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SUMMARY

Publication bias is a major and intractable problem in meta analysis. There have been several attempts

in the literature to adapt methods to allow for such bias, but these are only possible if we are prepared

to make strong assumptions about the underlying selection mechanism. We discuss the assumption

that the probability that a paper is published may depend in some unspecified way on the P-value

being claimed by that study. We suggest a new robust P-value for the overall treatment effect which

turns out to be closely related to the correlation of the associated radial plot. Properties of the method

are discussed and illustrated on two examples. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The usual fixed effects model in meta analysis is that we have k independent research studies,

each of which gives an estimate θ̂i with

θ̂i ∼ N(θ, σ2
i ), i = 1, 2, · · · , k. (1)

Here, θ is the true treatment effect assumed common to all studies (the fixed effects

assumption), and σ2
i is the (assumed known) within-study variance for the ith study. Under

this simple model the maximum likelihood estimate of θ weights each study estimate inversely

to its variance, giving the fixed effects estimate

θ̃ =
∑

wiθ̂i∑
wi

, wi =
1
σ2

i

, V ar(θ̃) =
1∑
wi

. (2)

See Sutton et al. [1] for a good discussion of this and other methods of meta analysis.

In practice, evidence for a treatment effect is often measured in terms of a P-value. Assuming

that the treatment has no effect under H0 : θ = 0, and is beneficial if θ > 0, the one-sided

P-value from the ith study is

Pi = Φ{−σ−1
i θ̂i}, (3)

where Φ is the standard normal cumulative distribution function. Similarly, the P-value from

the meta analysis as a whole is

P = Φ{−(
∑

wi)
1
2 θ̃}. (4)

The radial plot [2] is a useful way of representing the data in a meta analysis. This plots the

points yi against xi where

yi =
θ̂i

σi
, xi =

1
σi

= w
1
2
i . (5)

In this notation, model (1) can be rewritten as

yi ∼ N(θxi, 1), (6)
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so yi has a linear regression on xi through the origin, with slope θ and residual variance equal

to one. The quantities in (2), (3) and (4) are now

θ̃ =
∑

xiyi∑
x2

i

, Pi = Φ{−yi}, P = Φ{−(
∑

x2
i )

1
2 θ̃}.

Thus the y coordinates are the study specific P-values plotted on a probit scale, the x

coordinates are the study precisions (one over the standard deviation), θ̃ is the slope of the

least squares regression of y on x through the origin, and P is the P-value for testing the

significance of this slope.

The simplicity of this model disguises the fact that in practice there are often major problems

which threaten its validity. Most intractable of these is publication bias, which recognizes that

a systematic review does not cover all relevant studies in the area of interest, but only those

which have been written up and published, or otherwise available to the reviewer. A reasonable

conjecture is that studies which report a significant treatment effect are more likely to be

published than studies where the results are inconclusive, which means that the studies in the

review will be biased. The P-value in (4) will be too small, exaggerating the real evidence for

a treatment effect.

The text edited by Rothstein et al. [3] gives an excellent review of the problem of publication

bias and the various approaches in the literature which have attempted to overcome it.

Prominent amongst these is the selection model approach, reviewed in the chapter by Hedges

and Vevea [4]. Here we envisage the population of all relevant studies which have been done

in the area of interest, only k of which are selected for the systematic review. If the selection

of studies depends on their P-values (and only on their P-values), as conjectured above, then

the probability that the ith study in the population is selected must be some function of Pi,
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or equivalently

P(ith study selected) = a(yi) (7)

for some function a(y). Of course the precise form of this function is unknown. The aim of this

paper is to suggest how (4) can be replaced by a robust P-value, robust in the sense that it

remains valid for all possible selection functions a(y).

2. ROBUST P-VALUES

2.1. A permutation P-value

If the selection of studies is made according to (7), then under H0 the values of yi for those

studies which are selected will take the form of a random sample from the distribution with

probability density function

f(y) =
a(y)φ(y)∫
a(y)φ(y)dy

,

where φ is the density of the standard normal distribution. A basic property of random samples

is that if we change the order of their values, their joint distribution remains exactly the same.

