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1 Introduction

• High-dimensional statistics: # parameters p � # of observations n

• Applications: genetic analysis, health studies, medical imaging, astronomy, climatology (p ≈
10, 000, n ≈ 100)

• Key is to leverage low-dimensional structure in data set

Tools: Linear algebra, optimization theory, concentration inequalities

2 The Lasso

Reference: Bühlmann & van de Geer, Statistics for High-Dimensional Data, 2011
Linear model:

yi = xTi β
∗ + εi, for 1 ≤ i ≤ n.

Observations are {(xi, yi)}ni=1, goal is to estimate β∗ ∈ Rp. Assume εi’s are i.i.d. and E(εi) = 0,
and xi’s fixed or random (in random design case, xi ⊥⊥ εi).

Classical statistics: Ordinary least squares estimator given by

β̂OLS ∈ arg min
β

{
n∑
i=1

(yi − xTi β)2

}
= (XTX)−1XT y.
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Consistency:

β̂OLS
P−→ β∗ as n→∞.

Asymptotic normality:

√
n(β̂OLS − β∗)

d−→ N(0, σ2Σ−1) as n→∞,

when σ2 = V ar(εi) and xi ∼ N(0,Σ).
What about p > n? Issues:

XTX =
n∑
i=1

xix
T
i

is a sum of n rank-1 matrices, hence

rank(XTX) ≤ n < p,

so (XTX)−1 is not defined. In fact, solutions to arg minβ ‖y −Xβ‖22 span an entire subspace.
Solution is to enforce/assume sparsity. Suppose ‖β∗‖0 ≤ k < n, and solve the regularized

problem

β̂Lasso ∈ arg min
β

{
1

2n
‖y −Xβ‖22 + λ‖β‖1

}
,

a convex relaxation of

β̂ ∈ arg min
β

{
1

2n
‖y −Xβ‖22 + λ‖β‖0

}
.

Theorem 1. Under suitable conditions on X and ε, if λ is chosen sufficiently large, then

‖β̂Lasso − β∗‖2 ≤ cλ
√
k.

Theorem 2. Under additional suitable conditions, we have

supp(β̂Lasso) = supp(β∗).

How big should n be? In Gaussian case, “suitable conditions” hold w.h.p. when n ≥ Ck log p.

Information-theoretic arguments show that n ≥ C ′k log
(
p−k
k

)
is required for consistent estimation

w.h.p.

2.1 Proof of Theorem 1

Basic inequality:
1

2n
‖y −Xβ̂‖22 + λ‖β̂‖1 ≤

1

2n
‖y −Xβ∗‖22 + λ‖β∗‖1.

After some algebra, and using the substitution y = Xβ∗ + ε:

1

n
‖X(β̂ − β∗)‖22 ≤

2εTX(β̂ − β∗)
n

+ 2λ‖β∗‖1 − 2λ‖β̂‖1. (1)

Next step: We want to lower-bound the LHS by α‖β̂−β∗‖22, but unfortunately, λmin

(
XTX
n

)
= 0.

However, β̂ − β∗ is not an arbitrary vector, but is in a special cone set

C = {v ∈ Rp : ‖vSc‖1 ≤ 3‖vS‖1} ,
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where S = supp(β∗). Note that vectors supported only on S are always in this cone; the intuition
is that regularization encourages β̂ to be close to the sparse set, hence in C.

To show that ν̂ := β̂ − β∗ ∈ C, argue as follows: lower-bounding the LHS of inequality (1) by
0, we have

0 ≤ 2εTXν̂

n
+ 2λ‖β∗‖1 − 2λ‖β̂‖1

≤ 2‖ν̂‖1
∥∥∥∥XT ε

n

∥∥∥∥
∞

+ 2λ‖β∗S‖1 − 2λ‖β̂S‖1 − 2λ‖β̂Sc‖1

≤ 2‖ν̂‖1
∥∥∥∥XT ε

n

∥∥∥∥
∞

+ 2λ‖ν̂S‖1 − 2λ‖ν̂Sc‖1 (2)

using Hölder’s inequality in the first inequality and the triangle inequality in the second.
We now impose the assumption that λ is sufficiently large:

λ ≥ 2

∥∥∥∥XT ε

n

∥∥∥∥
∞
.

Plugging into the chain of inequalities gives

0 ≤ 2‖ν̂‖1 ·
λ

2
+ 2λ‖ν̂S‖1 − 2λ‖ν̂Sc‖1 = 3λ‖ν̂S‖1 − λ‖ν̂Sc‖1, (3)

implying that ν̂ ∈ C.
We impose one more condition, the restricted eigenvalue (RE) condition:

vT
XTX

n
v ≥ α‖v‖22, ∀v ∈ C

We now apply this condition to lower-bound the LHS of inequality (1). Combined with the upper
bounds in inequalities (2) and (3) then gives

α‖ν̂‖22 ≤ 3λ‖ν̂S‖1 − λ‖ν̂Sc‖1 ≤ 3λ‖ν̂S‖1 ≤ 3λ
√
k‖ν̂S‖2 ≤ 3λ

√
k‖ν̂‖2.

Hence,

‖ν̂‖2 ≤
3λ
√
k

α
.

We can also argue about `1-error, as follows:

‖ν̂‖1 = ‖ν̂Sc‖1 + ‖ν̂S‖1 ≤ 4‖ν̂S‖1 ≤ 4
√
k‖ν̂S‖2 ≤

12λk

α
.

Restating, we have the following result:

Theorem. Suppose the regularization parameter satisfies λ ≥ 2
∥∥∥XT ε

n

∥∥∥
∞

and the design matrix

satisfies vT X
TX
n v ≥ α‖v‖22, ∀v ∈ C. Then the Lasso solution satisfies the bounds

‖β̂ − β∗‖2 ≤
3λ
√
k

α
, and ‖β̂ − β∗‖1 ≤

12λk

α
.
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2.2 Case study: Gaussians

Recap: “suitable conditions” for Theorem 1 were:

1. RE condition on X

2. λ ≥ 2
∥∥∥XT ε

n

∥∥∥
∞

.

RE condition imposes some kind of curvature on objective function, which is important for showing
closeness of β̂ to β∗: we want that if the objective function values are close, the points where the
function is evaluated are close, as well. Furthermore, it is reasonable to need λ sufficiently large,
or else we are back to solving the OLS problem.

We also need to verify that the sufficient conditions for the theorem hold in reasonable settings
of interest. First consider a deterministic design matrix (X ∈ Rn×p is fixed), such that X satisfies
the RE condition, while εi ∼ N(0, σ2). If we further assume that X is column-normalized, so

max1≤j≤p
‖Xj‖2√

n
≤ C, where Xj is the jth column of X. Then

∥∥∥XT ε
n

∥∥∥
∞

is the absolute maximum

of p zero-mean Gaussians, each with variance at most C2σ2

n . Hence, from standard Gaussian tail
bounds (exercise!), we have

P

(∥∥∥∥XT ε

n

∥∥∥∥
∞
≥ Cσ

(√
2 log p

n
+ t

))
≤ 2e−nt

2/2, ∀t > 0,

so we can choose t �
√

log p
n and conclude that the choice λ ≥ C ′σ

√
log p
n is valid, w.h.p.

For the “random design” setting, suppose xi ∼ N(0,Σ) and εi ∼ N(0, σ2). Then we have the
following two facts:

• Fact 1: The RE condition holds with high probability (1 − exp(−cn)) when n ≥ Ck log p,
with α = 1

4λmin(Σx).

• Fact 2: With high probability,∥∥∥∥XT ε

n

∥∥∥∥
∞
≤ C ′σ‖|Σ‖|1/22

√
log p

n
.

Thus, we can safely choose any λ ≥ C ′σ‖|Σ‖|1/22

√
log p
n for the Lasso theory to hold. For the

“optimal” choice of λ, we are guaranteed that

‖β̂Lasso − β∗‖2 ≤ C ′′
√
k log p

n
,

‖β̂Lasso − β∗‖1 ≤ 4C ′′k

√
log p

n
.

Details for the Gaussian case may be found in Raskutti, Wainwright & Yu (2010). Extensions to
the sub-Gaussian setting exist as well, using concentration results as in the monograph by Vershynin
(2012).
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2.3 Proof of Theorem 2

We mention some highlights of the proof of the theorem regarding support recovery. More details
may be found in Wainwright (2009).

The key idea is a “primal-dual witness” (PDW) construction. The main steps are as follows:

1. Solve the restricted problem, where the support of β is restricted to the true support S. Show
that extending the solution to the p-dimensional space by augmenting 0’s yields a local/global
optimum β̂.

2. Establish strict dual feasibility at β̂.

3. Argue that all solutions β̃ fo the extended problem are also supported on S (using RE and
other inequalities regarding the proximity of β̃ to β̂).

We now elaborate on each of these steps. If supp(β̂) = supp(β∗), the solution to the Lasso should
agree with the solution to the restricted problem

β̂S ∈ arg min
βS∈RS

{
1

2n
‖y −XSβS‖22 + λ‖βS‖1

}
,

where we only regress on the covariates corresponding to the true support set supp(β∗). More
precisely, β̂ = (β̂S , 0Sc)

T should be a solution of the Lasso.
How do we ensure this? We can examine the (sub)gradient of the Lasso objective, and check

whether this vector β̂ makes the gradient 0. In other words, we need

− 1

n
XT (y −Xβ̂) + λ sign(β̂) = 0. (4)

The function sign(·) is defined componentwise, according to

sign(u) =


1 if u > 0

−1 if u < 0

anything in [−1, 1] if u = 0.

So we can substitute sign(β̂) = (sign(β̂S), ẑSc)
T , and solve the system of equations (4) for ẑSc .

Rewritten in block matrix form:

1

n

(
XT
SXS XT

SXSc

XT
ScXS XT

ScXSc

)(
β̂S − β∗S

0

)
− 1

n

(
XT
S ε

XT
Scε

)
+ λ

(
ẑS
ẑSc

)
=

(
0
0

)
.

