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Abstract

This paper introduces a new class of time-varying, meaaheed stochastic processes
for Bayesian nonparametric inference. The class of priersetplizes the normalized ran-
dom measure (Kingman 1975) construction for static problefie unnormalized measure
on any measureable set follows an Ornstein-Uhlenbeck gsoge described by Barndorff-
Nielsen and Shephard (2001). Some properties of the naadhineasure are investigated.
A particle filter and MCMC schemes are described for infeeerithe methods are applied
to an example in the modelling of financial data.

1 Introduction

Bayesian nonparametric models based on Dirichlet procedsings have been popular for
clustering and density estimation problems. Miuller andn€@una (2004) give a comprehen-
sive review of these ideas. The model assumes that theydata , y,, are an i.i.d. sample
from a distribution with density’ which can be expressed #8y) = [ k(y|0) dG(0) where
k(y|@) is a continuous density function, which will be referred gaakernel. A prior]l,
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will be placed onG that allows a wide support fof. The model can also be represented
hierarchically

yi ~ k(yil0;)
0; ~ F
F ~ 11

A popular choice fodI is the Dirichlet process (Ferguson, 1973). There has riscbaen
some criticism of the Dirichlet process specification aridrahtives have been proposed in-
cluding: Normalised Inverse Gaussian (NIG) processe®i(kij al 2005), Normalised Gen-
eralized Gamma Process (Lijet al 2006), and Stick-Breaking Priors (Ishwaran and James
2001, 2003).

Suppose that we know theth observationy;, is made at time;. The extension of this
nonparametric mixture model to these data has been an aregeoft interest. A natural
extension to the nonparametric model assumesfthat), the distribution ofy at timet, can
be expressed a¥y|t) = [ k(y|0) dG:(6). The prior specification is completed by defining
a prior distribution forG; over a suitable range of values ©f If the observations arrive in
discrete time then a prior can be defined by the recursion

Gir1 = wGr + (1 — wy)e (1)

wheree; is a realisation of a random discrete distribution amdis a random variable in
the interval(0,1). Pennell and Dunson (2006) consider a time-invarianand a Dirichlet
process with time-invariant parameters éarGriffin and Steel (2006a) consider constructing
a process whereq, ws, ws, ... arei.i.d. Beta(1)/) random variables and is a distribution
concentrated on a single point drawn from some distribufionThe dependence structure
can be modelled by subordinating this process to a Poissmegs with intensity\, . This
construction ensures thatdf; follows a Dirichlet process then so will; ;. An alternative
approach is considered by Zktial (2005) who specify the predictive distribution @f 1,
observed at time,,;.1, which is proportional to

n
> exp{—Altnt1 — i)}y, + MH
=1
whered,, is the Dirac measure that places mass k@md)\ and M are positive parameters,
that will control the marginal process and the dependent&dan distributions at different
times. The form generalizes the famous Polya urn schenreseptation of the Dirichlet
process (Blackwell and MacQueen 1974).
This paper develops an alternative approach which guaargiationarity of the finite
distribution of the measure-valued process using the @ms&thlenbeck (OU) processes
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with non-Gaussian marginal distributions developed bynBarff-Nielsen and Shephard (2001),
which will henceforth be referred to as BNS, for financial rellidg. This implies that the
marginal process at any time is known, which gives sometiotuiabout the behaviour of
the process and allows separate elicitation of parameiethd marginal process and the de-
pendence structure. The construction mimics the apprdachuwet al (2005) by defining an
exponential decay for a process proportionalrio The process is defined in continuous time
but in discrete time it will have a structure like (1) whefaisually has an infinite number of
atoms. Markov chain Monte Carlo and particle filtering meldhare proposed for posteriors
simulation which involve a truncation of the random procd&3isichlet process marginals are
an interesting exception and arise from a process with aenment that has a finite number
of atoms. Consequently, MCMC and particle filtering methfmighis class can be defined
without truncation. The paper is organized in the followwwgy: Section 2 reviews the
Normalized Random Measures (NRM) class of priors and thetoaction of OU processes
with specified marginal distributions, Section 3 uses thésas to construct measure valued
processes whose marginal process follow specific NRMsjdedtdescribes both Markov
chain Monte Carlo and patrticle filtering methods for infaxenSection 5 applies these meth-
ods to financial time series, and Section 6 dicusses theefaewelopment of these types of
processes.