Hence, under H0, each member Y = (Y1, Y2, · · · , Yk) of the permutation set

S = {Y |Y is a permutation of y1, y2, · · · , yk} (8)

is equally likely. But each rearrangement of the order of the components of y1, y2, · · · , yk,

holding the observed values x1, x2, · · · , xk fixed, gives its own treatment estimate

θ̃(Y ) =
∑

Yixi∑
x2

i

.
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For a P-value we need the probability under H0 that θ̃ will be greater than or equal to that

observed. This gives the permutation P-value

P̃ = P{θ̃(Y ) ≥ θ̃(y)|H0, Y ∈ S} = P{
∑

αiYi ≥
∑

αiyi|H0, Y ∈ S}, (9)

where αi = xi − x̄.

Since the values of αi are known, (9) can be calculated directly by evaluating
∑

αiYi for

all k! permutations of the observed values of yi. The permutation P-value is the proportion of

these permutations for which
∑

αiYi equals or exceeds the value for the observed values yi. If

k is large this calculation will be prohibitive, but we can replace complete enumeration in the

obvious way by sampling random permutations of the yis. With a sufficiently large sample we

can estimate P̃ to arbitrarily high accuracy.

2.2. An approximate P-value

Provided the αis are not too extreme the distribution of
∑

αiYi will be approximately normal,

and so we can approximate P̃ in terms of the mean and variance of this linear sum. For

this we need the means, variances and covariances of the components of a randomly selected

permutation from (8). These follow using the methods of classical finite sampling theory, see

for instance Cochran [5].

Let Y be a randomly chosen element of S. Then for any fixed i, the ith element Yi is equally

likely to take any of the k values y1, y2, · · · , yk, and so

E(Yi) =
1
k

∑
a

ya = ȳ, V ar(Yi) =
1
k

∑
a

(ya − ȳ)2 = s2
y,

say. Similarly, for any fixed pair i, j (i 6= j), (Yi, Yj) is equally likely to be any of the k(k − 1)
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distinct (ordered) pairs (ya, yb). Thus

Cov(Yi, Yj) =
1

k(k − 1)

∑

a 6=b

(ya − ȳ)(yb − ȳ)

=
1

k(k − 1)

[
{
∑

a

(ya − ȳ)}2 −
∑

a

(ya − ȳ)2
]

= − s2
y

k − 1
.

Hence

E(
∑

αiYi) =
∑

αiE(Yi) =
∑

αiȳ = 0,

as
∑

αi = 0. Similarly

V ar(
∑

αiYi) =
∑

α2
i V ar(Yi) +

∑

i 6=j

αiαjCov(Yi, Yj) =
k2

k − 1
s2

ys2
x,

where

s2
x =

1
k

∑
α2

i =
1
k

∑
(xi − x̄)2.

The normal approximation for
∑

αiYi under H0 is therefore

∑
αiYi ∼ N

(
0,

k2s2
ys2

x

k − 1

)
.

This gives the P-value

P(
∑

αiYi ≥
∑

αiyi|H0, Y ∈ S) ' Φ

(
− (k − 1)

1
2

∑
αiyi

ksysx

)
.

Thus P̃ in (9) is approximated by

P̂ = Φ(−(k − 1)
1
2 r) (10)

where

r =
∑

(xi − x̄)(yi − ȳ)
ksxsy

.

The approximate robust test takes a very simple form: all we have to do is calculate the sample

correlation r of the points of the radial plot to give P̂ in (10).
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2.3. Least squares on the radial plot

Testing the size of the correlation r by P̂ is like the usual test of significance in linear regression.

If we have k observed pairs (xi, yi) from a standard linear regression model, significance of

the dependence of y on x is judged by referring the standardized regression coefficient (least

squares slope divided by its estimated standard error) to tk−2, the t-distribution on (k − 2)

degrees of freedom. This can be expressed in terms of the sample correlation r as

T =
(

(k − 2)r2

1− r2

) 1
2

∼ tk−2. (11)

This gives the (one-tailed) P-value

Preg = Fk−2

{
−

[
k − 2

(k − 1)(1− r2)

] 1
2

(k − 1)
1
2 r

}
, (12)

where Fk−2 is the cumulative distribution function of tk−2. If r is relatively large, both P̂ in

(10) and Preg in (12) are small. If r is sufficiently small for significance to be in doubt, the

term in square brackets in (12) will be close to one and so the two P-values will be similar.