Then if we can show that
‖ẑSc‖∞ ≤ 1,

we will guarantee that β̂ = (β̂S , 0Sc)
T is indeed a solution to the Lasso.

Note that after showing β̂ is a solution, we still need to show that any other solution is also
supported in S. This requires another side argument (see the lemma below), and it turns out that
ensuring the slightly stronger condition

‖ẑSc‖∞ < 1 (5)

(together with some other conditions, namely the mutual incoherence condition) will give us the
desired uniqueness.
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Lemma 3. If strict dual feasibility (5) holds, then (β̂S , 0Sc)
T is the unique optimal solution.

Proof. Suppose β̃ is another solution. Then

1

2n
‖y −Xβ̂‖22 + λ〈ẑ, β̂〉 =

1

2n
‖y −Xβ̃‖22 + λ〈z̃, β̃〉,

so
Ln(β̂)− λ〈ẑ, β̃ − β̂〉 = Ln(β̃) + λ

(
‖β̃‖1 − 〈ẑ, β̃〉

)
.

By the zero-subgradient condition, we have ∇Ln(β̂) + λẑ = 0, so

Ln(β̂) + 〈∇Ln(β̂), β̃ − β̂〉 − Ln(β̃) = λ
(
‖β̃‖1 − 〈ẑ, β̃〉

)
.

Note that the LHS is upper-bounded by 0, by convexity. Therefore,

‖β̃‖1 ≤ 〈ẑ, β̃〉 ≤ ‖ẑ‖∞‖β̃|1 ≤ ‖β̃‖1,

implying that 〈ẑ, β̃〉 = ‖β̃‖1. But together with inequality (5), this implies that β̃Sc = 0Sc .

Theorem. Suppose supp(β∗) = S and εi ∼ N(0, σ2), and X satisfies the following assumptions:

1. max1≤j≤p
‖Xj‖2√

n
≤ C,

2. λmin

(
XT
SXS
n

)
≥ cmin > 0,

3. ∃α ∈ [0, 1) such that maxj∈Sc ‖(XT
SXS)−1XT

SXj‖1 ≤ α.

If λ = 2Cσ
1−α

(√
2 log(p−k)

n + δ

)
, for some δ > 0, then the Lasso solution β̂ is unique, with support

contained within S, and

‖β̂ − β∗‖∞ ≤
σ
√
cmin

(√
2 log k

n
+ δ

)
+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XT
SXS

n

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

λ︸ ︷︷ ︸
B(λ,X)

,

with probability at least 1− 4e−nδ
2/2.

In particular, if minj∈S |β∗j | > B(λ,X), the Lasso is variable selection consistent.

Remark 1. Most of the canonical Lasso theory is proven for (sub)-Gaussian design matrices.
However, this may not be so useful in compressed sensing, where X ∈ Cn×p. Furthermore, we may
have structural constraints on X to make multiplication/storage easier (more on that later).
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2.4 Extensions/generalization

Many extensions exist to various problem settings, including the following:

1. Sparse logistic regression. We observe {(xi, yi)}ni=1, where xi ∈ Rp and yi ∈ {0, 1}. The yi’s
are related to the xi’s via

P (yi = 1 | xi, β∗) =
exp(xTi β

∗)

1 + exp(xTi β
∗)

= exp
(
xTi β

∗ − log(1 + exp(xTi β
∗)
)
.

The penalized log likelihood objective takes the form

β̂ ∈ arg min
β

{
1

n

n∑
i=1

(
−yixTi β∗ + log(1 + exp(xTi β

∗)
)

+ λ‖β‖1

}
.

2. Graphical Lasso. We observe xi ∼ N(0,Σ∗), and wish to estimate a sparse matrix Θ∗ :=
(Σ∗)−1 (this is useful in graphical model estimation). The penalized log likelihood objective
is

Θ̂ ∈ arg min
Θ

tr(Σ̂Θ)− log det(Θ) + λ
∑
i 6=j
|Θij |

 .

(More details on this later.)

3. Low-rank matrix approximation. We observe {(Xi, yi)}ni=1, where xi ∈ Rp1×p2 and the yi’s
are related to the xi’s via

yi = tr(XT
i Θ∗) + εi,

and the εi’s are i.i.d. We assume rank(Θ∗) is small. Then we use the nuclear-norm penalized
objective

Θ̂ ∈ arg min
Θ

 1

2n

n∑
i=1

(
yi − tr(XT

i Θ)
)2

+ λ

min(p1,p2)∑
j=1

σj(Θ)

 ,

where the σj ’s are the singular values. This encourages sparsity of singular values, hence
low-rankedness.

All the above problems may be analyzed using a similar procedure as the Lasso for linear
regression: Start with a basic inequality, manipulate, and bound the norm of the error. The RE
condition is replaced by a restricted strong convexity (RSC) condition. More details may be found
in Negahban, Ravikumar, Wainwright & Yu (2012).

2.5 Alternative approach (noiseless case)

Basis pursuit: For matrix Φ ∈ Rm×n and vector y ∈ Rm, consider the optimization problem

min
x∈Rn

‖x‖0

s.t. Φx = y. (6)

In general, non-convex program (6) is NP-hard to solve, so we consider the basis pursuit program

min
x∈Rn

‖x‖1

s.t. Φx = y. (7)

8



Definition: A matrix Φ ∈ Rm×n satisfies the (ε, k)-RIP if for all k-sparse vectors x,

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22. (8)

Equivalently, whenever |S| ≤ k, all eigenvalues of ΦT
SΦS are in [1− ε, 1 + ε], or∣∣∣∣∣∣ΦT

SΦS − Ik
∣∣∣∣∣∣

2
≤ ε

(exercise!).

Theorem 4. Let k ≤ n. If Φ satisfies (ε, 2k)-RIP with ε ≤
√

2 − 1, the solution x̂ to the basis
pursuit program (7) with y = Φx∗ satisfies

‖x̂− x∗‖2 ≤
c√
k
‖x∗tail(k)‖1,

where x∗tail(k) denotes x∗ with top k components zeroed out.

Note: In particular, if ‖x∗‖0 ≤ k, the BP program (7) is exact, since ‖x∗tail(k)‖1 = 0. For a proof,
see Candes, “The RIP and its implications for compressed sensing,” 2008.

Connections: Our earlier analysis shows that the Lasso strategy leads to `2-error bounds under
an RE condition on X. Some random matrix ensembles (e.g., spiked identity Gaussian matrices)
may be seen to satisfy RE, but not RIP. For more details and comparisons, see:

• Raskutti et al., “RE properties for correlated Gaussian designs,” JMLR, 2010.

• Bühlmann & van de Geer, “Statistics for high-dimensional data,” 2011.

3 Graphical models

Let G = (V,E) denote the undirected graphical model associated with the joint distribution, where

V = {1, . . . , p} and E ⊆ {0, 1}(
p
2), and (j, k) /∈ E if and only if Xj ⊥⊥ Xk | XV \{j,k}. The graph G is

also known as the conditional independence graph. For each j ∈ V , let N(j) = {k ∈ V : (j, k) ∈ E}
denote the neighborhood set of j. Let d = deg(G) denote the degree of G.

3.1 Gaussian graphical models

We begin by discussing edge recovery methods for Gaussian graphical models. Consider the case
where (X1, . . . , Xp) ∼ N(0,Σ) are joint observations from a multivariate normal distribution, and
let Θ = Σ−1 denote the inverse covariance matrix. The edge recovery algorithms presented in this
section are largely based on a critical observation regarding the relationship between entries of Θ
and edges of the conditional independence graph G.

9



3.1.1 Inverse covariance matrix and edge structure

Recall that the probability density function of the multivariate Gaussian distribution is given by

q(x1, . . . , xp) =
1

(2π)p/2 det(Σ)1/2
exp

(
−1

2
xTΘx

)

∝ exp

−1

2

∑
j,k

Θjkxjxk

 .

It is easy to see (exercise!) that for any j 6= k with Θjk = 0, we may write

q(x1, . . . , xp) = q1(xj , x\{j,k})q2(xk, x\{j,k}),

for functions q1, q2 > 0, from which we may deduce that Xj ⊥⊥ Xk | X\{j,k}. Conversely, if Θjk 6= 0,
such a decomposition is impossible, implying that Xj 6⊥⊥ Xk | X\{j,k}. It follows that for all j 6= k,

(j, k) ∈ E ⇐⇒ Θjk 6= 0. (9)

In other words, the support set supp(Θ), discounting diagonals, corresponds precisely to the edge
structure of the graph. This is the mainstay of many neighborhood selection algorithms for multi-
variate Gaussian graphical models.

3.1.2 Edge recovery via matrix estimation

Based on the observations of the previous section, it suffices to devise an estimate of the inverse
covariance matrix Θ when we are given a data matrix X ∈ Rn×p of n i.i.d. observations from the
joint distribution. A simple calculation (exercise!) shows that the maximum likelihood estimator

Θ̂MLE = arg min
Θ�0

{
tr(Σ̂Θ)− log det(Θ)

}
(10)

is given by Θ̂MLE =
(

Σ̂
)−1

, provided the sample covariance matrix Σ̂ = 1
n

∑n
i=1 xix

T
i is invertible.

However, when the number of nodes p exceeds the number of dimensions n, the matrix Σ̂ is low-
rank, hence uninvertible. Various alternative estimators have consequently been proposed that are
applicable in high dimensions; we will discuss two such methods below. Both algorithms produce
an estimate Θ̂ of Θ, from which we may in turn estimate the nonzero pattern supp(Θ).

Graphical Lasso. The graphical Lasso, first proposed in the literature by Yuan and Lin [25],
adds a penalty term to the maximum likelihood expression (10):

Θ̂GLASSO = arg min
Θ�0

tr(Σ̂Θ)− log det(Θ) + λ
∑
j 6=k
|Θjk|

 . (11)

The penalty term consists of the regularization parameter λ, multiplied by the `1-norm of off-
diagonal entries of Θ, and encourages a sparse matrix solution. We then define our estimate of the
edge set to be Ê = supp(Θ̂), where we abuse notation slightly and disregard the diagonal entries
of Θ̂.