2 Background

2.1 Normalized random measures

Normalized random measures (NRMs) have played an imparéain Bayesian nonpara-
metrics since the Dirichlet process was introduced as a aliwed Gamma process by Fer-
guson (1973). The idea was generalized by Kingman (1975) takes a Poisson process
on (0,00) sayJ; > Jo > J3 > ... such that) >, J; is finite and defines probabili-
tiesp; = Z‘éﬁ A random probability measure can be defined®y:= >3, Z‘éﬁ%
wherefy, 05,605, . .. are independently drawn from some distributién This guarantees that
E[G(B)] = H(B). It will useful to consider the unnormalized measte = >, J;dy,.

If the support ofH is S thenG = GG—(S) The class was extended by Regazeinal (2003)

to increasing additive processes in one-dimension andiedat al (2005) to multivariate
processes. The construction of Jaraeal (2005) re-expresses Kingman (1975) approach by
defining a Poisson process with intensity/, #) on (0, o) x S whereS is the support of{.
Jameset al (2005) refer to an NRM aBomogeneous the intensity function has the form,
v(J,0) = W+ (J)h(0) whereh is differentiable. This paper will concentrate on this hemo
geneous case and define this process to be NRNM H). In this paper, the construction
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will be extended to a third dimension, time, using a repregem of the BNS OU process.

2.2 The Gamma OU process

This section describes the development of OU processesgiitih non-Gaussian marginal
distribution and draws heavily on the material in BNS. Siggpthatz(¢) is a Lévy process
(e.g.Sato, 1999 or Bertoin, 1996) which has dynamics governetidystochastic Differen-
tial Equation

dZ(t) = —AZ(t) + dp(At)

whereg(t) is called the background driving Lévy process (BDLP). BM8w that the Lévy
densityu of Z(t) is linked to Lévy densityw of ¢(t) by the following relationship

w(r) = —u(x) — zu'(2)

which implies that the tail integral functio * (x) has the form

This will be an important function for the definition of OUgg processes with specified
NRM marginal processes.

Example 1. Gamma

Suppose thaf (t) ~ Ga(v, o) with density%z)a:”—l exp{—ax} then

W (z) = vexp{—az}.

Example 2: Inverse Gaussian
Suppose thaZ(t) follows an Inverse Gaussian distribution which has density

\/(;_71 exp{dv}z 3% exp {—%(5%_1 + 7233)}
then

y 1
Wt(x) = Ew /2 exp {—57%}.

Ferguson and Klass (1972) describe how a Lévy process carpoessed as a transfor-
mation of a Poisson process. First we write the process as

Z(t) = exp{—=At}Z(0) +/0 exp{—A(t — s) }du(As). 2

4
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The stochastic integral can be expressed using the FergusbKlass (1972) method as

/0 F(s) du(s) < ;w—l (%) )

wherea; andr; are two independent sequences of random variables with ihdependent
copies of a uniform random variabteon [0,t], a1 < a2 < --- < a; < ... as the arrival
times of a Poisson process with intensity 1 alid ! is the inverse of the tail mass function
W (z). This representation suggest an alternative interpostati terms of a jump sizes
J; = W=t ($) and an arrival times;. Let (J,7) be a Poisson process ¢i, o) x [0, ]
with intensity AW/ *(.J) then

Il

/0 F(s)du(rs) £ 57 Jif (7).
=1

This can clearly be extended to

o0

[ a0 £ 31 < 03 ()
-0 i=1

where(J, 7) be a Poisson process ¢ co) x (—oo, 0o) with intensity \W ().

Example 1: Gamma (continued)
Usually the inverse tail mass functidi’ —! will not be available analytically. However, if
the process has a marginal Gamma distribution with parasetenda then

o 23

t oo
d 1 a;
“As}du(rs) L3 e (8 o
/Oexp{ s}du(\s) 2 maX{O, - log (Aw)}eXP{ Ti}

We are interested in Gamma distribution with shape 1 so waearite the expression in
the following way

[e.e]

/0 exp{—As} du(\s) 4 Z[— log a;] exp{—A7;}

i=1

whereq; is a Poisson process with intensity.
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3 The OUNRM processes

The Ferguson and Klass (1972) representation of the BNS &y process and James
al (2005)'s representation of the NRM process are both expdetssough functions of Pois-
son processes. The OUNRM process combines these two idgaseta Poisson process-
based definition. For any NRM process, the distribution efuhnormalized measuce on
any measureable sBthas a known form. If we define a time-varying unnormalized snea
G7, then its marginal distribution on a measureableBetan be fixed over time using the
BNS OU process. This leads to the following definition.

