{j} is the $j^{\text {th }}$ column of X. Suppose $\epsilon_{i} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$. Show that

$$
\mathbb{P}\left(\left\|\frac{X^{T} \epsilon}{n}\right\|_{\infty} \geq C \sigma\left(\sqrt{\frac{2 \log p}{n}}+t\right)\right) \leq 2 e^{-n t^{2} / 2}, \quad \forall t>0
$$

so we can choose $t \asymp \sqrt{\frac{\log p}{n}}$ and conclude that the choice $\lambda \geq C^{\prime} \sigma \sqrt{\frac{\log p}{n}}$ is valid, with high probability.

Problem 2. Consider the primal-dual witness proof for support recovery of the Lasso: Suppose the design matrix satisfies the mutual incoherence condition

$$
\max _{j \in S^{c}}\left\|\left(X_{S}^{T} X_{S}\right)^{-1} X_{S}^{T} X_{j}\right\|_{1} \leq \alpha,
$$

for some $\alpha \in[0,1)$, and $X_{S}^{T} X_{S}$ is invertible. Also suppose the regularization parameter satisfies

$$
\lambda \geq \frac{2}{1-\alpha}\left\|X_{S^{c}}^{T}\left(I-X_{S}\left(X_{S}^{T} X_{S}\right)^{-1} X_{S}^{T}\right) \frac{\epsilon}{n}\right\|_{\infty}
$$

Solving the system

$$
\frac{1}{n}\left(\begin{array}{ll}
X_{S}^{T} X_{S} & X_{S}^{T} X_{S^{c}} \\
X_{S^{c}}^{T} X_{S} & X_{S^{c}}^{T} X_{S^{c}}
\end{array}\right)\binom{\hat{\beta}_{S}-\beta_{S}^{*}}{0}-\frac{1}{n}\binom{X_{S}^{T} \epsilon}{X_{S^{c}}^{T} \epsilon}+\lambda\binom{\hat{z}_{S}}{\hat{z}_{S^{c}}}=\binom{0}{0}
$$

for $\hat{z}_{S^{c}}$, show that the strict dual feasibility condition $\left\|\hat{z}_{S^{c}}\right\|_{\infty}<1$ is satisfied.

Problem 3.

(a) Consider three random variables (X, Y, Z) with strictly positive $\operatorname{pdf} p(x, y, z)$. Prove that if $p(x, y, z)=h(x, z) k(y, z)$ for some functions h and k, then $X \Perp Y \mid Z$.
(b) Recall that the probability density function of the multivariate Gaussian distribution is given by

$$
q\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{(2 \pi)^{p / 2} \operatorname{det}(\Sigma)^{1 / 2}} \exp \left(-\frac{1}{2} x^{T} \Theta x\right)
$$

Using part (a), show that for any $j \neq k$ with $\Theta_{j k}=0$, we have $X_{j} \Perp X_{k} \mid X_{\backslash\{j, k\}}$.
Problem 4. For $X \sim N\left(0, \Theta^{-1}\right)$, recall the notation

$$
X_{j}=\theta_{j}^{T} X_{\backslash\{j\}}+W_{j},
$$

for each $1 \leq j \leq p$, where θ_{j} is the best linear predictor for X_{j} based on $X_{\backslash\{j\}}$. (Hence, $W_{j} \in \mathbb{R}$ is normally distributed with mean 0 , and $W_{j} \Perp X_{\backslash\{j\}}$.)

If we partition the matrix $\Sigma=\Theta^{-1}=\left(\begin{array}{cc}\Sigma_{1,1} & \Sigma_{1, \backslash\{1\}} \\ \Sigma_{\backslash\{1\}, 1} & \Sigma_{\backslash\{1\}, \backslash\{1\}}\end{array}\right)$, show that the first column of Θ takes the form $\binom{a_{1}}{-a_{1} \theta_{1}}$, for some $a_{1} \in \mathbb{R}$ (an analogous statement holds for each value of j). In particular, recovering $\operatorname{supp}\left(\theta_{j}\right)$, for each $1 \leq j \leq p$, allows us to recover $\operatorname{supp}(\Theta)$.