10



Note that the graphical Lasso is a convex program. Hence, the solution Θ̂GLASSO may be
obtained efficiently using standard interior point methods [3]. However, generic optimization al-
gorithms may be fairly slow when applied to extremely large data sets, and various authors have
proposed more efficient methods specifically designed for solving the graphical Lasso program (11)
(e.g., [6, 7, 13, 9]).

3.1.3 Edge recovery via linear regression

We now outline a fundamental relationship between linear regression and estimation of Θ. Note
that for each 1 ≤ j ≤ p, by properties of Gaussian random variables, we may write

Xj = θTj X\{j} +Wj ,

where
θj =

(
Σ\{j},\{j}

)−1
Σ\{j},j ∈ Rp−1, (12)

Wj ∈ R is normally distributed with mean 0, and Wj ⊥⊥ X\{j}.
On the other hand, note that by block matrix inversion [8] (exercise!), we have

Θ =

(
Σ1,1 Σ1,\{1}

Σ\{1},1 Σ\{1},\{1}

)−1

=

 a1 −a1Σ1,\{1}
(
Σ\{1},\{1}

)−1

−a1

(
Σ\{1},\{1}

)−1
Σ\{1},1

(
Σ\{1},\{1} − Σ\{1},1Σ−1

1,1Σ1,\{1}

)−1

 , (13)

where a1 =
(

Σ1,1 − Σ1,\{1}Σ
−1
\{1},\{1}Σ\{1},1

)−1
. Hence, the first column of Θ is a constant multiple

of the vector

(
−1
θ1

)
, and an analogous statement may be made for each value of j. In particular,

recovering supp(θj), for each 1 ≤ j ≤ p, allows us to recover supp(Θ); using the equivalence (9),
the set supp(θj) corresponds precisely to the neighborhood set N(j).

Nodewise Lasso. Motivated by the relationship described above, Meinshausen and Bühlmann [15]
proposed a method for estimating the neighborhood sets {N(j) : 1 ≤ j ≤ p} via successive linear
regressions: In particular, the relation (12) implies that the random variable θTj X\{j} is the best
linear predictor of Xj in terms of X\{j}, so performing a linear regression of the observations cor-
responding to Xj upon the vector-valued observations X\{j} converges to θj as n → ∞. In the
setting of interest where p > n, the estimate of θj is given by the solution of the Lasso program

θ̂j = arg min
θ

{
‖Xj −X\jθ‖22 + λj‖θ‖1

}
, (14)

where Xj denotes the jth column vector of the n× p data matrix and X\j denotes the n× (p− 1)
block containing the remaining columns. We then define our neighborhood estimates to be

N̂(j) = supp(θ̂j), ∀1 ≤ j ≤ p,

and combine our neighborhood estimates into a global edge estimate Ê using an AND or OR rule:

11



Input: Neighborhood estimates {N(j)}1≤j≤p
Output: Edge set estimate Ê

AND rule: For each j 6= k,

(j, k) ∈ Ê ⇐⇒ j ∈ N̂(k) AND k ∈ N̂(j)

OR rule: For each j 6= k,

(j, k) ∈ Ê ⇐⇒ j ∈ N̂(k) OR k ∈ N̂(j).

The theoretical results described in the next subsection guarantee that with a sufficiently large

sample size and under certain regularity conditions, we have N̂(j) = N(j), with high probability,
for all j. Hence, the estimated edge set Ê will be a consistent estimate of E, regardless of which
rule is applied.

3.1.4 Statistical theory

We now highlight some theoretical results concerning the success of the algorithms described above.
At a high level, all the results guarantee that when the number of samples n scales as a power of d
times log p, we have Ê = E, with high probability. However, the results differ in the types of con-
ditions imposed on the underlying distribution. For the results of this section, we will use Σ∗ and
Θ∗ to denote the true covariance and inverse covariance matrices, respectively, so our data matrix
X ∈ Rn×p consists of n i.i.d. draws from the distribution N(0,Σ∗). The constants ci appearing in
the statistical results refer to universal constants, the values of which may vary between theorems.
We have also suppressed the dependence of the results on minimum eigenvalues of Σ∗.

Theory for graphical Lasso. We begin by discussing the performance of the graphical
Lasso (11). Numerous theoretical results have been derived concerning the convergence of Θ̂GLASSO

to Θ∗, where convergence is measured in various norms (e.g, Frobenius norm [19], spectral norm,
and elementwise `∞-norm [17]). Since the topic of this section is neighborhood selection, we will
focus on edge recovery guarantees; i.e., conditions under which Ê = E, with high probability. In
the following theorem, we require the α-incoherence condition:

max
e∈Sc
‖Γ∗eS (Γ∗SS)−1 ‖1 ≤ 1− α (15)

where Γ∗ = Σ∗ ⊗ Σ∗ ∈ Rp2×p2 is the tensor product of true covariance matrices, the augmented
edge set S is defined according to S := E ∪ {(j, j) : j ∈ V }, and Sc := (V × V )\S.

Theorem 5 (Ravikumar et al. [17]). Suppose we have the α-incoherence condition (15) for some

α ∈ (0, 1]. Also suppose the regularization parameter is chosen to be λ = c1
α

√
log p
n + δ, for some

δ ∈ [0, 1], and suppose the sample size satisfies n ≥ c2

(
1 + 8

α

)2
d2 log p. Then with probability at

least 1 − c3 exp(−c4nδ
2), the estimated edge set Ê based on the graphical Lasso satisfies Ê ⊆ E.

Furthermore, Θ̂GLASSO satisfies the elementwise `∞-norm bound

‖Θ̂GLASSO −Θ∗‖max ≤ c5

(
λ+

(
1 +

8

α

)√
log p

n

)
,

12



so if Θ∗ also satisfies the minimum signal strength condition

min
(j,k)∈E

|Θ∗jk| > c5

(
λ+

(
1 +

8

α

)√
log p

n

)
,

we are guaranteed that Ê = E.

Note that the first part of Theorem 5, which stipulates that Ê ⊆ E with high probability, guar-
antees that the edge set generated by the graphical Lasso algorithm does not include any false edges.

Theory for nodewise Lasso. The theory for the nodewise regression method may be de-
rived from variable selection guarantees for the Lasso algorithm [27, 22]. Under an incoherence
assumption on functions of subblocks of the data matrix X, as well as a minimum signal strength
assumption on the true regression coefficients

θ∗j =
(

Σ∗\{j},\{j}

)−1
Σ∗\{j},j ,

we may guarantee that the solutions {θ̂j}1≤j≤p to the nodewise regression programs (14) satisfy

supp(θ̂j) = supp(θ∗j ), ∀1 ≤ j ≤ p,

with high probability. This in turn implies that N̂(j) = N(j) for all j, so the nodewise regression
method succeeds. We summarize in the following theorem. To declutter the theorem statement,
we assume that the columns of X have been renormalized so that 1√

n
max1≤j≤p ‖Xj‖2 ≤ 1.

Theorem 6. Suppose there exists a parameter α ∈ (0, 1] such that

max
1≤j≤p

{
max

k∈(N(j)∪j)c

∥∥∥∥Σ∗k,N(j)

(
Σ∗N(j),N(j)

)−1
∥∥∥∥

1

}
≤ 1− α. (16)

Suppose the regularization parameters for the nodewise Lasso are chosen such that λj = c1
α

√
log p
n +δ,

for some δ ∈
[
0, 1

α2d

]
, and suppose the sample size satisfies n ≥ c2d log p. Then with probability at

least 1− c3 exp(−c4α
2nδ2), the estimated edge set Ê based on nodewise regression satisfies Ê ⊆ E.

Furthermore,

max
1≤j≤p

‖θ̂j − θ∗j‖∞ ≤ c5

(
λ+

√
log p

n

)
,

so if we also have the minimum signal strength condition

min
1≤j≤p

min
j,k∈N(j)

|(θ∗j )k| > c5

(
λ+

√
log p

n

)
, (17)

we are guaranteed that Ê = E.

Note that the condition (16) is the linear regression analog of the α-incoherence condition (15).
Furthermore, the minimum signal strength condition (17) may be translated into a minimum signal
strength condition on Θ∗ via the relation (13).
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3.2 Ising models

We now shift our focus from Gaussian to discrete random variables. The probability mass function
of an Ising model from statistical physics, parametrized by node potentials {θj}1≤j≤p and edge
potentials {θjk}(j,k)∈E , with E ⊆ V × V , is given by

q(x1, . . . , xp) =
1

Z
exp

 p∑
j=1

θjxj +
∑

(j,k)∈E

θjkxjxk

 , ∀x ∈ {−1, 1}p,

where

Z = Z(θ) =
∑

x∈{−1,1}p
exp

 p∑
j=1

θjxj +
∑

(j,k)∈E

θjkxjxk


is the normalizing constant or partition function [10, 1]. Using similar reasoning as in the Gaussian
setting (exercise!), we have the relation

(j, k) ∈ E ⇐⇒ Θjk 6= 0, ∀j 6= k,

where Θ ∈ Rp×p is the symmetric matrix with diagonal entries equal to {θj} and off-diagonals equal
to

Θjk =


θjk if (j, k) ∈ E
θkj if (k, j) ∈ E
0 if (j, k), (k, j) /∈ E.

Importantly, although the matrix Θ encodes the edges of the graphical model, it no longer corre-
sponds to the inverse covariance matrix of the joint distribution.

3.2.1 Logistic regression

A straightforward calculation shows that the conditional distributions in the Ising model take the
form

log q(xj | x\{j}) = −f

2θjxj + 2
∑

k∈N(j)

θjkxjxk

 , (18)

where f(t) = 1
1+exp(t) is the logistic function. This motivates a nodewise neighborhood selection

method based on logistic regression. In particular, for high-dimensional graphical models, we
optimize the `1-penalized logistic regression programs

θ̂j = arg min
θ∈Rp

{
1

n

n∑
i=1

f

2θjxij + 2
∑

k∈V \{j}

θjkxijxik


︸ ︷︷ ︸

Ln(θ)

+λj
∑

k∈V \{j}

|θjk|

}
. (19)

Here, the minimization is over vectors θ with one coordinate denoted by θj and p− 1 coordinates
denoted by {θjk : k ∈ V \{j}}, and the `1-penalty encourages sparsity. The estimated neighborhood
sets are given by

N̂(j) = supp(θ̂j), ∀1 ≤ j ≤ p,
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and we combine our neighborhood estimates into an estimate Ê of the edge set via an AND or
OR rule, just as in the case of the nodewise Lasso for Gaussian graphical models. Note that the
programs (19) are all convex, and may be solved efficiently (e.g., see Koh et al. [12] for an interior-
point implementation).

