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1 Introduction

1.1 Resources

The material of this course comes from many different areas, but the following two are
most important if you are new to this topic:

(HDP) Vershynin, Roman. High-dimensional Probability: An Introduction with Applica-
tions in Data Science. Vol. 47. Cambridge University Press, 2018.

(HDS) Wainwright, Martin. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Vol. 48. Cambridge University Press, 2019.

Both books are excellent and worth reading thoroughly, regardless of your background
and future research interests. In the interest of time, you may want to read the first four
chapters of HDP carefully before the start of this course. If you do not have time for this
task, you may find the rest of this document, which was very nicely prepared by Rajen
Shah (Cambridge), to be helpful.

1.2 Notation

Here, we collect some matrix and vector notation we use in this preliminary material and
throughout the course.

Given A, B C {1,...,p}, and x € R?, we will write x4 for the sub-vector of x formed
from those components of x indexed by A. Similarly, we will write M 4 for the submatrix
of M formed from those columns of M indexed by A. Further, M4 g will be the submatrix
of M formed from columns and rows indexed by A and B respectively. For example,
X{12} = (m1,22)7, My 9y is the matrix formed from the first two columns of M, and
M1 2} (1,2} is the top left 2 x 2 submatrix of M.
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In addition, when used in subscripts, we will use —j and —jk to denote {1,...,p}\
{7} =4y} and {1,...,p} \ {J, k} = {J, k}° respectively. So for example, M_;; is the
submatrix of M that has columns j and k& removed.

The matrix and vector subsetting operations will always occur first, so e.g. MY =
(M4)T.

2 Norms

For a d-dimensional vector v € R?, its £,-norm, where p € [1,00) is defined to be

d 1/p
v, = (Z \vjlp) .
j=1

We also define the {o-norm [|v||o, = max; [v;]. We will primarily be interested in the cases
p=1,2 00. One can show that

(i) for a scalar t € R and v € RY, [|tv||, = |t]||v]],;
(ii) if ||v]|, = 0 then v = 0;
(i) for u,v € RY, [[u+v], < [Jul, + V],

Properties (i) and (ii) are rather clear from the definition, but showing (iii), which is
known as the triangle inequality, is more involved.

Exercise 2.1. Show that we also have what is sometimes known as the reverse triangle
inequality, that
u— vl = [[ull, = (vl

Holder’s inequality states that when p,q € [1,00] are such that p~' + ¢~! = 1, where
1/00 is understood to be 0,
Vil < vl ]uall,.

The case where p = ¢ = 2 is known as the Cauchy—Schwarz inequality.

Exercise 2.2. Show that ||u + v||3 = [Jull3 + 2u’v + ||v||3. Further show property (iii)
above for the fo-norm using the Cauchy—Schwarz inequality.

Exercise 2.3. Prove Holder’s inequality when p = 1, ¢ = oo i.e. show that

1afloc|[ Vil = maxu;| >l = ju"v].
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For v € R let us define

1 ifu>0
sgn(u) =40 fu=0
-1 ifu<0.

With a slight abuse of notation, for v € R? also define sgn(v) = (sgn(vy),...,sgn(vq))?.
Note that sgn(v)Tv = [|v]];.

Exercise 2.4. Show that ||v|; < V/d||v||; when v € R%

3 Matrix algebra

The course will assume you are already familiar with the APTS Statistical Computing
module and have a thorough understanding of linear algebra. We briefly review some key
elements of this here, as well as adding some more material that will be useful for our
developments.

Any symmetric matrix M € R™“ may be expressed in its eigendecomposition:

M = UDU”

where U € R%*¢ is an orthogonal matrix whose columns are eigenvectors of M (so UTU =
UU? = 1) and D is diagonal with Dy; > Dy > .-+ > Dy being the corresponding
eigenvalues of M. We say such an M is positive semi-definite if u” Mu > 0 for all u € R?.
It is positive definite if u’ Mu > 0 for all u # 0.

Exercise 3.1. Check that ||[Uvl||s = ||v]|2 for orthogonal U.

Exercise 3.2. Show that a symmetric matrix is positive definite if and only if all its
eigenvalues are positive. Argue that a positive definite matrix is invertible.

Exercise 3.3. Show that if A € R¥? then AT A is positive semi-definite.

The maximum and minimum eigenvalues, ¢yin (M), ¢max(M), of a symmetric matrix M
obey the following.

Crax(M) = sup | Mv |2, Cmin (M) = inf |IMv||5.

vER?:||v|a=1 VER®|v]]2=1



Indeed,
sup  |[|Mv|z= sup VvvIUD?UTv
veRd:||v]z=1 veRd:||v]z=1

= sup  vVuTD2u making the substitution u = Ulv

ueR:[uljy=1

d 1/2
= sup ( Z Déu?)

ueRk?:|ul=1 \ {2

1/2
< { sup ('maxd D?]||u||§)} by exercise

ueR?:||ull2=1 j=1

- Dll - Cmax(M)-

3ty

The inequality above is an equality when u has u; = 1, u; = 0 for all j > 1.