Definition 1 Let(r, J, #) be a Poisson process d@x R* x S which has intensith\IW* (J)h
and define

I(1; < t)exp{=A(t — ) }J;
Z Efol I(1; < t)exp{—=A(t — )} J; %,

then{G}}+cr follows anOUNRM processwhich will be writtenOUNRM(W *(z), H, \)

Theorem 1 If {G} }cr follows anOUNRM(W *(z), H, \) process thei, follows anNRM(W *(z), H)
for all t.

The process can be defined in the form of equation (1) as a raigf=; and an innova-
tion ¢; where

exp{—A}G7_{(S)

exp{-A}Gr_(S)+ X It —1 <7 <t)exp{—A(m —t+1)}J; ®)

wy =

whereG*(t — 1) = 372, I(1; < t — 1) exp{—A(t — 1 — 7;)J; } which by construction will
have the distribution of the unnormalized measur&and
Ylt—1<7 <t)exp{—=A(r; —t+1)}dg, Ji
SIt—1<7m<t)exp{-Arm —t+1)}J;
The weightw, will, in general, be correlated witli'; ande; 1. An important exception
is the process with a marginal Dirichlet process, which Wwél developed in the follow-
ing subsection. The recursion leads to the following Marktructure forG:y |Gy =
E[w] Gi] Gt + E[(1 — w;)et|Gy]. The process is mean-reverting for all measureable sets.
This recursion for the unknown probability distributionturally extends to expectations of
functionals of the unknown distribution. Lef[e(X)] = [ a(X) dG.(X). If this expectation
exists then

(4)

€ =

Eva[a(X)] Efa(X)] £ Efw]Ea(X)] + (1 — Elw])u

wherey is the expectation af(X') with respect to the centring distributidi.
A useful summary of the dependence is given by the autoedizal function of the
measure on a sdB, which was suggested by Mallick and Walker (1997). In genéma

6
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autocorrelation can be calculated directly from equat®nafnd (4) combined with the sta-
tionarity of the process. The autocorrelation functiorl décay like an exponential function
asymptotically but at a slower rate for small The effect will be observed in plots for the
Dirichlet process marginal case.

Result 1

The autocorrelation decays likep{—\t} if E [ G} 3)} exists. Otherwise the autocorrelation
t

will decay at a slower rate.

3.1 The OUDP process

The OUDP is an important subclass of these processes foreasons: firstly, the Dirichlet
process has been the most extensively applied example oR&h &hd secondlyG(S) is
independent o7 (B) for all B, which leads to some simplified expressions for summaries
of the process. The Dirichlet process (Ferguson, 1973)finettby normalising a Gamma
process with mass parametéf H and will be written DRM, H). The parameted/ is

usually considered a precision parameter sin€efibllows a DRM, H) then ValG(B)) =
H(B)(1-H(B))

M1 :
Definition 2 Let(r, J, #) be a Poisson process @x R xS which has intensitW/ \ exp{—J }h

and define

TZ <t)exp{—=A(t — 1) }J;
Z Z I(7; <t)exp{—A(t — )} J; %

then{G, }.cr follows anOUDP processvhich we will writeOUDP(M, H, \)

Corollary 1 If {G;}+er follows anOUDP(M, H, \) then G, follows a Dirichlet process
with mass parametet/ H for all ¢.

It follows from the independence 6},(B) andGj(S) that

t+k—1

Cov(Gy, Gyyx) =E { 11 wj] Var(Gy).
j=t
The stationarity ofG; implies that if the marginal process follows a Dirichlet pegs then
the autocorrelation is
c exp{—Mk}Gi (S)
exp{—Ak}G;(S) + > I(1; < k) exp{—A7;}J;
The autocorrelation function for various choicesdf and A are shown as the solid line
in Figure 1. The parametex has the largest effect on the autocorrelation and lakgare

Corr(Gy, Geyg) =

7
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M=1
M=14
M =16

A=0.5

A=0.125

A=0.25

Figure 1: The autocorrelation function of the OUDP for vasoalues of\/ and\ (solid line)

with the approximation of result 2 (dashed line)

associated with more quickly decaying autocorrelationcfioms. For a fixed\, smaller
values ofM lead to a more slowly decaying autocorrelation function emfact if M < 1
then result 1 shows that the autocorrelation will decay attaexponential rate. 1M > 1,
then CortG,, Giir,) — i exp{—Ak} ask — oo. It is useful in these case to have an
approximation of the autocorrelation function, which caderived using the delta method,
o2
Corr(Gyt, Gyyg) =~ exp{—Xk} |1+ ?(1 — exp{—X\k})

wherey = E[G*(S)] ando? = V[G*(S)].