3.2.2 Statistical theory

We now describe a result providing statistical guarantees for the nodewise logistic regression algo-
rithm. Let {(θj)?}1≤j≤p denote the true parameter vectors, where

(θj)? = (θ∗j ; θ
∗
jk : k ∈ V \{j}) ∈ Rp.

The result below assumes an incoherence condition on the Fisher information matrix J =
∇2Ln(θ∗):

max
1≤j≤p

{
max
k/∈N(j)

∥∥∥Jk,N(j)

(
JN(j),N(j)

)−1
∥∥∥

1

}
≤ 1− α, for some α ∈ (0, 1]. (20)

This is the logistic regression analog to the earlier incoherence condition (16) for linear regression.
We then have the following result:

Theorem 7 (Ravikumar et al. [18]). Suppose the true parameters of the Ising model satisfy the
incoherence condition (20). If the regularization parameters of the nodewise logistic regression

program are chosen such that λj = c1
α

√
log p
n + δ, for some δ ∈ [0, 1], and the sample size satisfies

n ≥ c2d
3 log p, then with probability at least 1− c3 exp(−c4nδ

2), the estimated edge set Ê based on
nodewise logistic regression satisfies Ê ⊆ E. Furthermore,

max
1≤j≤p

‖θ̂j − (θj)?‖∞ ≤ c5λ
√
d,

so if we also have the minimum signal strength condition

min
1≤j≤p

{
min
k∈N(j)

|
(
θj
)?
k
|
}
> c5λ

√
d,

we are guaranteed that Ê = E.

4 Spectral methods

4.1 Linear algebra “review”

References:

• Horn & Johnson, Matrix Analysis

• Fuzhen Zhang, Matrix Theory
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4.1.1 Eigenvalues and singular values

Definition: For a matrix A ∈ Cn×n, a vector 0 6= v ∈ Cn is an eigenvector with associated
eigenvalue λ ∈ C if

Av = λv.

Properties:

• Eigenvectors corresponding to different eigenvalues are linearly independent.

• If A = A∗ (i.e., A is Hermitian), all eigenvalues are real; in particular, this happens when A
is real and symmetric.

• If A � 0, meaning A = A∗ and v∗Av ≥ 0 for all v ∈ Cn, all eigenvalues of A are nonnegative.

Definition: For a matrix A ∈ Cm×n, nonnegative square roots of eigenvalues of A∗A are singular
values of A.

Note: Singular values exist even when A is not a square matrix. Since A∗A � 0, it makes sense
to talk about square roots of eigenvalues by the last property above.

4.1.2 Matrix decompositions

Definition: A matrix U ∈ Cn×n is unitary if

U∗U = UU∗ = I.

(If U ∈ Rn×n, this means U is an orthogonal matrix—all rows/columns are orthonormal, and linear
transformation corresponding to U consists of rotation/scaling.)

Spectral decomposition: If A = A∗, there exists a unitary matrix U such that

U∗AU = diag(λ1, λ2, . . . , λn),

where λi’s are real-valued eigenvalues of A, and columns {ui}ni=1 of U are orthonormal eigenvectors
corresponding to eigenvalues (i.e., A is diagonalizable via a unitary transformation). The spectral
decomposition is generally not unique, although the (ordered) eigenvalues are unique.

Special case: If A ∈ Rn×n and A = AT , can choose U ∈ Rn×n to be an orthogonal matrix.

Singular value decomposition: If A ∈ Cm×n has nonzero singular values {σ1, . . . , σr} (with
r ≤ min{m,n}), there exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

A = U

(
D 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
V ∗,

where D = diag(σ1, . . . , σr). Columns {ui}mi=1 and {vj}nj=1 of U and V are known as left and right
singular vectors of A.

Note that this is the “full SVD” as opposed to the “economy SVD,” which has a square diagonal
matrix in the center and two rectangular matrices with orthonormal columns.
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Properties:

• In general, SVD is not unique (although we often choose σ1 ≥ σ2 ≥ · · · ≥ σr, making the
matrix D unique).

• We have the rank-r decomposition

A =

r∑
i=1

σiuiv
∗
i .

• If A ∈ Rm×n, can take U ∈ Rm×m and V ∈ Rn×n to be orthonormal matrices.

• Geometric interpretation: Note that the SVD implies that AV = UD, so we have Avi =
σiui for all i, and similarly, u∗iA = σiv

∗
i . The sketch shows a geometric interpretation of the

SVD via a commutative diagram (the sketch is for two dimensions, with r = m = n = 2):

The linear transformation A may be decomposed as an isometry V ∗, followed by a scale
transformation D, followed by another isometry U .

Lemma 8. A vector v is an eigenvector of A∗A with eigenvalue λ1 iff v is a right singular vector
of A with singular value σ1 =

√
λ1.

4.2 Best-fit subspaces

Consider a matrix A ∈ Rm×n. (From now on, we will work in Rn unless otherwise stated.) Denote
the rows by {aTi }mi=1, where each ai ∈ Rn may be viewed as a point in n-dimensional space.
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4.2.1 One-dimensional case

Question: Find the (unit) vector v ∈ Rn that minimizes the sum of squared distances of the
points {ai} to the line {cv : c ∈ R}. (Equivalently, find the “best-fit line” through the origin.)

Since aTi v corresponds to length of projection of vector ai on v, distance d(ai, v) from ai to line
is ‖ai − (aTi v) · v‖2. We want to minimize

m∑
i=1

‖ai − (aTi v) · v‖22.

By the Pythagorean theorem, ‖ai‖22 = ‖ai − (aTi v) · v‖22 + ‖(aTi v) · v‖22, so we equivalently want to
maximize

m∑
i=1

‖(aTi v) · v‖22 =
m∑
i=1

(aTi v)2 = ‖Av‖22

over v (note that
∑m

i=1 aia
T
i = ATA for the last equality).

Lemma 9. A vector v1 ∈ Rn is a right singular vector of A corresponding to the first singular
value σ1, if and only if

v1 ∈ arg max
‖v‖2=1

‖Av‖22.

4.2.2 Generalization

Theorem 10. Suppose {v1, . . . , vn} are right singular vectors corresponding to the singular values
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. For each 1 ≤ k ≤ n, let Vk := span{v1, . . . , vk}. Then Vk is a best-fit
k-dimensional subspace for the points {ai}mi=1:

Vk ∈ arg min
dim(V )=k

m∑
i=1

d(ai, V )2,

where we define the distance function

d(a, V ) = min
v∈V
‖a− v‖2

for a vector a and subspace V .

The proof will rely on the following result:

Lemma 11. Let A ∈ Rm×n, and define the vectors

v1 ∈ arg max
‖v‖2=1

‖Av‖22

v2 ∈ arg max
‖v‖2=1

vT v1=0

‖Av‖22

...

vn ∈ arg max
‖v‖2=1

vT v1=vT v2=···=vT vn−1=0

‖Av‖22.
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Then v1, . . . , vn are right singular vectors of A with singular values σ1 ≥ σ2 ≥ . . . σn ≥ 0. Con-
versely, any vectors {v1, . . . , vn} corresponding to the singular values {σ1, . . . , σn} satisfy the above
system.

Proof of Theorem 10. We use induction to prove the theorem, with the base case proved in the
previous subsection.

Inductive step: Suppose Vk−1 is a best-fit (k − 1)-dimensional subspace. Note that

m∑
i=1

d(ai, Vk−1)2 =

m∑
i=1

‖ai‖22 − k−1∑
j=1

|aTi vj |2


=
m∑
i=1

‖ai‖22 −
m∑
i=1

k−1∑
j=1

|aTi vj |2

= ‖A‖2F −
(
‖Av1‖22 + · · ·+ ‖Avk−1‖22

)
,

so Vk−1 maximizes ‖Av1‖22 + · · · + ‖Avk−1‖22 among all collections of k − 1 orthonormal vectors.
(The first equality above follows from the Pythagorean theorem.)

Let W be any k-dimensional subspace. Then W ∩V ⊥k−1 6= 0 by a dimensionality argument (since

dim(W ) = k and dim(V ⊥k=1) = n− (k − 1)). Choose an orthonormal basis {w1, . . . , wk} of W such
that wk ∈ V ⊥k−1. We have

‖Aw1‖22 + · · ·+ ‖Awk−1‖22 ≤ ‖Av1‖22 + · · ·+ ‖Avk−1‖22

(since Vk−1 is a maximizer). Furthermore, ‖Awk‖22 ≤ ‖Avk‖22, by the maximality of vk provided in
Lemma 11 (since vk, wk ∈ V ⊥k−1). It follows that

‖Aw1‖22 + · · ·+ ‖Awk‖22 ≤ ‖Av1‖22 + · · ·+ ‖Avk‖22,

so
‖A‖2F −

(
‖Av1‖22 + · · ·+ ‖Avk−1‖22

)
≤ ‖A‖2F −

(
‖Aw1‖22 + · · ·+ ‖Awk−1‖22

)
,

and
m∑
i=1

d(ai, Vk)
2 ≤

m∑
i=1

d(ai,W )2,

as wanted. (The inequality above holds for any W .)

4.2.3 PCA

Setting: Consider data points {xi}ni=1 ⊆ Rp. Want to find low-dimensional projection capturing
variation in data.