More carefully, suppose that r is such that P̂ is just significant at (one-tailed) level α. Then

P̂ = Φ(−zα) and Preg = Fk−2

{
−

[
k − 2

k − 1− z2
α

] 1
2

zα

}
, (13)

where zα is the 100(1− α) standard normal percentage point. For realistic values of k and α,

the term in square brackets in (13) will be slightly bigger than one, offset by the fact that the

t-distribution has longer tails than the normal. In practice P̂ and Preg are very similar.

These P-values are testing for zero slope in the regression of y on x. If the standard fixed

effects model (6) is correct, then the intercept of this regression is also zero. This can also

be tested in the usual way, giving P-value PE , say. This is the P-value for the well-known

Egger test for publication bias (Egger et al. [6]). The argument behind the Egger test is that

if studies are selected in accordance with a selection function of the type (7), then the residual
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variation of y around θx in (6) will be biased by different amounts depending on the values of

x. This distortion will show up as an apparent non-zero intercept in the radial plot.

This suggests a simple interpretation of least squares on the radial plot and the two P-values

PE and Preg routinely calculated by regression software. The intercept P-value PE is testing

for the presence of publication bias. The regression P-value Preg is testing the treatment effect

allowing for the possible presence of publication bias. If we assume there is no publication

bias then we refit the regression line with the constraint that it passes through the origin, the

new (single) P-value now testing for the treatment effect as in standard meta analysis. If we

constrain this further to have residual variance equal to one, then we get the standard fixed

effect P-value P in (4).

3. THE PRICE OF ROBUSTNESS: LOSS OF POWER

The conventional inference about θ given by (2) makes a very strong assumption about

selection, which we call the randomization assumption: a(y) in (7) is a constant, not depending

on y. Relaxing this to the very much weaker assumption that selection merely depends on y

(with a(y) taking any form) inevitably leads to a loss of precision. There is no free lunch.

Under the fixed effects model, the usual test statistic for testing H0 is

T1 = θ̃(
∑

x2
i )

1
2 .

The test statistic corresponding to the approximate robust P-value P̂ in (10) is

T2 = r(k − 1)
1
2 .

These P-values are calculated on the assumption that T1 and T2 are standard normal under

H0. The power functions of the corresponding (one-tailed) level-α tests are the values when
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θ 6= 0 of the probabilities

A1 = P (T1 > zα) and A2 = P (T2 > zα).

Since T1 remains normal even if θ 6= 0, we have

A1 = P (T1 > zα) = Φ{−zα + θ(
∑

x2
i )

1
2 }. (14)

For the test based on r, we use standard linear regression theory as before, which shows that

the test statistic T in (11) is now distributed as t(k−2,ν), the non-central t-distribution on

(k − 2) degrees of freedom and non-centrality parameter

ν = θ{
∑

(xi − x̄)2} 1
2 . (15)

The power function for T2 is thus the non-central extension of (13), namely

A2 = P (T2 > zα) = F(k−2,−ν)

{
−

(
k − 2

k − 1− z2
α

) 1
2

zα

}
, (16)

where F(k−2,−ν) is now the cumulative distribution function of t(k−2,−ν). (The change of sign

of the non-centrality parameter reflects the fact that we are interested in the right tail rather

than the left tail of the distribution).

Let γ be the coefficient of variation of the observed xis, namely γ = sx/x̄. Then from (14)

and (15) we get

ν =
(

γ2

1 + γ2

) 1
2

{zα + Φ−1(A1)}. (17)

Substituting (17) into (16) gives the corresponding value of A2 as a function of A1.

