
Post-Module Exercises

Part 4: Sequential Treatment and the g-formula

Consider the sequential treatment DAG G shown below.
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H

The variable H is unobserved, A and B represent treatments, and L and Y an intermediate
and final outcome respectively.

(a) Form the SWIG G[a, b].

(b) Using d-separation, show that A ⊥⊥ L(a) under distributions Markov with respect to
G[a, b]. Then, via consistency and the independence provide a formula to compute
P(L(a) = ℓ) using only P(A = a, L = ℓ).

(c) Show that Y (a, b) is d-separated from {A,B(a)} given L(a) in G[a, b].

(d) Use the fact proved in c) to find a simple identifying expression for P(Y (a, b) =
y | L(a) = ℓ) in terms of a conditional probability that can be computed from the
observed distribution P(A = a, L = ℓ,B = b,Y = y).

(e) Use your answers to b) and d) to derive an identifying expression for P(L(a) =
ℓ,Y (a, b) = y), and hence obtain one for P(Y (a, b) = y). [Hint: don’t overthink
this!]
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Part 4: Causal DAGs and multiple regression
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Assume the simplistic causal DAG above is correctly specified, where Y = (a measure
of) infant health, X1 = birth weight, X2 = maternal smoking during pregnancy, X3 =
maternal education, U = unmeasured genetic predisposition.
Further consider the following (linear) regressions and assume for simplicity these models
are correctly specified. Explain whether the coefficients of X1, X2, and/or X3 have an
interpretation as a causal effect, and if so state what type of effect it is.

(a) Regress Y on X1.

(b) Regress Y on X2.

(c) Regress Y on X3.

(d) Regress Y on X1 and X2 jointly.

(e) Regress Y on X1 and X3 jointly.

(f) Regress Y on X2 and X3 jointly.

(g) Regress Y on X1, X2 and X3 jointly.

(h) What other sensible analyses might you suggest?
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Part 5: Instrumental Variables

Consider the standard IV set-up with instrument G , exposure X , outcome Y , unobserved
confounder U , and assume that the IV conditions are satisfied.

(a) Assume all observable variables G ,X ,Y are binary.

(i) Use a SWIG to show that Y (x) ⊥⊥ G .

(ii) Show that E (Y (1)− Y (0)|X = 1,G = g) = ψ is equivalent to

E (Y |X = x ,G = g)− E (Y (0)|X = x ,G = g) = ψx .

(iii) Use (i) and (ii) to show that

ψ =
E (Y |G = 1)− E (Y |G = 0)

E (X |G = 1)− E (X |G = 0)
.

Trick: take expectation over X given G = g .

(b) Now, for continuous Y , assuming

E (Y |X = x ,U = u) = µY + βx + h(u),

show that

β =
Cov(Y ,G )

Cov(X ,G )
.

State clearly what IV assumptions you use.
Trick: define G̃ = G − E (G ) and work out E (Y G̃ ).

(c) Typical data, where IVs might be useful, are obtained from case-control studies:
this means that 50% of the observations were sampled from known ‘cases’ Y = 1
and the other 50% from known ‘controls’ Y = 0.

(i) Draw a DAG that includes a sampling indicator S to represent this situation.

(ii) Give arguments for or against the validity of IV-based inference regarding (I)
testing the null-hypothesis of no X → Y edge; (II) estimating the causal effect
of X on Y using G with a standard IV-method.
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