Solution: Find projection onto k-dimensional subspace maximizing sum of squared projection
lengths:

max
dim(V )≤k

n∑
i=1

‖PV xi‖22

(equivalently, minimizing sum of squared distances to V ). As we have seen, a solution is given by
V = span{v1, . . . , vk}, span of top k right singular vectors of X.
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Statistical interpretation: Note that {v1, . . . , vk} are top k eigenvectors of 1
nX

TX = 1
n

∑n
i=1 xix

T
i ,

sample covariance of xi’s assuming data are centered. Then vi’s are directions of maximal variance:

v1 ∈ arg max
‖v‖2=1

vT
(
XTX

n

)
v.

(If XTX
n → Σx, the vi’s converge to top eigenvectors of Σx.)

Computation:

• Computing XTX takes O(np2), and eigendecomposition takes O(p3).

• Computing top k singular values of X only takes O(npk) (more on this in the next subsection).

Source: Handbook of Linear Algebra, 2007
Algorithms for efficient SVD computation for large matrices is an active area of research. For

moderately-sized matrices, a standard technique is the power (iteration) method.

4.3 Computation of SVD/top eigenvectors

4.3.1 Basic idea

Let B = ATA. We have

B =

(
r∑
i=1

σiviu
T
i

) r∑
j=1

σjujv
T
j


=

r∑
i=1

σ2
i viu

T
i uiv

T
i =

r∑
i=1

σ2
i viv

T
i .

Furthermore,

B2 =

(
r∑
i=1

σ2
i viv

T
i

)(
r∑
i=1

σ2
i viv

T
i

)

=

r∑
i=1

σ4
i viv

T
i .

By induction, we can show that

Bk =

r∑
i=1

σ2k
i viv

T
i .

In particular, if σ1 > σ2, then
∣∣∣∣∣∣Bk − σ2k

1 v1v
T
1

∣∣∣∣∣∣ → 0. If we consider Bke1, the first column of Bk,
then normalizing gives an estimate of v1.

Additional eigenvectors can be calculated (approximately) by applying the power method to
B − σ1v1v

T
1 . To obtain left singular values of A, consider AAT instead. (Alternatively, we could

apply Av̂1 and then rescale to obtain û1.)
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4.3.2 Faster method

Instead of computing Bk, can save on computation by computing Bkx directly for a (random)
vector x. If A is a m × n matrix, then B ∈ Rn×n, and computing B2 alone takes O(n3) time.
However, if we instead compute Bkx = ATA · · ·ATAx, then we need to perform 2k operations that
are each O(mn). Note that if we write x =

∑n
i=1 civi, we have

Bkx ≈
(
σ2k

1 v1v
T
1

)( n∑
i=1

civi

)
= c1σ

2k
1 v1,

so normalizing the resulting vector gives an approximation of v1. (We use a random vector so as
to avoid the case when c1 ≈ 0.)

More comprehensive resource: “Computation of the singular value decomposition,” Handbook
of Linear Algebra, 2007

4.4 Best rank-k approximations

If A has nonzero singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, define

Ak =

k∑
i=1

σiuiv
T
i ,

for 1 ≤ k ≤ r. (Truncated SVD.) Note that Ak has rank exactly k.

4.4.1 Frobenius norm

Theorem 12 (Schmidt Approximation Theorem, Eckart-Young Theorem). For all 1 ≤ k ≤ r, we
have

min
B∈Rm×n:rank(B)≤k

‖A−B‖F = ‖A−Ak‖F .

Proof. Fix k, and let B ∈ Rm×n with rank(B) ≤ k be a minimizer. Let B′ be the matrix obtained
from B by projecting each row of A onto the rowspace row(B). Then

‖A−B′‖2F ≤ ‖A−B‖2F

(since the Frobenius norm squared is the sum of squared Euclidean norms of rows, and b′j is defined
to be the closest vector to aj in a subspace containing bj). Furthermore, since row(B′) ⊆ row(B),
we have rank(B′) ≤ k. Also by the optimality of B, we have

‖A−B‖F ≤ ‖A−B′‖F ,

implying that ‖A−B‖2F = ‖A−B′‖2F , which is the sum of squared distances of the points {ai}mi=1

to row(B):

‖A−B‖2F =
m∑
i=1

d(ai, row(B))2.
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Claim 1. The squared Frobenius norm ‖A − Ak‖2F is equal to the sum of squared distances of
{ai}mi=1 to Vk = span{v1, . . . , vk}:

‖A−Ak‖2F =

m∑
i=1

d(ai, Vk)
2.

Proof. We show that the projection of ai onto Vk is equal to the ith row of Ak. The projection may
be written as

(aTi v1)v1 + · · ·+ (aTi vk)vk,

and the matrix with this vector in the ith row is

Av1v
T
1 + · · ·+Avkv

T
k .

Note that
k∑
i=1

Aviv
T
i =

k∑
i=1

σiuiv
T
i = Ak,

so the claim follows.

By Theorem 10, we have

m∑
i=1

d(ai, Vk)
2 ≤

m∑
i=1

d(ai, row(B))2.

We have shown that the RHS is equal to ‖A − B‖2F , and Claim 1 shows that the LHS is equal to
‖A−Ak‖2F . The desired result follows (since B is a minimizer).

4.4.2 Spectral norm

Now recall the definition of the spectral norm:

|||A|||2 = sup
‖v‖2=1

‖Av‖2 = σ1.

Theorem 13 (Eckart-Young-Mirsky Theorem). For all 1 ≤ k ≤ r, we have

min
B∈Rm×n:rank(B)≤k

|||A−B|||2 = |||A−Ak|||2 .

Note: In fact, Mirsky (1958) proved a generalization of Theorem 12 to all unitarily invariant
matrix norms. Recall that a unitarily invariant norm satisfies ‖A‖ = ‖UAV ‖ for all unitary
matrices U and V ; the Frobenius and spectral norms satisfy this property:

‖UAV ‖2F = tr(V TATUTUAV ) = tr(V TATAV )

= tr(ATAV V T ) = tr(ATA) = ‖A‖2F ,

and if we have the SVD A = ŪD̄V̄ T , then UAV = UŪD̄V̄ TV clearly has the same set of singular
values, so |||UAV |||2 = σ1. We have used the facts that

• ‖A‖2F = tr(ATA),

• tr(ABC) = tr(BCA).
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4.5 Johnson-Lindenstrauss Lemma

Idea: Existence of (random) low-dimensional linear projections approximately preserving `2-
distance between N data points. Requires projecting into sufficiently high-dimensional space.
First proved in Johnson & Lindenstrauss, “Extensions of Lipschitz mappings into a Hilbert space,”
Contemporary Mathematics, 1984.

4.5.1 Main result

Theorem 14 (JL Lemma). Suppose 0 < ε < 1
2 . Let {x1, . . . , xN} ⊆ Rn be a set of data points, and

let m = C logN
ε2

. Then there exists a Lipschitz mapping f : Rn → Rm such that for all pairs (i, j),

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22. (21)

Definition: A distribution D on Rm×n satisfies the (ε, δ)-distributional JL property if for any
fixed x ∈ Rn, a matrix Φ drawn from D satisfies

P
(
(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22

)
> 1− δ. (22)

Lemma 15 (Distributional JL Lemma). Suppose ε, δ < 1
2 and m = C′ log(1/δ)

ε2
. Then there exists a

probability distribution D on Rm×n satisfying the (ε, δ)-distributional JL property.

Proof of Theorem 14. Lemma 15 applied with δ < 1

(N2 )
implies the existence of a distribution D

such that

P

(
(1− ε)‖xi − xj‖22 ≤ ‖Φxi − Φxj‖22 ≤ (1 + ε)‖xi − xj‖22

)
> 1− δ, ∀i, j.

Taking a union bound over all pairs (i, j), we then have

P

(
(1− ε)‖xi − xj‖22 ≤ ‖Φxi − Φxj‖22 ≤ (1 + ε)‖xi − xj‖22, ∀i, j

)
> 1−

(
N

2

)
δ

> 0,

implying the existence of at least one matrix Φ in the support of D satisfying the desired properties.
(This is an illustration of the probabilistic method.) We need to choose dimension

m =
C ′ log(1/δ)

ε2
=
C logN

ε2

in order for successful application of Lemma 15.

4.5.2 Proof of distributional lemma

Recall the definition of the spectral norm:

|||A|||2 = sup
‖v‖2=1

‖Av‖2 = σ1.
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Proof of Lemma 15. Different constructions exist, including:

1. projection onto random m-dimensional subspace (original JL proof),

2. choosing entries of Φ to be i.i.d. N
(
0, 1

m

)
variables, and

3. assigning entries of Φ to be i.i.d. with values ± 1√
m

.

We will analyze the last construction.
We have Φij =

ξij√
m

, where ξij ’s are i.i.d. Rademacher variables. We use the following theorem:

Theorem 16 (Hanson-Wright inequality, 1971). Suppose A ∈ Rn×n and ξ ∈ Rn is a vector of i.i.d.
Rademacher variables. Then for any λ > 0,

P
(∣∣ξTAξ − E(ξTAξ)

∣∣ > λ
)
≤ exp

(
−min

{
c1λ

2

‖A‖2F
,
c2λ

|||A|||2

})
.

(Versions of Theorem 16 hold for i.i.d. sub-Gaussian components, as well. See Rudelson & Ver-
shynin, “Hanson-Wright inequality and sub-Gaussian concentration,” 2013, for more details.)

Note that it suffices to establish the condition (22) for unit vectors. For a fixed unit vector
x ∈ Rn, define the matrix

Ax =
1√
m


xT 0 · · · 0
0 xT · · · 0
...

...
. . .

...
0 0 · · · xT

 ∈ Rm×mn,

and notice that ‖Φx‖22 = ‖Axξ‖22, where ξ ∈ Rmn is a vector of Rademacher variables. Also note
that

E
(
‖Axξ‖22

)
= E

[
tr
(
ξTATxAxξ

)]
= tr

(
ATxAxE[ξξT ]

)
= tr(ATxAx) = ‖Ax‖2F

= ‖x‖22,

where we have used the fact that E[ξξT ] = I, so applying Theorem 16 with λ = ε and A = ATxAx
gives

P
(∣∣‖Φx‖22 − ‖x‖22∣∣ > ε

)
≤ exp

(
−min

{
c1ε

2

‖A‖2F
,
c2ε

|||A|||2

})
.