The comparison between these two power functions is illustrated in Figure 1 which plots

A2 against A1 for k = 30 and several different values of γ. When γ is small the loss of power

is very substantial, reflecting the fact that the accuracy of the least squares slope in linear

regression depends on the spread of the x values. An extreme case is if all the studies have
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the same variance (γ = 0), when the regression slope is indeterminate despite the fact that θ̃,

the slope through the origin, may be quite accurately determined. If γ is large, which means

that the observed values of x are heavily skewed to the right (a majority of small studies with

a minority of much larger studies) the loss of power is much less. Plots for other values of k

show a very similar pattern. Loss of power improves slightly as k becomes larger, but the size

of γ remains the dominant factor.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

po
w

er
 o

f r
ob

us
t t

es
t

power of standard test

gamma=inf
gamma=2
gamma=1
gamma=0.5

Figure 1. Power of robust test against power of standard test
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4. ASSUMPTIONS ABOUT SELECTION

In common with all missing data problems, inference is impossible unless some assumptions

are made about the underlying selection mechanism, assumptions which are intrinsically

unverifiable. The proposed robust procedure is non-parametric in that it assumes nothing about

the function a(y) in (7), but modelling selection in terms of such a function is itself a strong

assumption. In reality, selection in meta analysis (writing up, publishing, being accessible to

the reviewer, satisfying the inclusion criteria for the systematic review) may depend on many

factors for which the available data can only act as proxy. In this sense, selection could depend

in some arbitrary way on both x and y. Unfortunately, even moderately flexible parametric

models for such joint dependence are almost impossible to fit.

Henmi et al. [7] generalize (7) to an arbitray function a(x, y) (or equivalently an arbitrary

function a(θ̂, σ)) and develop a non-parametric ”worst case” sensitivity analysis which controls

on the marginal proportion of papers that are selected. In a related series of papers (Copas [8];

Copas and Shi [9, 10]; Shi and Copas [11]) a parametric sensitivity analysis is developed in

which selection is modelled in terms of a latent propensity score which may be correlated

with study outcome. Again inference is only possible if we control on aspects of the marginal

selection process (marginal to study outcome but conditional on x). Other parametric

approaches, such as modelling selection as a step function in y, are reviewed in Hedges and

Vevea [4].

Because assumptions about selection in meta analysis can never be empirically verified,

no single analysis can be taken as definitive, but rather as part of a sensitivity analysis.

The sensitivity analysis can be implicit, by trying different assumptions about selection and

comparing results, or explicit, by controlling on sensitivity parameters such in the methods
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just reviewed. For example, we can compare the two P-values P in (4) and P̂ in (10). If γ,

the coefficient of variation of the xis, is reasonably large, P and P̂ can be similar, suggesting

that assumptions about selection are not critical. However, if γ is small, P̂ is usually much

larger (less significant) than P , indicating that assumptions about selection are then crucially

important. In some meta analysis problems, a significant treatment effect cannot be established

unless one asserts as a statement of belief that the randomization assumption is valid, i.e. that

the review is free of publication bias.

This discussion ignores the fact that the data do give us some information about selection.

If we assume that selection is given by (7), and observe a marked non-zero intercept in the

radial plot(or equivalently, clear asymmetry in the funnel plot), then we have evidence that a(y)

cannot be constant as required by the randomization assumption. The robust P-value P̂ would

then give a more appropriate indication of treatment effect than the naive (and misleading)

P-value P . However, considerable caution is needed if this argument is used in reverse, i.e. if

we are tempted to assume that a non-significant intercept of the radial means that there is no

publication bias and hence that P is valid. Several papers have pointed out that the power of

the Egger test (testing the intercept) for detecting publication bias can be disappointingly low

(for example Schwarzer et al. [12]). For realistic values of k, levels of selection (dependence

of a(y) on y) which are sufficiently strong to lead to substantial bias have only a moderate

chance of being detected from the radial (or funnel) plot.

5. RANDOM EFFECTS

Model (1) is based on the fixed effects assumption, that each study is estimating the same

underlying treatment effect θ. When there is heterogeneity between studies (or heterogeneity
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is suspected) the standard procedure is to fit the random effects model

θ̂i ∼ N(θ, σ2
i + τ2), (18)

where τ2 is the random effects variance. This model is fitted in exactly the same way as the

fixed effects model (when τ2 = 0) by replacing the weights wi in (2) by

wi =
1

σ2
i + τ2

. (19)

In practice τ2 is estimated from the data, usually using the method of DerSimonian and

Laird [13].