The actual autocorrelation and the approximate auto@tioel are shown in figure 1. If
o2 is small relative tg:?, which happens in the Dirichlet process s — oo, the approx-
imate autocorrelation becomes increasingly like an expiaslefunction (in other words it
inherits the dependence in the unnormalized random meamudat has a much slower rate
of decay when the ratio is large, which is illustrated by tases with small/. A second as-
pect of the dependence is captured through the moments ohim®wn distribution. In this
case we can show the moments themselves follow the sameftyppecess as the measures
on a setB.

Figures 2 and 3 show the effect afand M on the dependence structure and variability
of G¢((0,0.5)) and the mean of distribution when the Dirichlet process r#reel over a
uniform distribution. Large values of/ leads to smaller variability and large values)of
lead to quicker mean reversion of the process.

8
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A =0.125 A=0.25 A=0.5 A=1 A=2

s A

Figure 2: The dynamics af;((0,0.5)) of the OUDP for various values af/ and A when the
centring distribution is uniform of0, 1).

A=0.125 A=0.25 A=0.5 A=1 A=2

Figure 3: The dynamics of the mean of the OUDP for variouse&lof A/ and A when the
centring distribution is uniform of0, 1).

3.2 Other marginal processes

We can define dynamic versions of other NRMs that have bessdinted into the literature.
The Pitman-Yor process can be represented as a normaliaeld $tocess with Lévy density
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br~'~%exp{—2} (Pitman and Yor, 1997)
Wt (z) = bz~ %exp{—x}.
The Pitman-Yor process can be generalized to an OUPY process

Definition 3 Let(r, J, #) be a Poisson process @R xS which has intensit)\E~% exp{—E}h
and define

TZ <t)exp{—=A(t — 1) }J;
Z Z I(; <t)exp{—A(t — )} J; %,

then{G} }+cr follows anOUPY processvhich we will writeOUPY(a, b, H, \)

Similarly, the Normalized Inverse Gaussian process candmerglized to an OUNIG
process.

Definition 4 Let (7, .J,0) be a marked Poisson process Bnx R* x S which has intensity
\/%J—W)\ exp{—37?E}h and define

I(1; < t)exp{=A(t — ) }J;
Z < 32 I(mi < ) exp{=A(t — ) }; %;

then{G} }+cr follows anOUNIG procesavhich we will writeOUNIG(4, ~y, H, \)

4 Computational methods

This section describes computational methods for fittingeeachical mixture model where
we observe a sampig, o, ..., y, attimes) = t; <ty < --- < t, = T respectively. Itis
assumed that

Yyi ~ k (yil0i, ¢)
0; ~ Fy,
{F;} ~ OUNRM(W ™ (x), H, \)

The model can be written in an alternative way by introdudatgnt variablesy, ss, ..., s,
that link the observations to the elements of the Poissooegsorepresentation

- I(1; < t;) exp{=\(t; — ;) }J;}
p(si=j) = S I(7j < ti)exp{—A(t; — 75)}J;}

and(r, J, 0) follow the appropriate Poisson process.

10
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4.1 MCMC sampler

The model can be fitted using the Gibbs sampler. Methods fimgithe OU model in
stochastic volatility models have been described by Relmral (2004) and Griffin and
Steel (2006b) for the Gamma marginal distribution. Extensito Generalized Inverse Gaussian
marginal distributions are described in Gander and Step(006). A major problem with
these models are the dependence of the timing of the Léwepsoorm\ which also controls
the rate of decay of the jumps. This is a particular probleremiipdating the mean of the
underlying Poisson process conditional on the number opgiand mixing can usually be
improved by jointly updating the Poisson process of jumpth whe parameters controlling
the mean number of jumps. In the OUDP process, for exampeg ik usually a high corre-
lation betweenV/ and\ and it is useful to reparameterize¢o= M A and\. The OUNRM
process can be separated into two parts: the initial digtab G with weight~ and the

subsequent jumps. Indicator variablgsrs, .. ., r, are introduced that indicate whether an
observation is drawn frond7y or from the subsequent jumps. A second set of indicators
s1,--.,8y liNk an observation to a jump (if; = 1) or the distinct values ofzy (if ; = 0).

Let K be the number of distinct elements @f which have had observations allocated to
them and let. be the number of jumps between 0 @hidLet §; be the distinct values a.

Let J; be the values of the jumps and gt be the value of the distinct value for that jump.