Furthermore, A is a block-diagonal matrix with m blocks equal to 1
mxx

T , so

‖A‖2F = m · 1

m2
‖xxT ‖2F

1

m
tr(xxT · xxT ) =

1

m
tr(xxT ) =

1

m
,

|||A|||2 =
1

m
· sup
‖u‖2=1

(uTx)(xTu) =
1

m
.

Hence, probability of error becomes exp(−cmε2), and choice m = C log(1/δ)
ε2

drives this less than
δ.
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4.5.3 Johnson-Lindenstrauss applications

Recall: Distributional JL lemma shows that with high probability, random projection chosen from
ensemble satisfies desired distance-preserving property (provided m is chosen large enough relative
to N and δ).

k-means clustering: For data points {xi}Ni=1 ⊂ Rn, find a partition P into k clusters {P1, . . . , Pk}
centered at {y1, . . . , yk}, to minimize objective

h(P;X) =
k∑
j=1

∑
i∈Pj

‖xi − yj‖22.

In general, problem is NP-hard, but efficient algorithms exist providing γ-approximate clusterings,
meaning h(Pγ ;X) ≤ γh(P∗;X) for γ > 1. To save computation, idea is to project into m-
dimensional space before performing approximate k-means clustering. In order to prove rigorously
that this works, derive the following result:

Lemma 17. If f : Rn → Rm is a JL embedding for {xi}Ni=1 with error tolerance ε, then any
γ-approximate clustering Pγ for f(X) satisfies

h(Pγ ;X) ≤ γ
(

1 + ε

1− ε

)
· h(P∗;X)

(clearly, smaller ε leads to more accuracy).

Proof. Note that

(1− ε)h(Pγ ;X)
(a)

≤ h(Pγ ; f(X))

(b)

≤ γ · h(P∗f ; f(X))

(c)

≤ γ · h(P∗; f(X))

(d)

≤ γ(1 + ε) · h(P∗;X),

where (a) follows from the JL property, (b) follows because Pγ is an approximate clustering, (c)
follows from the fact that P ∗f is optimal, and (d) follows from the JL property again. Note that we
have used the notation

h(Pγ ; f(X)) =

k∑
j=1

∑
i∈(Pγ)j

‖f(xi)− f(yj)‖22,

and P∗f denotes the optimal clustering for {f(xi)}Ni=1, whereas P∗ denotes the optimal clustering

for {xi}Ni=1.
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On approximate k-means: See Kumar, Sabharwal & Sen, “A simple linear time (1 + ε)-
approximation algorithm for k-means clustering in any dimensions,” 2004. Gives (1+ε)-approximate
solution, w.h.p., in O(Nn) time (treating k and ε as constants). This is in contrast to exact k-
means, for which fastest exact algorithm takes O(Nkn+1) time. Thus, JL reduces the runtime of
an approximate algorithm from O(Nn) to O(N logN) time.

A deterministic (1 + ε)-approximate algorithm was proposed by Matousek, “On approximate
geometric k-clustering,” 2000, and runs in O(Nε−2k2n logkN) time.

The main idea in these papers is to take a random sample of O(k) points, which w.h.p. contains
a constant number of points from the largest cluster. Then by trying all subsets of of constant size
from the sample, we can obtain an estimate for the centroid of the largest cluster. We would then
prune points from the largest cluster to obtain samples from the smaller clusters.

Other examples:

• Approximate nearest neighbor classifier

• Linear classifiers (e.g., SVMs, which are max margin classifiers—first project, then classify)

4.5.4 Equivalences

In fact, we can show that RIP ⇐⇒ JL property. Recall the RIP definition:

Definition: A matrix Φ ∈ Rm×n satisfies the (ε, k)-RIP if for all k-sparse vectors x,

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22. (23)

Equivalently, whenever |S| ≤ k, all eigenvalues of ΦT
SΦS are in [1− ε, 1 + ε], or∣∣∣∣∣∣ΦT

SΦS − Ik
∣∣∣∣∣∣

2
≤ ε.

Note: Obvious similarities exist between RIP condition (23) and JL condition (22). However,
RIP is a deterministic guarantee holding uniformly over k-sparse vectors, whereas JL condition is
a probabilistic guarantee holding any fixed n-dimensional vector.

RIP has been studied extensively in compressed sensing and can be used to derive JL embeddings
with desirable properties.

References:

• (JL =⇒ RIP) Baraniuk et al., “A simple proof of the restricted isometry property for random
matriices,” Constructive Approximation, 2007

• (RIP =⇒ JL) Krahmer & Ward, “New and improved Johnson-Lindenstrauss embeddings
via the restricted isometry property,” SIAM Journal on Mathematical Analysis, 2011

Theorem 18 (JL =⇒ RIP). Suppose ε < 1, and m ≥ c1(ε)k log
(
n
k

)
. If D satisfies the

(
ε
2 , δ
)
-

distributional JL property with δ = e−mε, then with probability at least 1 − e−εm/2, a randomly
drawn matrix Φ ∼ D satisfies (ε, k)-RIP.

Theorem 19 (RIP =⇒ JL). Suppose Φ ∈ Rm×n satisfies (ε, 2k)-RIP. Let Dξ = diag(ξ1, . . . , ξn) be
a diagonal matrix of i.i.d. Rademacher random variables. Then ΦDξ satisfies the (3ε, 3 exp(−ck))-
distributional JL property.
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4.5.5 Generating RIP matrices

Already studied in compressed sensing literature. Leads to useful families of matrices for distance-
preserving projections via Johnson-Lindenstrauss. In particular:

• Subsampled Fourier matrix

• Subsampled Hadamard matrix: (−1)〈i,j〉√
n

, where 〈i, j〉 is dot product of binary representations

of i and j, or

Hk =
1√
2

(
Hk/2 Hk/2

Hk/2 −Hk/2

)
.

Take Φ = SH, where H is Fourier/Hadamard and each row of S has all 0’s except a single
√

n
m

in a random column (scales and subsamples rows). Then ΦDξx may be computed quickly (in
O(n log n) time), since we only need to apply random signs to x, apply proper transform, and then
rescale. (Fast JL Transform from Ailon & Chazelle,“Approximate nearest neighbors and the fast
JL transform,” 2006.)

4.6 Spectral clustering I: Data matrix

Reference: Blum, Hopcroft & Kannan, Chapter 7

Setting: Matrix X ∈ Rn×d of data vectors. Goal is to partition dataset into K nonoverlapping
groups.

4.6.1 Algorithm

1. Compute best rank-K approximation XK =
∑K

i=1 σiuiv
T
i of X using SVD.

2. Perform distance-based clustering method (e.g., k-means algorithm) on rows {yj}nj=1 of XK

to obtain clustering {CYi }Ki=1.

3. Output clusters {C̃i}Ki=1, with C̃i := {j : yj ∈ CYi }.

Recall from the theorem from last time that the ith row of XK is the projection of xi onto
span{v1, . . . , vK}, so we are clustering after projecting onto a best-fit subspace.

4.6.2 Some theory

For a clustering C = {Ck}Kk=1 of the data matrix X, define ci to be centroid of cluster containing
data point xi (mean of cluster data points), and define cluster variance

σ2(C) = max
v∈Rp:‖v‖2=1

1

n

n∑
i=1

(
(xi − ci)T v

)2
=

1

n
|||X − C|||22 ,

where C is matrix with ci’s as rows.
Assume distance-based clustering step is performed in the following manner:

1. Pick a random row yi of XK and form a cluster with all rows yj such that ‖yi − yj‖2 ≤ τ .
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2. Repeat step 1 on remaining rows of XK until K clusters are formed, and assign any additional
rows arbitrarily. (Some clusters are allowed to be empty if τ is too large.)

Theorem 20. Suppose a clustering C of the data exists, such that K ≤ d and

(i) |Ck| ≥ 6Kσ(C)n
τ , for all 1 ≤ k ≤ K (minimum cluster size),

(ii)

min
ci 6=cj

‖ci − cj‖2 ≥
5τ

2
(minimum cluster separation),

and

(iii) 32σ(C)
3τ ≤ 1 (relative size of cluster variance vs. separation).

Then with probability at least 1 − 32Kσ(C)
3τ , the spectral clustering algorithm outputs a clustering C̃

differing from C in at most 32Kσ2(C)n
τ2

points.

Note: Imagine a fixed τ . How far apart do cluster centers need to be in relation to internal
spread in order to obtain a low-error clustering? Separation needs to be at least 5τ

2 , and smaller
σ(C) implies smaller error. Result holds as long as cluster sizes are not too small, due to random
choice of rows in spectral clustering.

Proof. First show that ‖yi− ci‖2 ≤ τ
2 for most i (distance between projected points and centroids).

Let M ⊆ {1, . . . , n} be subset of indices such that inequality is not satisfied. Then

‖XK − C‖2F =
n∑
i=1

‖yi − ci‖22 ≥
∑
i∈M
‖yi − ci‖22 >

|M |τ2

4
.

