
Monotonicity properties of the Monte Carlo EM algorithm

and connections with simulated likelihood

By OMIROS PAPASPILIOPOULOS AND GIORGOS SERMAIDIS

Department of Statistics, Warwick University, Coventry, CV4 7AL, U.K.

O.Papaspiliopoulos@warwick.ac.uk, G.Sermaidis@warwick.ac.uk

SUMMARY

In this note we show that the Monte Carlo EM algorithm, appropriately constructed

with importance re-weighting, monotonically increases a corresponding simulated likeli-

hood. This is result is formally proved but also intuitively explained by a formulation of

the problem using auxiliary variables.
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1. Introduction

A fairly general description of the incomplete data framework is as follows. Let Qθ be the

common probability distribution of a pair of processes (Y, X), assumed to be absolutely

continuous with respect to a dominating measure W with density

dQθ(Y,X) = π(Y,X | θ) dW(Y,X) .

Without loss of generality we will assume that W is a probability measure. Only Y is

observed, with corresponding marginal density

π(Y | θ) = E[π(Y, X | θ) | Y ] , (1)

where the expectation is taken with respect to dW(X | Y ) and (1) is a density with

respect to the marginal law dW(Y ). Y , X and (Y,X) are referred to as the observed,

missing and complete data respectively, and L(θ) := π(Y | θ) and π(Y, X | θ) as the

observed and complete likelihood respectively. The aim is to infer θ on the basis of the
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observed likelihood, the complication being that the latter is typically intractable due to

the expectation involved in (1).

A popular deterministic algorithm for finding the maximum likelihood estimator

and the observed information matrix is the Expectation-Maximization (EM) algorithm

(Dempster et al., 1977). For a current estimate θi−1, the E-step of the ith iteration of

the EM algorithm requires the computation of the following function of θ,

Q(θ, θi−1) = E[log π(Y, X | θ) | Y ] , (2)

where the expectation is taken with respect to dQθi−1(X | Y ). The M-step replaces

θi−1 with some θi, such that Q(θi, θi−1) > Q(θi−1, θi−1). Each iteration of the algorithm

increases the observed likelihood, L(θi) ≥ L(θi−1), thus under regularity conditions (Wu,

1983) the θis are guaranteed to converge to local maximizer of the likelihood. The EM

algorithm is a very useful tool when both the E- and M-step can be performed analyt-

ically, e.g. when the complete likelihood is in the regular exponential family. However,

in many applications, although the complete likelihood is explicit, it is not possible to

perform the E-step analytically. A variety of stochastic algorithms which involve simu-

lation from dQθ(X | Y ) have been developed for this case (see for example Jank, 2006,

for a recent review). We focus on the simulated likelihood (Geyer, 1994) and the Monte

Carlo EM algorithm (Wei & Tanner, 1990).

Let X1, . . . , XN be a stationary sequence with marginal law dW(X | Y ) and define

L(N)(θ) :=
N∑

j=1

π(Y, Xj | θ) , (3)

Q(N)(θ, θi−1) :=
N∑

j=1

log π(Y, Xj | θ) π(Y, Xj | θi−1)
/

L(N)(θi−1) . (4)

Notice that L(N)(θ)/N is an unbiased estimator of (1), thus it forms a simulated like-

lihood in the sense of Geyer (1994). Additionally, (4) is an unbiased estimator of (2)

thus it defines a Monte Carlo EM algorithm, where samples from dQθi−1(X | Y ) are ob-

tained by importance sampling with proposals from dW(X | Y ). The maximizer of (3)

under certain conditions (Geyer, 1994; Beskos et al., 2007) converges to the maximum
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likelihood estimator as N → ∞. The Monte Carlo EM algorithm does not anymore

monotonically increase the likelihood due to the extra randomness introduced by the

simulations in the E-step. As a result it is necessary to increase appropriately N with

the iterations to achieve convergence (Chan & Ledolter, 1995; Fort & Moulines, 2003).

Additionally, it is hard to devise stopping rules for the algorithm, because of its random

oscillations once it reaches a high likelihood region. McCulloch (1997) compares the two

methods empirically in the context of generalised linear mixed models and advocates a

combination of both as a good strategy.

