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The first problem sheet contained several problems and if you want to continue working on those that is fine;
this sheet just contains a couple of simple questions to give you a chance to try some Markov chain-based
problems.

1. A warm-up which also appeared in the preliminary material; if you’ve never implemented something
like this before then this might be a useful preliminary step.

In a simplified model of the game of Monopoly, we consider the motion of the piece around a loop of 40
spaces. We can model this as a Markov chain with a state space consisting of the integers 0, . . . , 39
in which the transition kernel adds the result of two six-sided dice to the current state modulo 40 to
obtain the new state.

(a) Implement a piece of R code which simulates this Markov chain.

(b) Run the code for a large number of iterations, say 100, 000, and plot a histogram of the states
visited.

(c) Based on the output of the chain, would you conjecture that there is an invariant distribution for
this Markov chain? If so, what?

(d) Write the transition kernel down mathematically.

(e) Check whether the Markov kernel you have written down is invariant with respect to any distribution
conjectured in part (c).

2. An actual Gibbs Sampler.

Recall the Poisson changepoint model discussed in lectures, and on p21-22 of the supporting notes, and
think about the following closely related model: Observations y1, . . . , yn comprise a sequence of M iid
N (µ1, 1) random variables followed by a second sequence of n−M iid N (µ2, 1) random variables. M , µ1
and µ2 are unknown. The prior distribution over M is a discrete uniform distribution on {1, . . . , n− 1}
(there is at least one observation of each component). The prior distribution over µi (i = 1, 2) is
N
(
0, 102). The three parameters are treated as being a priori independent.

(a) Write down the joint density of y1, . . . , yn, µ1, µ2 and M , and obtain the posterior distribution of
µ1, µ2 and M , up to proportionality, in as simple a form as you can.

(b) Find the “full conditional” distributions of µ1, µ2 and M . (i.e. the conditional distributions of
each of these variables given all other variables).

(c) Implement a Gibbs sampler making use of these full conditional distributions in order to target
the posterior distribution identified in part (b).

(d) Simulate some data from the model for various parameter values and test your Gibbs sampler.
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(e) How might you extend this algorithm if instead of a changepoint model you had a mixture model
in which every observation is drawn from a mixture, i.e.:

Y1, . . . , Yn
iid∼ pN (·;µ1, 1) + (1− p)N (·;µ2, 1) .

(The likelihood is now
∏n

i=1[pN (yi;µ1, 1) + (1− p)N (yi;µ2, 1)], with p, µ1, and µ2 unknown (and
M is no longer a parameter of the model.)

Consider the following things:

(i) The prior distribution over p.

(ii) Any other variables you may need to introduce.

(iii) The resulting algorithm.

If you have time, implement the resulting algorithm and apply it to some simulated data.
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