Note that C has at most K distinct rows, so rank(C) ≤ K. Hence,

|||XK − C|||2 ≤ |||XK −X|||2 + |||X − C|||2 ≤ 2 |||X − C|||2 ,

by Eckart-Young-Mirsky. Since rank(XK −C) ≤ rank(XK) + rank(C) ≤ 2K (the left-hand rank is
the dimension of span{x′1 − c1, . . . , x

′
n − cn} ⊆ span{x′1, . . . , x′n, c1, . . . , cn}), we have

‖XK − C‖2F ≤ 2K |||XK − C|||22

(using the fact that ‖A‖F ≤
√

rank(A) |||A|||2—this can be proved easily by taking the SVD and
recalling that ‖ · ‖F and |||·|||2 are unitarily invariant). Hence,

|M |τ2

4
< ‖XK − C‖2F ≤ 8K |||X − C|||22 = 8Kσ2(C)n,

and we conclude that |M | < 32Kσ2(C)n
τ2

.
Suppose i, j /∈M . If xi and xj are in the same cluster in C, then

‖yi − yj‖2 ≤ ‖yi − ci‖2 + ‖ci − yj‖2 ≤ τ. (24)
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On the other hand, if xi and xj are in different clusters, we have

‖yi − yj‖2 ≥ ‖ci − cj‖2 − ‖ci − yi‖2 − ‖cj − yj‖2 ≥
5τ

2
− τ

2
− τ

2
=

3τ

2
. (25)

We will show that with probability at least 1 − 32Kσ(C)
3τ , the K row indices chosen in the

clustering step lie in M c. Indeed, if this were the case, the clusters C̃ = {C̃k}Kk=1 formed from
spectral clustering would (after a permutation) be such that

C̃k = (Ck\M) ∪Mk,

where Mk ⊆ M . This is because inequality (24) implies that everything in Ck\M must lie in C̃k
and inequality (25) implies that elements of Cj\M , for j 6= k, do not lie in C̃k. In particular, C̃ and
C would differ by at most

|M | < 32Kσ2(C)n

τ2

points, as desired. In order to compute the probability that all K selected row indices lie in M c,
we use a union bound. Let E be the event that all selected row indices lie in M c, and let Ek be
the event that the kth selected row index lies in M c. Then

P (Ec) = P (Ec1) + P (E1 ∩ Ec2) + · · ·+ P (E1 ∩ · · · ∩ EK−1 ∩ EcK).

Suppose we are at stage k and all previously selected vertices lay in M c. Then at least 6σ(C)Kn
τ −

32Kσ2(C)n
τ2

row indices would remain to be assigned (since at least one cluster would have been
untouched, but some vertices with indices in M might have already been assigned), of which at

most 32Kσ2(C)n
τ2

lie in M . Hence,

P (E1 ∩ · · · ∩ Ek−1 ∩ Eck) ≤
32Kσ2(C)n

τ2

6Kσ(C)n
τ − 32Kσ2(C)n

τ2

=
1

3τ
16σ(C) − 1

≤ 32σ(C)

3τ
,

assuming 32σ(C)
3τ ≤ 1. It follows that

P (Ec) ≤ 32Kσ(C)

3τ
,

as wanted.

Note: Other common clustering methods (e.g., k-means, k-medians, k-centers) have also been
proven to work when inter-cluster separation is sufficiently large relative to intra-cluster spread.
See Awasthi, Blum & Sheffet, “Center-based clustering under perturbation stability,” 2012, or
Ben-David, “Clustering is easy when . . . what?,” 2015.

4.7 Spectral clustering II: Graph Laplacians

Reference: von Luxburg, “A tutorial on spectral clustering,” 2007.

Setting: Weight matrix W ∈ Rn×n, where wij ≥ 0 measures similarity between data points xi
and xj in dataset of size n. Goal is to partition dataset into K nonoverlapping groups.
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4.7.1 Definitions

Let di =
∑n

j=1wij and D = diag(d1, . . . , dn).

• Unnormalized Laplacian: L = D −W

• Symmetric normalized Laplacian: Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

• Random walk normalized Laplacian: Lrw = D−1L = I −D−1W

(Note that D−1W is transition matrix of random walk. Can show that eigenvectors of Lrw cor-
respond to eigenvectors of Lsym left-multiplied by D−1/2, with same eigenvalues, so all eigenvec-
tors/eigenvalues are real: Lsymv = λv implies (I −D−1/2WD−1/2)v = λv, so

Lrw(D−1/2v) = (I −D−1W )(D−1/2v) = D−1/2(v −D−1/2WD−1/2v)

= λ(D−1/2v).)

4.7.2 Clustering algorithm

1. Form matrix L = f(W ) ∈ Rn×n.

2. Compute bottom K eigenvectors {ui}Ki=1 ⊆ Rn of L, and form matrix U ∈ Rn×K .

3. Perform distance-based clustering method on rows {yj}nj=1 of U to obtain clustering {Ci}Ki=1.
(In practice, for Lrw, first rescale rows of U to unit norm before clustering—see perturbation
theory justification.)

4. Output clusters {C̃i}Ki=1, with C̃i := {j : yj ∈ Ci}.

Note that eigenvectors of L and W agree when D is a multiple of I (e.g., d-regular, unweighted
graphs). Why do we want to cluster eigenvectors of transformed Laplacian matrices instead? We
will motivate these methods from the perspective of graph cuts in this lecture, and consistency in
Banach spaces in the next lecture.

4.7.3 Connection to graph cuts

Consider an undirected graph G = (V,E) with V = {1, . . . , n} and edge weight matrix W ∈ Rn×n.
For a partitioning {Ai}Ki=1 of {1, . . . , n}, define

cut(A1, . . . , AK) =
1

2

K∑
i=1

W (Ai, Āi),

where W (A,B) =
∑

i∈A,j∈B wij for disjoint sets A and B (sum of weights of edges across clusters).
Mincut problem is relatively easy to solve when K = 2 (e.g., Karger’s algorithm, Stoer-Wagner al-
gorithm). Although polynomial-time algorithms exist for any fixed K, they are not computationally
practical for large K. Other objectives of interest, leading to a more balanced cut:

RatioCut(A1, . . . , AK) =
K∑
i=1

cut(Ai, Āi)

|Ai|
,
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Ncut(A1, . . . , AK) =

K∑
i=1

cut(Ai, Āi)

vol(Ai)
,

where vol(A) =
∑

i∈A di =
∑

i∈A,j∈V wij . (Ncut stands for “normalized cut.”) With additional
weight terms, minimizing these objectives become NP-hard (Wagner & Wagner, “Between min cut
and graph bisection,” 1993). Spectral clustering corresponds to solving an appropriate relaxation:

• RatioCut =⇒ clustering with unnormalized Laplacian L

• Ncut =⇒ clustering with normalized Laplacian Lrw

RatioCut (case K = 2): Optimize

min
A⊆V

RatioCut(A, Ā).

For a fixed subset A, define the vector v ∈ Rn with entries

vi =

{√
|Ā|/|A|, if i ∈ A,
−
√
|A|/|Ā|, if i ∈ Ā.

Note that

vTLv = vTDv − vTWv =

n∑
i=1

div
2
i −

n∑
i,j=1

wijvivj

=
1

2

 n∑
i=1

div
2
i − 2

n∑
i,j=1

wijvivj +
n∑
j=1

djv
2
j


=

1

2

n∑
i,j=1

wij(vi − vj)2

=
1

2

n∑
i∈A,j∈Ā

wij

(√
|Ā|
|A|

+

√
|A|
|Ā|

)2

+
1

2

∑
i∈Ā,j∈A

wij

(
−

√
|A|
|Ā|
−

√
|Ā|
|A|

)2

=

(
|Ā|
|A|

+
|A|
|Ā|

+ 2

)
· cut(A, Ā)

=

(
|A|+ |Ā|
|A|

+
|A|+ |Ā|
|Ā|

)
· cut(A, Ā)

= n · RatioCut(A, Ā).

Furthermore, v satisfies

n∑
i=1

vi =
∑
i∈A

√
|Ā|
|A|
−
∑
i∈Ā

√
|A|
|Ā|

= |A|

√
|Ā|
|A|
− |Ā|

√
|A|
|Ā|

= 0,

and

‖v‖22 =
∑
i∈A

|Ā|
|A|

+
∑
i∈Ā

|A|
|Ā|

= n.
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This leads to the following relaxation:

min
v∈Rn

vTLv

s.t. vT 1 = 0, ‖v‖2 =
√
n. (26)

Also note that the smallest eigenvalue of L is 0, with corresponding eigenvector 1 (by the
computation above, we see that L � 0). Hence, although the optimization problem (26) is highly
nonconvex, solution corresponds to (rescaled) eigenvector with second smallest eigenvalue (the
constraint vT 1 = 0 imposes orthogonality to the first eigenvector). In order to obtain partition,
could define

A = {i : v̂i ≥ 0}.

Another method: Use k-means clustering on the rows of the matrix

U =
(

1
∣∣∣ v̂) ∈ Rn×2.

This is exactly the spectral clustering algorithm.

RatioCut (General K): For a partition {Ai}Ki=1 of V , define indicator vectors hj = (h1,j , . . . , hn,j)
T

such that

hi,j =

{
1/
√
|Aj |, if i ∈ Aj

0, otherwise.

Can check that HTH = I, where H ∈ Rn×K has columns {hj}Kj=1, and

(HTLH)ii = hTi Lhi =
∑
j,k

wjk(hij − hik)2 =
cut(Ai, Āi)

|Ai|
.

Hence,

RatioCut(A1, . . . , AK) =

K∑
i=1

(HTLH)ii = tr(HTLH).

Obtain relaxation

min
H∈Rn×K

tr(HTLH)

s.t. HTH = I. (27)

Can be shown (using the Rayleigh-Ritz Theorem) that this is exactly variational characterization
for finding bottom K eigenvectors of L, so solution is matrix U with eigenvectors in the columns.
Then perform k-means on rows of U to obtain partitioning.

4.7.4 Basics of spectral graph theory

References:

• Spielman, lecture notes on spectral graph theory.

• Chung, “Spectral graph theory,” 1997.
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Recall: Laplacian matrix of a weighted graph G = (V,E) is given by L = D −W .
For x ∈ Rn, we have

xTLx =
∑

(u,v)∈E

wu,v(xu − xv)2 ≥ 0,

where wu,v ≥ 0 (calculation done above). Eigenvalues are 0 = λ1 ≤ λ2 ≤ . . . . Furthermore, L1 = 0,
so the all 1’s vector has eigenvalue 0.

The following lemma relates the second smallest eigenvalue to graph connectivity:

Lemma 21. The second eigenvalue of L satisfies λ2 > 0 if and only if G is connected.

In fact, the lemma above generalizes: If λk = 0 and λk+1 6= 0, then G has exactly k connected
components.

We now consider the spectra of the following (unweighted) graphs:

(i) The complete graph Kn on n vertices. The Laplacian LKn has n − 1’s on the diagonal and
−1’s everywhere else.