Notice that we have used importance re-weighting to construct the Monte Carlo E-

step. This has been considered before, see in particular Quintana et al. (1999); Levine

& Casella (2001) for computational reasons when Markov chain Monte Carlo is used to

produce the Xjs, since the same draws can be used for multiple iterations. Our main

result contained in Theorem 1 states that if the Xjs are fixed throughout the iterations

of the Monte Carlo EM algorithm, then L(N)(θi) ≥ L(N)(θi−1). Thus, this Monte Carlo

EM monotonically increases the corresponding simulated likelihood. We obtain a similar

result for monotonic increase of the likelihood ratio L(N)(θ)/L(N)(θ0) when we choose

W = Qθ0 for some fixed θ0.

2. The main result

Theorem 1. Let X1, . . . , XN be a stationary sequence with marginal law dW(X | Y ),

and L(N) and Q(N) defined as in (3) and (4) respectively. We assume that the Xjs are

kept fixed throughout the iterations of the Monte Carlo EM algorithm. Then, for any pair

(θi−1, θi) such that Q(N)(θi, θi−1) > Q(N)(θi−1, θi−1) it holds that L(N)(θi) > L(N)(θi−1).

Proof. Let

wj(θ) := π(Y, Xj | θ) , πj(θ) = wj(θ)/
N∑

j=1

wj(θ) .

Then, a direct calculation gives

Q(N)(θ, θi−1) =
N∑

j=1

log πj(θ)πj(θi−1) + log L(N)(θ) .
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Then, any pair (θi−1, θi) such that Q(N)(θi, θi−1) > Q(N)(θi−1, θi−1) implies that

N∑

j=1

log
πj(θi)

πj(θi−1)
πj(θi−1) > log

L(N)(θi−1)
L(N)(θi)

,

which by Jensen’s inequality proves the result.

We have two observations on this main result. Firstly, a similar argument can be

employed when W = Qθ0 for some fixed θ0, to yield that the Monte Carlo EM increases

monotonically the Monte Carlo likelihood ratio L(N)(θ)/L(N)(θ0). Secondly, there is an

alternative way to prove and motivate this monotonicity property. One can view the

simulated likelihood L(N)(θ)/N as a marginal of the following “complete” likelihood

π(Y, X1, . . . , XN , J = j | θ) =
1
N

π(Y, Xj | θ) , (5)

where this density is with respect to the product of the counting measure on {1, . . . , N},
dW(Y ) and (dW(X | Y ))N . A direct calculation verifies that (5) indeed defines a

probability measure (this is particularly easy to check if one assumes that both Qθ andW

have densities with respect to another dominating measure, say the Lebesgue measure).

In this formulation, J can be treated as missing data, whereas Y and X1, . . . , XN as

observed data. Then, one can check that up to a constant (4) is the corresponding Q

function of an ordinary EM algorithm for finding the maximizer of (5).

Acknowledgements

The second author would like to thank the Greek State Scholarship Foundation (IKY)

for financial support.

References

Beskos, A., Papaspiliopoulos, O. & Roberts, G. O. (2007). Monte Carlo max-

imum likelihood estimation for discretely observed diffusion processes. Ann. Statist.

To appear.

Chan, K. S. & Ledolter, J. (1995). Monte Carlo EM estimation for time series models

involving counts. J. Amer. Statist. Assoc. 90 242–252.

4

CRiSM Paper No. 07-24, www.warwick.ac.uk/go/crism



Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38. With

discussion.

Fort, G. & Moulines, E. (2003). Convergence of the Monte Carlo expectation maxi-

mization for curved exponential families. Ann. Statist. 31 1220–1259.

Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood calcula-

tions. J. Roy. Statist. Soc. Ser. B 56 261–274.

Jank, W. (2006). The EM algorithm, its stochastic implementation and global

optimization: Some challenges and opportunities for OR. Available from

http://www.smith.umd.edu/faculty/wjank/GA-EM-SaulGass.pdf.

Levine, R. A. & Casella, G. (2001). Implementations of the Monte Carlo EM algo-

rithm. J. Comput. Graph. Statist. 10 422–439.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed

models. J. Amer. Statist. Assoc. 92 162–170.

Quintana, F., Liu, J. & del Pino, G. (1999). Monte Carlo EM with importance

reweighting and its applications in random effects models. Computational Statistics &

Data Analysis 29 429–444.

Wei, G. C. G. & Tanner, M. A. (1990). A Monte Carlo implementation of the EM

algorithm and the poor man’s data augmentation algorithms. J. Amer. Statist. Assoc.

85 699–704.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Ann. Statist.

11 95–103.

5

CRiSM Paper No. 07-24, www.warwick.ac.uk/go/crism