Exercise 3.4. Write out the argument for the corresponding result for the minimum eigen-
value. Show further that for any A C {1,...,d}, cmin(M) < cmin(Ma a) < Cmax(Maa) <
Crax (M).

The trace tr(M) of a square matrix is the sum of its diagonal entries:

d

tI‘(M) = Z ij.

If matrices A and B have dimensions such that AB and BA are valid matrix multiplica-
tions, then tr(AB) = tr(BA).

Exercise 3.5. Show that the trace of a symmetric matrix is the sum of its eigenvalues.

The singular value decomposition (SVD) is a generalisation of an eigendecomposition
of a square matrix. We can factorise any X € R™*? into its SVD

X = UDV7,

Here the U € R™"™ and V € RP*P are orthogonal matrices and D € R™*? has Dy; > Dqy >
«++ > Dy > 0 where m = min(n, p) and all other entries of D are zero. To compute such
a decomposition typically requires O(npmin(n, p)) operations. The rth columns of U and
V are known as the rth left and right singular vectors of X respectively, and D,, is the
rth singular value.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDV” where
U € R™? has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an analogous version for when p > n.



4 Multivariate calculus

Given a function f : R — R, we will denote the column vector of partial derivatives or
gradient vector by

of 9, [of of \"

0 (ﬁa_x) |
You may be more familiar with the alternative notation V f. Check that you are happy
with the following derivatives of common functions:

d(c™x)
x
o(x"Ax) T
o = (A+A")x.

It is straightforward (but slightly tedious) to show these results by e.g. expressing x? Ax =
Zi, i x;A;;x; and differentiating this with respect to x.

Exercise 4.1. Compute
9 a2
— 2
251818/
o 1Y —X23|5/2
3 2

Of course the chain rule then also gives, for example

T
—8(g(x Ax)) = ¢ (x"Ax)(A + AT)x.
0x
Exercise 4.2. Compute
918ll2
op

when 3 # 0.

5 Convexity

In recent years the fields of optimisation and statistics have grown much closer. Researchers
in many areas of statistics are now expected to have a good grasp of basic topics in convex
optimisation in particular. High-dimensional statistics is one such area, with convexity
playing a crucial role in the formulation of key methods such as the Lasso, which we will
study in detail in the course.

Here we review some basic facts about convex sets and functions, which will provide
a foundation for the more detailed treatment of convex analysis and optimisation in the
course.



A set A C R% is convex if
x,yeEA=(1-t)x+tyec A for all t € (0,1).
In words, given any two points in A, the line segment between them is contained in A.

Exercise 5.1. Show that the set of symmetric d x d positive definite matrices is a convex
subset of R,

A function f : R? — R is convez if

F(A=t)x+ty) <1 —t)f(x)+tf(y)

for all x,y € R? and t € (0,1). It is strictly conver if the inequality is strict for all
x,y €ERY x#yandte(0,1).

Exercise 5.2. Let fi,..., fm : R = R be convex functions. Show that if c1,..., ¢, > 0,
c1fi + - emfm is a convex function. Show furthermore that if one of the functions f; is
strictly convex, then the sum above is a strictly convex function.

Exercise 5.3. Suppose f : R? — R is convex and A € R™™, Show that ¢ : R™ — R
defined by ¢g(x) = f(Ax) is convex.

Exercise 5.4. Show that if a strictly convex function f has a minimiser, then it must be
unique.

Proposition 1. If f : R = R is conver and differentiable then
0f(x)

———= =0 implies that x minimises f.

ox
Proposition 2. If f : R — R is twice continuously differentiable then
(i) f is convex iff. its Hessian H(x) is positive semi-definite for all x € R,
(ii) f is strictly convex if H(x) is positive definite for all x € R,
Exercise 5.5. Explain why 3 — ||3||3 is strictly convex.

Exercise 5.6. Show that if

B = argmin {|ly — X85 + A 8I3}
BERP

then 8 = (XTX + A\I)~'X"y.



6 Basic tail bounds

Tail bounds are vital for the study of many modern statistical algorithms. Here we will
review the most basic of these. We begin our discussion with the simplest tail bound,
Markov’s inequality. This states that given a non-negative random variable W,

P(W >t) < E(tw).

It follows from taking expectations of both sides of the inequality t1y>yy < W. This
immediately implies that given a strictly increasing function ¢ : R — [0,00) and any
random variable W,

PW = 1) = P{o(W) = o(t)} < —E(ig/)),

provided ¢(t) > 0. Applying this with ¢(t) = e (a > 0) yields the so-called Chernoff
bound:
P(W >1t) < ér;% e RV

Consider the case when W ~ N(0,0?). Recall that the moment generating function

(mgf) of W is
Ee®V = ¢2*7°/2, (6.1)
Thus
P(W >t) < inf ¢ 7" /270t = ~°/(29%),
a>0

Note that to arrive at this bound, all we required was (an upper bound on) mgf of W .
This motivates the following definition.