I will concentrate on the OUDP case although the methods easinbply extended to other
OUNRM processes. For example, updating parameters cathéet>, could be imple-
mented using the methodology of Jane¢sl (2005). In general, the number of subsequent
jumps will be almost surely infinite in any region and a methardruncation is described in
Gander and Stephens (2006). Finally, the exposition islelyy defining the quantity

L
D, = eXp{—)\ti}’}/k + Z I(Tm < tz') eXp{—)\(tz’ - Tm)}Jm

m=1

4.1.1 Updatingr and s

The full conditional distriution of the latent variablé¢s;, ;) is a discrete distribution with
the following probabilities

p(ri=0,8 =j) x k(yi\Hj)exp{—/\ti}ny]n*, 1<j<K

p(ri = 1,8 = j) o< 115 < ti)k(yilb;) exp{—=A(t; — i)} Jm, 1<j<L

wheren; = #{ilr; = 0,s; = j} andn* = 3%

=1 le.

11
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4.1.2 UpdatingG, and v

The full conditional distribution ofy is proportional to

n

H (exp{=At:}7)' ™" (exp{=A(ti = 75,)}Js)"
i1 exp{—Ati}y + Z{]h— <t; }exp{ At =) }5

This can be simulated using a slice sampler (Dansieal (1999), Neal 2003) by introducing
auxiliary variablesuy, ..., u, which are uniformly distributed and the density of the joint
distribution can be expressed as

p(V)p(uy, ... u ﬁﬁ|< (exp{—At:}7)' " (exp{-A(t; TSZ)JSZ.)” )

i=1i=1 exp{—Ati}y + Z{gh <t; }exp{ A(ti — 75)};

The marginal distribution of is the full conditional distribution above. Then the fullrzb-
tional distribution ofu; is a uniform distributed on the region

o, (exp{=Ati}y) T (exp{=A(ti — 7o) }a)"™ )
Texp{—At; }y + Z{j|7j<ti} exp{—A(t; — 75)}J;

The full conditional distribution of; is now the priomp(+) truncated to the regioA < v < B
where

A = max {
€A 1-—

" exp{At; }(D; — exp{—A\¢; }7)}

B - i {ooio) [zf oo}

where A = {ilr; = 0}, B = {1,...,n} — A, ¢; = exp{—\(t; — 75,)}Js,. If we want a
marginal Dirichlet process thes(y;) ~ GaM, 1).

4.1.3 Updating the jumps

The number and size of the jumps can be updated using a hyleticpblis-Hastings sampler
with four possible moves: Add, Delete, Change and Move. Bhération a move is chosen
at random with the constraint that probability of choosimgAald and a Delete are equal.
The Add move proposes to increases the number of jumps byydetving /7,1 from an
exponential(1) distributionsz 4, from a uniform distribution or{0,7") and 4+, from H.
The Metropolis-Hastings acceptance ratio is

min < 1 H D T
’izl D; + |(TL+1 < ti) exp{—)\(ti — TL+1)}JL+1 L+1(°

The Delete move proposes to decrease the number of jumpselayisg one jump at random
to be removed. Let this jump be theth one. If number of observations allocated to that

12
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jump is non-zero then the acceptance probability is 0. @tiser;, the acceptance probability
is

min {1 D i}
’ D; — I(Tk < ti)exp{—)\(ti — Tk)}Jk X[
The other two moves uses a slice sampler to update the sizengf (Change) and the
timing of the jump (Move). In both cases, theh jump is chosen at random. Latent variable

ui,...,u, are introduced drawing from a uniform distribution on theemal
0. exp{—M\t; }y if 7, = 0

exp{—)\tz}’y + Z{j|7'j<ti} exp{_)‘(ti - T])}J]
0 exp{—A(ti — 75,) /s, if r; = 1.

exp{—)\tl}’y + z{j\Tj<ti} exp{—)\(tz - T])}J]

If we are performing a Change move then the full conditionstrdbution of .J, is the distri-
bution of J, truncated to the regiopA, B) where

U
1—’LLZ'

A= max {exp{)\p(ti —7%)} (D; — exp{—A(t; — Tk}Jk)}

5 = uip fepnt—m |2 - (0,00}
where
A={ilr;, =1,5;, =k}
B = {ilt: > 71\ A
01 = xp{-Alt: — s} s,

If we are performing a Move update then the full conditionatribution of 73, has the fol-
lowing form. Letr,,,, = min{7T', max{t;|s; = k}}. Lett] < --- < ¢ be an ordered version
of all the values of less tham,,,,,, tf; = 0 andt; = ry,,, thenr; is drawn from a uniform
distribution on the regioid, By) N (0,¢1) U UM (A, Bi) N (ti, tiv1) U (A, By)(th, Tmaz)
where