(ii) The star graph Sn on n vertices, with edge set {(1, u) : 2 ≤ u ≤ n}. The Laplacian LSn has
n − 1 in the first entry, 1’s in all remaining diagonal entries, and -1’s in the first row and
column.

(iii) The path graph Pn on n vertices, with edge set {(u, u+ 1) : 1 ≤ u < n}. The Laplacian LPn is
tridiagonal, with 1’s in the first and last diagonal entries, 2’s in all remaining diagonal entries,
and -1’s in the off-diagonals.

(iv) The ring graph Rn on n vertices, which has all edges in common with Pn, as well as the edge
(1, n). The Laplacian LRn is equal to LPn , except all diagonal entries are 2 and LRn(1, n) =
LRn(n, 1) = −1.

In fact, the following series of lemmas characterize the full spectra:

Lemma 22. The graph Laplacian LKn has eigenvalue 0 with multiplicity 1, and eigenvalue n with
multiplicity n− 1.

Lemma 23. The graph Laplacian LSn has eigenvalue 0 with multiplicity 1, eigenvalue 1 with
multiplicity n− 2, and eigenvalue n with multiplicity 1.

Lemma 24. The graph Laplacian LPn has eigenvalues {2(1−cos(πk/n))}n−1
k=0 , each with multiplicity

1.

Lemma 25. The graph Laplacian LRn has eigenvalues {2(1− cos(2πk/n)}bn/2ck=0 . When n is even,
each eigenvalue has multiplicity 2, except the first and the last; when n is odd, each eigenvalue has
multiplicity 2, except eigenvalue 0.

The following lemma collects some additional statements concerning the spectra of (normalized)
graph Laplacians, which we state for unweighted graphs, for simplicity. The proofs are all fairly
straightforward (see Chung for details).

Lemma 26. Suppose G = (V,E) is an unweighted graph with |V | = n. Let 0 = ν1 ≤ ν2 ≤ · · · ≤ νn
denote the eigenvalues of the normalized graph Laplacian L′ = D−1/2LD1/2.
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(i) If G is not a complete graph, we have ν2 ≤ 1. If G is complete, then ν2 = n
n−1 .

(ii) We have νi ≤ 2 for all i, with νn = 2 if and only if a connected component of G is bipartite
and nontrivial.

(iii) Suppose n ≥ 2. If G has no isolated vertices, then

νn ≥
n

n− 1
.

Note: For the examples discussed in the previous subsection, we can show that:

• L′Kn has eigenvalues 0 (with multiplicity 1), and n
n−1 (with multiplicity n− 1).

• L′Sn has eigenvalues 0, 1 (with multiplicity n− 2), and 2.

• L′Pn has eigenvalues 1− cos
(
πk
n−1

)
for 0 ≤ k ≤ n− 1.

• L′Rn has eigenvalues 1− cos
(

2πk
n

)
for 0 ≤ k ≤

⌊
n
2

⌋
.

Can check that νn = 2 only for Sn, Pn, and Rn (in case when n is even). Other inequalities may
also be verified.

4.8 Stochastic block models

Model: We have a graph with n nodes and K communities. Let B ∈ RK×K be a symmetric
matrix of connection probabilities between communities (generally assumed to be unknown), and
let Z = (Z1, . . . , Zn)T ∈ {1, . . . ,K}n be a vector of community assignments. Then adjacency
matrix A ∈ Rn×n is generated using independent Bernoulli draws, where P (Aij = 1) = BZi,Zj .
Want to recover Z based on observing A.

We are interested in the provable performance of vanilla spectral clustering; in order to obtain
the sharpest recovery results, one needs to use more sophisticated techniques.

4.8.1 Spectral clustering

References:

• Lei & Rinaldo, “Consistency of spectral clustering in SBMs,” 2015.

• Rohe et al., “Spectral clustering and the high-dimensional SBM,” 2011. (The main difference
is that the expected node degrees are assumed to be linear in n, whereas the work of Lei &
Rinaldo can handle expected node degrees as small as Ω(log n).)

Theorem 27. Suppose spectral clustering with 10-approximate k-means produces a partitioning C̃.
Suppose the true partition C has all communities of size n

K , and assume pmax = maxi,j Bij satisfies

c1 log n

n
≤ pmax ≤

c2nλ
2
min(B)

K3
.

With probability at least 1− 1
n3 , the clustering C̃ differs from C in at most CK2pmax

λ2min(B)
points.

34



Interpretation: The quantity λmin(B) measures difference between edge probabilities for within-
community vs. between-community connections. Consider case when B = αnB0 and B0 = λIK +
(1− λ)1K1TK , so within-community connections have probability αn and between-community con-
nections have probability (1 − λ)αn. Also, λmin(B) = λαn since λmin(B0) = λ, and pmax = αn,

so CK2pmax

nλ2min(B)
= CK2

nλ2αn
, which converges to 0, say, when αn � logn

n . We see that a larger value of λ

(corresponding to larger separation between connection probabilities) thus implies a smaller error
rate guarantee.

In the condition of the theorem, note that npmax is the maximum expected node degree, and the
first inequality in the displayed condition is a statement about the minimum edge density, whereas
the second inequality can be viewed as an upper bound on the number of communities K. Recall
that the regime p ≥ c1 logn

n guarantees that Erdös-Renyi graph is connected a.s.

Proof of Theorem 27 (sketch). The main idea is to think of A as a perturbation of underlying
probability matrix P = E(A) ∈ Rn×n. The main idea is that the eigenvectors of P are well-
behaved, and matrix of top K eigenvectors has exactly K distinct rows. This is captured in the
following lemma:

Lemma 28. Suppose B is full-rank. Let V0D0V
T

0 = P be a spectral decomposition, where V0 ∈
Rn×K and D0 ∈ RK×K . Then V0 = ΘX (i.e., V0 has n rows, which are copies of the K rows
of X), where Θ ∈ Rn×K is the membership matrix of the communities, and X ∈ RK×K , with

‖Xi,: −Xj,:‖2 =
√

2K
n , for i 6= j.

In particular, V0 has K distinct (and well-separated) rows, so it makes sense to cluster them.
We omit the rest of the proof.

Remark: In fact, one might wonder why we cannot simply perform approximate k-means clus-
tering on the rows of A, since P can be exactly partitioned into K clusters. It can be shown that
‖A‖2F ≈ pn2 and ‖P‖2F ≤ n, so we have ‖A− P‖2F % n2. The proofs of the statements above show
that ‖U − V ‖2F - 1

n . In fact, although A is not exactly becoming “closer” to P as n → ∞, the
matrices of top-K eigenvectors are converging.

4.8.2 Optimization approach

Setting: For simplicity, suppose we have two communities with exactly n
2 nodes each, and B =(

a/n b/n
b/n a/n

)
.

Eigenvalues of P = E[A] are {a+b
n , a−bn , 0}, where 0 has multiplicity n− 2. Eigenvectors of first

two eigenvalues are (1, . . . , 1) and (1, . . . , 1,−1, . . . ,−1). Communities could be recovered by taking
the second eigenvector and assigning vertices to communities based on signs of components.

On the other hand, we observe A rather than P , so extracting the second eigenvector might
not give an integral solution. We would have to round, and need |a− b| to be sufficiently large in
order for this to work, w.h.p. Turns out that the following method works better:

Optimization problem:

max xTAx =
∑
i,j

Aijxixj
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s.t. xi = ±1, ∀i,∑
j

xj = 0.

However, this is very difficult to optimize. (Note that If we relax the condition xi = ±1 to a
condition such as ‖x‖22 = n, we extract the second eigenvector—that is computable in O(n2) time
using the power iteration method.)

Instead, using the fact that tr(AB) = tr(BA), we can write xTAx = tr(AxxT ), and denoting
X = xxT , we can rewrite the optimization problem as

max tr(AX)

s.t. Xii = 1,∀i,
rank(X) = 1,

X1 = 0.

In particular, the objective function is now linear in the lifted variable X. If we relax the constraint
rank(X) = 1, we arrive at the semidefinite program

max tr(AX)

s.t. Xii = 1, ∀i,
X � 0

X1 = 0,

which is convex.
For more details, including on conditions under which the second-eigenvector and SDP methods

succeed, see the survey by Abbe (2018).
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[21] Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptoti-
cally optimal confidence regions and tests for high-dimensional models. Annals of Statistics,
42(3):1166–1202, 2014.

[22] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using
`1-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory,
55(5):2183–2202, May 2009.

37



[23] W. Wang, M. J. Wainwright, and K. Ramchandran. Information-theoretic bounds on model
selection for Gaussian Markov random fields. In ISIT, pages 1373–1377, 2010.

[24] D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster computations for the
graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

[25] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

[26] Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional parameters
in high dimensional linear models. Journal of the Royal Statistical Society: Series B: Statistical
Methodology, pages 217–242, 2014.

[27] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541–2567, 2006.

38


	Introduction
	The Lasso
	Proof of Theorem 1
	Case study: Gaussians
	Proof of Theorem 2
	Extensions/generalization
	Alternative approach (noiseless case)

	Graphical models
	Gaussian graphical models
	Inverse covariance matrix and edge structure
	Edge recovery via matrix estimation
	Edge recovery via linear regression
	Statistical theory

	Ising models
	Logistic regression
	Statistical theory


	Spectral methods
	Linear algebra ``review"
	Eigenvalues and singular values
	Matrix decompositions

	Best-fit subspaces
	One-dimensional case
	Generalization
	PCA

	Computation of SVD/top eigenvectors
	Basic idea
	Faster method

	Best rank-k approximations
	Frobenius norm
	Spectral norm

	Johnson-Lindenstrauss Lemma
	Main result
	Proof of distributional lemma
	Johnson-Lindenstrauss applications
	Equivalences
	Generating RIP matrices

	Spectral clustering I: Data matrix
	Algorithm
	Some theory

	Spectral clustering II: Graph Laplacians
	Definitions
	Clustering algorithm
	Connection to graph cuts
	Basics of spectral graph theory

	Stochastic block models
	Spectral clustering
	Optimization approach