Definition 1. We say a random variable W with mean p = E(W) is sub-Gaussian if there

exists o > 0 such that
Eea(W—u) < €a2a2/2

for all & € R. We then say that W is sub-Gaussian with parameter o.
The normal example above immediately gives the following result.

Proposition 3 (Sub-Gaussian tail bound). If W is sub-Gaussian with parameter o and
E(W) = u, then
P(W —p > t) < e /@7,
It is often helpful to have a tail bound on the maximum of a collection of random
variables. A simple union bound can be helpful in this regard. This states that given
events Q,...,Q,,

P(Unf) < P(Q).

Exercise 6.1. Show that if Wy, ..., W,, are all mean-zero sub-Gaussian random variables
with common parameter o, then

P(max |W;| < 240+/log(m)) < 2m~ (471,
J
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7 Linear regression

Imagine data are available in the form of observations (Y;,x;) € R x RP, i =1,...,n, and
the aim is to infer a simple regression function relating the average value of a response, Y;,
and a collection of predictors or variables, x;. This is an example of regression analysis,
one of the most important tasks in statistics.

A linear model for the data assumes that it is generated according to

Y = X3 +¢, (7.1)

where Y € R™ is the vector of responses; X € R"*? is the predictor matrix (or design

matrix) with ith row x; e € R™ represents random error; and 3° € R? is the unknown

vector of coefficients.
Provided p < n, a sensible way to estimate 3° is by ordinary least squares (OLS). This

- OL
yields an estimator 3  with

A% .= argmin Y — Xg|2 = (XTX) XY, (7.2)
BeRp

provided X has full column rank (i.e. the columns of X are linearly independent so Xz = 0
if and only if z = 0).
Exercise 7.1. Show that if X has full column rank then X”X is invertible.

Recall that for a random vector Z € RY and m € R* and A € R¥*4,

E(m+ AZ) =m+ AE(Z)

and
Var(m + AZ) = E[{m + AZ — E(m + AZ)}{m + AZ — E(m + AZ)}"]
=E{A(Z - EZ)(Z - EZ)" A"}
= AE{(Z —EZ)(Z - EZ)"} AT
= AVar(Z)A".
Exercise 7.2. Show that when E(e) = 0 and Var(e) = 0’I, we have Ego (BOLS) =3’

~ OLS
and Vargo (8 ) = o*(X"X)"1.

8 The multivariate normal distribution

You should already know what a univariate normal distribution is: the density is given by

1

2ro

f(zp,0%) = exp{—(z — p)*/(20%)}
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where 1 € R is the mean and o2 > 0 is the variance.

We say a random variable Z € R? has a d-variate normal distribution if for every t € R?,
t”Z has a univariate normal distribution. The multivariate normal distribution is uniquely
characterised by its mean and variance. Thus we can write Z ~ Ny(pu, X) when E(Z) = p
and Var(Z) = 3. As a further consequence, we have that for A, B C {1,...,d}, Z, is
independent of Zp if and only if Cov(Z4,Zp). When X is positive definite, the density of
Z is

- S S )
f(Z) - (27T)p/2det(2)1/2 eXp 2(Z ’J’) M .
Exercise 8.1. Show that affine transformations of a multivariate normal Z are also normal,

that is show that for any m € RF and A € R*4 m + AZ ~ Ny(m + Ap, ASAT) is
multivariate normal.

9 Normal conditionals

Definition 2. If X, Y and Z are random vectors with a joint density fxyz then we say
X is conditionally independent of Y given Z, and write

X UL Y|Z
if
fxviz(x,y|z) = fxz(x|2) fyz(y]2).
Here fx|z(x|z) for example is the conditional density of X given Z. Equivalently
X U Y|Z = fxjvz(x|y,z) = fxz(x|z).

Now let Z ~ N,(p, ) with 3 positive definite. Note X4 4 is also positive definite for
any A.

Proposition 4.
Za|Zp =25 ~ Na(pps+ 35525 — pp), Baa— Ba S5 535.4)

Proof. Let us write Zy, = MZp + (Z, — MZg) with matrix M € RI4XIBl such that
Z, — MZp and Zpg are independent, i.e. such that

Cov(Zp, Za — MZp) = Xp 4 — Xp M’ =0.

This occurs when we take M’ = Eg’lBEBA. Because Z, — MZpg and Zpg are indepen-
dent, the distribution of Z, — MZpg conditional on Zg = zg is equal to its unconditional
distribution. Now

E(Zy—MZp) = py — E/LBZ;?}BIJ'B
Var(Zy —MZp) = Sua + Za555 535555 5584 — 254855 5554
=24 — EA,BEE}BEB,A-

Since MZg is a function of Z g, conditional on Zg = zp, it equals Mzg. Then as Z,—MZpg
is normally distributed, we have the result. [
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