1
A= max {tj + X logu; —log(1 —u;) —log Ji, + log (D; — exp{—A(t; — Tk)}Jk)]}
j

1
B; = HéaBX {tj + N [log((l + Uj)qu — Uij)) —log Ji, — long]}
WASIE!)

where
(b’i = eXp{_)\(tz - Tsi)}JSi
A: {Ti = 1,8i :k}
Bi = {jlt; > ti}\A

13

CRiSM Paper No. 07-3, www.warwick.ac.uk/go/crism



4.1.4 Updatingf and v
The full conditional distribution ob; is proportional to
h(6;) 11 k(y;10:, ¢)
{jls;=i andr;=0}
and the full conditional distribution af; is proportional to
h(ts) 1T k(y;lei, 6)-
{jls;=i andr;=1}

These full conditional distribution will arise in Dirichlgorocess or NRM mixture models
and can be sampled using methods for the corresponding statel.

4.1.5 Updating

The parameters can be updated from its full conditional distribution usiadvietropolis-
Hastings random walk proposal where a new vallés chosen from the transition kernel
q(A, \) which has the acceptance probability

p(N)p(M")g(N', A) p(N) A (M)K M1

pNp(M)g(A,N) W) N\ M ) A M +i—1
where . . |
H(N) = H (exp{—Ati}y) " (exp{—=A(t; — 75,)})"
i1 XL+ D1 <rpy XPLA(t — 7)1
andM’ = &

= 37

4.1.6 Updating(

Using a Gibbs update farcan lead to slow mixing. Rober&t al (2004) propose a data aug-
mentation method and Griffin and Steel (2006b) suggest wsimgthod called “dependent
thinning” to jointly update¢ and {(r;, J;,6;)}2,. In both methods, a new valug is pro-
posed from the transition kerne(¢, '), such as a normal distribution centred @nUnder
the Robert®t al (2004) scheme if’ > ¢, a random number of jumps’ — K is drawn from

a Poisson distribution with meah(¢’ — ¢) and

J ~Ex(1), 7/ ~U(0,T), 0, ~ H, K<i<K'

and if¢’ > ¢ jumps are deleted iF; > % whereU, Us, ..., Uk are i.i.d. andJ; are uniform
random variates. Under the “dependent thinning” schemerdficand Steel (2006b), if
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¢’ > ¢, then a random number of jumpgs’ — K is drawn from a Poisson distribution with
meanT' (¢’ — ¢) and

si=—tog (4 (1= 5) ) V0D G in K

wherew; is uniform random variate and
J = J;+1log¢ —log¢, 7l =1, 0} =0, i < K.
If ¢’ < (thenifJ; <log( —log(¢’ the jump is deleted and otherwise
J=J;—log¢ +logl 1/ =7, 0. =0,

In all cases the proposed valugs (7', J',0") are accepted according to the Metropolis-
Hastings acceptance probability

min {1,200 L lou e 7. 000, 3 |
’ p(M) H?:l p(sia Ti|7_7 J7 )‘)q()\v )‘,)

whereM = % and M’ = % | have found very little difference in the performance oé th
sampling schemes based on these two updates in applications

4.1.7 Updating other parameters

Any hyperparameters df(#) giving a parametric function(6|¢) can be updated from the
full conditional distribution

K L
p(¢) [ 16ile) [ | h(wile)-

=1 =1

In static versions of the models described in this paperfthigonditional distribution will
arise and can be sampled using the same methods as in caomltamethods for those
models.

4.2 Particle Filters

Particle filters are a computational methods for fitting tkeegic state space model for ob-
servationy; with states); described by

yil0; ~ f(yil0:)