Problem 5. Consider a matrix $A \in \mathbb{R}^{m \times n}$.
(a) Prove that a vector v is an eigenvector of $A^{T} A$ with eigenvalue λ_{1} if and only if v is a right singular vector of A with singular value $\sigma_{1}=\sqrt{\lambda_{1}}$.
(b) Prove that a vector $v_{1} \in \mathbb{R}^{n}$ is a right singular vector of A corresponding to the first singular value σ_{1}, if and only if

$$
v_{1} \in \arg \max _{\|v\|_{2}=1}\|A v\|_{2}^{2}
$$

Problem 6. Consider a rank- r matrix $A \in \mathbb{R}^{m \times n}$, and recall that for $k \leq r$, we define $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$ to be the truncated SVD, where $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \cdots \geq 0$ are the ordered singular values.
(a) Prove that for any $1 \leq k \leq r-1$, we have

$$
\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}
$$

(b) Suppose $B \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(B) \leq k$. Prove that $\|A-B\|_{2} \geq \sigma_{k+1}$. Hence, conclude the Eckart-Young-Mirsky Theorem:

$$
\min _{B \in \mathbb{R}^{m \times n}: \operatorname{rank}(B) \leq k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2},
$$

for all $1 \leq k \leq r$.

Problem 7.

(a) Suppose a distribution D over matrices in $\mathbb{R}^{m \times n}$ satisfies the $\left(\frac{\epsilon}{2}, \delta\right)$-distributional JL property. Show that for any $S \subseteq\{1, \ldots, n\}$ such that $|S|=k$, a randomly drawn matrix $\Phi \sim D$ satisfies

$$
\begin{equation*}
(1-\epsilon)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\epsilon)\|x\|_{2}^{2}, \quad \forall x \in \mathbb{R}^{S}, \tag{1}
\end{equation*}
$$

with probability at least $1-\delta\left(\frac{c}{\epsilon}\right)^{k}$.
(b) Use the result in part (a) to conclude the following theorem:

Theorem (JL \Longrightarrow RIP). Suppose $\epsilon<1$, and $m \geq c_{1}(\epsilon) k \log \left(\frac{n}{k}\right)$. If D satisfies the $\left(\frac{\epsilon}{2}, \delta\right)$-distributional JL property with $\delta=e^{-m \epsilon}$, then with probability at least $1-e^{-\epsilon m / 2}$, a randomly drawn matrix $\Phi \sim D$ satisfies $(\epsilon, k)-R I P$.

Problem 8. Consider a weighted graph $G=(V, E)$, and recall that the Laplacian is defined by $L=D-W$.
(a) Prove that the second smallest eigenvalue of L satisfies $\lambda_{2}>0$ if and only if G is connected.
(b) Prove that the Laplacian $L_{K_{n}}$ of the complete graph K_{n} has eigenvalue 0 with multiplicity 1 , and eigenvalue n with multiplicity $n-1$.
(c) Prove that the Laplacian $L_{S_{n}}$ of the star graph S_{n}, with edge set $\{(1, u): 2 \leq u \leq$ $n\}$, has eigenvalue 0 with multiplicity 1 , eigenvalue 1 with multiplicity $n-2$, and eigenvalue n with multiplicity 1 .

Problem 9. Recall that a stochastic block model on K communities is defined with respect to a symmetric matrix $B \in \mathbb{R}^{K \times K}$ of connection probabilities between communities. Prove the following result about the expected adjacency matrix $P=\mathbb{E}[A]$:
Lemma. Suppose B is full-rank. Let $V_{0} D_{0} V_{0}^{T}=P$ be a spectral decomposition, where $V_{0} \in \mathbb{R}^{n \times K}$ and $D_{0} \in \mathbb{R}^{K \times K}$. Then $V_{0}=\Theta X$, where $\Theta \in \mathbb{R}^{n \times K}$ is the membership matrix of the communities (with a 1 in the column corresponding to the community of node i, and all other entries in row i equal to 0), and $X \in \mathbb{R}^{K \times K}$, with $\left\|X_{i,:}-X_{j,:}\right\|_{2}=\sqrt{\frac{2 K}{n}}$, for $i \neq j$, where $\left\{X_{i,:}\right\}_{i=1}^{K}$ denote the rows of X.