The corresponding redefinition of the radial plot coordinates replaces (5) by

yi =
θ̂i√

(σ2
i + τ2)

, xi =
1√

(σ2
i + τ2)

. (20)

The model (6) remains valid, as does the robust test proposed in Section 2. However, the

selection model (7) now has a different interpretation, since the values of yi are no longer a

simple transformation of the within-study P-values (3). If τ2 is small then selection on the

basis of the new yis is more or less equivalent to selection on the basis of the original yis. But

if τ2 is large the two rank orders of the studies implied by the two versions of the yis could be

quite different, and so we lose the original intuition behind (7).

6. EXAMPLES

6.1. Passive smoking

Hackshaw et al. [14] reviewed 37 epidemiological studies of the lung cancer risk of passive

smoking. The parameter being estimated is the log relative risk associated with prolonged

exposure of non-smokers to environmental tobacco smoke; see the cited paper for an extended
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discussion of these studies and potential sources of bias. Taking the data from Table 1 of

Hackshaw et al. [14] gives the radial plot in Figure 2. The residual sum of squares from the

line y = θ̃x is 48.0 on 36 degrees of freedom, suggesting that the fixed effect model being

assumed here is reasonable.

For these data, θ̃ = 0.184 with standard error 0.038, implying very strong evidence of

an increased risk. However, the intercept test (Egger test) gives PE = 0.021, raising doubts

about the selection of these studies and hence doubts about the validity of the conventional

analysis. To implement the robust procedure of Section 2.1, the histogram in Figure 3 shows

the distribution of
∑

αiYi for 10,000 random permutations of the yi’s, to be compared with

the observed value
∑

αiyi = 0.311. This gives P̃ = 0.495.

The similarity of Figure 3 to a normal distribution is striking. The correlation of the radial

plot is r = 0.0038 giving P̂ = 0.491, almost the same as P̃ . To this accuracy, this is exactly

the same as Preg, the P-value for significance of the least squares slope in (12). We see that

allowing for selection functions of the form (7) has completely destroyed the evidence in these

data. This is already evident in the radial plot (Figure 2): the regression through the origin

has a clear positive slope, but if the origin constraint is removed the evidence for an upwards

trend all but disappears.

This meta analysis has been extensively discussed in the literature, and several authors have

noted the sensitivity of the estimated relative risk to selection bias. Henmi et al. [7] suggest

how the usual P-value P can be extended to allow for selection of a given proportion of studies.

They maintain that if 70% or more of comparable studies are included, then the evidence for

risk can still be regarded as significant at the 5% level, but the evidence is no longer conclusive

if more than 30% of eligible studies are selected out. It is not surprising that making only the
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weaker assumption (7) also fails to give a significant result. Even if there were no selection

bias, the price for making the inference robust to (7) in this example would still be high, as

the coefficient of variation of the xis is only γ = 0.54 implying a power curve near the lowest

of those shown in Figure 1.

0 2 4 6 8 10

x

-2
-1

0
1

2
3

y

Figure 2. Radial plot of passive smoking studies

6.2. Intravenous streptokenase

The text on systematic reviews by Egger et al. [15] discusses a meta analysis of 22 clinical trials

on the effectiveness of intravenous streptokinese following myodardial infarction (the data are

on page 349). The radial plot for the mortality log-odds ratios observed in these studies is
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Figure 3. Permutation distribution of
P

(αiYi)

shown in Figure 4. Here the residual sum of squares from the line y = θ̃x is 31.5 on 21 degrees

of freedom, again suggesting that the fixed effects model is reasonable. But in this example

there is no evidence for selection bias, the least squares intercept is 0.117 with standard error

0.353, giving PE = 0.74.

The standard analysis gives θ̃ = −0.255 with standard error 0.033, very clear evidence for a

beneficial treatment effect. Simulating the random permutations in (9) gives

P̃ = 0.00027, again highly significant but less extreme than the conventional analysis (which

gives the unbelievably small P ≈ 10−14). We get the same conclusion from the normal

approximation in Section 2.2: the correlation in the radial plot is r = −0.737 giving

P̂ = 0.00037. For these data γ = 1.10, so referring to Figure 1 we see that there is still a loss

of power but not to the same extent as in the first example.
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Figure 4. Radial plot of streptokinase studies
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