0;|0;—1 ~ g(0;]0;—1)
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for distributionsf (y;|-) andg(#;|-) by finding a sample approximation to the posterior distrib-

ution of the states(0;|y1, . . ., y;) for all values ofi. If we have a sampléﬁ)17 991, e OZ(]_VI)
from p(6;|y1, ..., v;) then we generatég’) from g(-|0§”_)1), which is called the propogation
step. A sample?z(l), 02@, o ,0§N) can be generated by drawing values from a discrete

distribution with atom3§§j ) which have probabilities proportional mi\éy )). Doucetet

al (2001) provide a description of the method and several ambsmn If we fix A and M
then the OUDP-based hierarchical model fits into this franrewvhere the states afe and
F;. The method can be extended to models with parameters thatatic. These methods
have also been used in static problems such as the Diriatdeégs mixture model when all
observations are made at the same time égeLiu et al (1999) and Fearnhead (2003)).
Recently, Carort al (2006) have developed methods for state space models Wieeneise
in the observation equation and the system equation is a&sbtonarise from an unknown
distribution given a Dirichlet process prior, which is tiimvariant. In this paper, we pro-
pose an algorithm based on the work of Fearnhead (2003) armh@aal (2006). The
main difference between the idea presented here is thesinolef the unknown distribution
G, as a state variable. In previous work the unknown distrilbuts assumed fixed which
can lead to some problems with the convergence and congggionmte Carlo errors of
estimated distributione(g. Caronet al (2006)). The distribution is now time-varying and
enjoys the benefits of rejuvenation for estimation of statas the unknown distribution at
the propogation step. Fearnhead (2003) suggests integaatross the unknown distribution
to produces the classic Polya urn scheme of Blackwell andMaen (1973) which fits into
a Rao-Blackwellised scheme. This idea is not availabletferprior defined in this paper and
I will use a truncated representation of the full probapititeasure. | present two versions
of the algorithm: a version which works with all models anceaand version that relies on
the conjugacy of the kernel and the centring distributiome Targinalisation used in the
second method produces a Rao-Blackwellised scheme tHaisuilly lead to much better
performace than the first algorithm. The initial distriloutiGy can be simulated using the
stick-breaking construction of the Dirichlet process orabruncated version of the NRM
more generally. N atoms are chosen for the particle filter and for each atomrecéted
Dirichlet process is generated witt distinct elements for each= 1,2, ..., N where

W = VO T = 1)

J J
k<j

Wherevl(i), 2(1)"/3(2')7”‘7‘/[(;')_1 ~ Be(1, M), I(f) =1, 9?%09,...,0? ~ H and
simulatey(® from a Gamma distribution with shape parametérand scale parameter 1.
Finally, acounter of the number of jumps is initialized faca atom:n(()l) = K, néQ) =

K,... 777(()N) = K and set]]@ = y(i)wg.i).
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4.2.1 Simple Particle Filtering Algorithm

Let (J®, 00 n() be thei-th atom of the particle filter approximation at time The al-

gorithm works by first simulating an updated at¢di?), 6, 7)) using the prior updating
rules then uses a importance-resampling step to producee&om the posterior distrib-
ution for the firstt 4+ 1 observations. The first step works by proposing

77(z‘) _ n(i) ~ PN MA(tiq —t),
JO — exp{—A(te41 - tt()J;i) j<n®
J expf{—Ar) g <j <

WheI’ET]@ ~ U(0, (tg1 — t1)) andz](.i) ~ Fz(1) and

(@) . i
é(i): 93&‘) 4]§77() '
! ¢ < j <)

where@b](.i) ~ H. The importance resampling step works in the following vemagch atom is
assigned a weighty, . . ., pn according to

St B ke 16)
Sher It
A new sample of atoms is formed by sampling th# atom according to a weight propor-

tional toy;. A more efficient method of re-weighting the sample is désatiby Carpentest
al (1999) for the examples.

1<k <q®

Pk

4.2.2 Rao-Blackwellised Particle Filtering Algorithm

The first algorithm can lead to fast degenerancy of the sgmpleh leads to an inaccurate
Monte Carlo approximations. A more accurate particle fiteses if we can integrate the
locationsé from the sampler. This will often be possible if we choose @jugate Dirichlet
process if we can calculate the predictive distributiofy*].4) = £ k(}r'f _)Hf(““_k(yimp (6) df

ic.a k(yil0)p(0) db
whereA is a subset of, 2, ..., n. The sampler then resembles the approach taken by Fearn-
head (2003) and Caroet al (2006) which is described as a Rao-Blackwellisation of the
algorithm. A further step must be added to make this approawk. We include allocation
variables, as in the MCMC sampleﬁf), e ,sgi) for each particle. The atom now is formed
by (J@, s n®) wheres® is the allocation variables. Often the predictive disttiiw
is a function of sufficient statistics of the data and the cotafoonal burden can be eased
in these situations (see Fearnhead (2003) for details)he¥t+ 1-th time point we propose
(J@, 50 7 wherei and.J(®) are generated as in the Simple Particle Filtering Algorithm
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The new value(® is proposed as followsit” = s\, k < ¢ and weé‘gle with the following
probabilities
P(égl = k) o J;iz)m(ymly;?))’ 1<k<qf®

wherey,ff) = {yj\s§i) =k, 1< j<t}. The weights for the atoms now have the form

ﬁ(i) ' '
pi = Z szf)m(ytﬂ\y,ﬁ’)), 1<i<N
k=1

where the re-weighting can be perform in the same ways asithpl&Particle Filtering
Algorithm.

5 Example: Volatility Estimation

In financial time series, the estimation of volatility of treturns of an asset are an object of
interest. The return is defined by = log P, — log P,_1 where P; is a time series of ob-
served asset prices. Models for this type of data usuallyadocertain stylized feature (see
e.g. Taylor 1986) which include: a small mean, heavier than notaiks and a time-varying
variance (or volatility, which is its square root). Most Wdras considered modelling the
last of these characteristics. Tsay (2005) gives an exdahé&oduction to the modelling of
financial time series. There are two main models: GARCH nwdatl stochastic volatil-
ity models. The former assumes that the variance is somendetstic function of lagged
squared returns and volatilities whereas the latter assubhat the variance follows a sto-
chastic process. In this paper, | will consider fitting a spanriametric model which is closer
in spirit to the latter approach. We assume that the vdlaigi drawn from a time-varying
nonparametric distribution which is unobserved and soindllice dependence between the
volatilities. | consider fitting the following model

e ~ N(0,02)
O't2 ~ Gt
Gy ~ OUDP(M,1G(a,b), ).
The model is constructed in a similar way to a discrete sttahgolatility model €.g9. Shep-
hard, 2005). The marginal distribution of will be a scale mixture of normal distributions
which will lead to heavier tails than a normal distributiofhe parameters of the centring
distributions are estimated by assuming no dependencesiretbrns and dividing each es-
timate by three to give a centring distribution with a widepgort. In this modet? is now
drawn from the conditional distribution of the volatilitgpresented bys;. The prior distri-

butions forM is chosen to be Bx). The parametek controls the temporal dependence of
the processes and the prior distribution is chosen to e(Ex

18

CRiSM Paper No. 07-3, www.warwick.ac.uk/go/crism



5.1 Simulated Data

The model is initially fitted to data generated from a disete@ne stochastic volatility model
where the log volatility follows an autogressive process

T~ N(O,Jf)

logo? = alogo? | + €

wheree; ~ N(0,b). The values chosen were= 0.8 andb = /1 — 0.82 which leads to a

returns volatilities

100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500

Figure 4: The simulated data and underlying volatilities

marginal log-normal distribution for the volatility. Tharte series of returns and volatilities
are illustrated in figure 4 showing several periods of highatiity. In particular, there is a
short-lived period of extreme volatility in the middle ofetlseries.

Table 1 shows the posterior inference on the parameter aghddel. The posterior dis-
tribution of M places mass on relatively small valuesMdfindicating that the conditional
distribution is far from the marginal distibution. This istrsurprising given the difference
between the marginal distribution and the conditionalridigtion. The parametex is small
which implies that the auotocorrelation function decaysv}: reaching0.5 after 14 days
and0.05 after 42 days. The value a¥/ \ indicates that the process will have a relatively
small number of jumps. A new jump will appear on average etérgays.

M 1.01 (0.53, 1.93)

A 0.087 (0.050, 0.166
exp{—A} | 0.92(0.85,0.95)
M 0.09 (0.04, 0.16)

Table 1. Summaries of the posterior distribution showirg pbsterior median followed by the
95% highest posterior probability region for several pagtars when the model is fitted
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Smoothed and filtered estimates of the volatilities for ¢hdata are shown in figure 5.
Both estimates are able to capture the features of the algmgiatility and clearly show the
periods of high volatility. The period of highest volatjliin the middle of the series seems to
be a little shrunk. The filtered estimates are calculatedgusie particle filtering algorithm
2 conditional on the posterior median estimates @ind M. They behave in a similar way
to the smoother estimates but show some predictable differe The median estimate is
similar to the smoothed estimate and gives a good indicafitime underlying changes in the
volatility.

filtered smoothed

Fy

O

350

Figure 5: The filtered and smoothed estimates of the vdlaslwith the OUDP model for the
simulated data. The results are represented by the medé&d [jge) and the 2.5 and 97.5
percentile (dashed lines)

5.2 Brazilian stock exchange data

The Ibovespa index of the Brazilian stock exchange betwdéfi92 and 16/5/96 are plotted
in figure 6. The graph shows a period where the spread of mefarfairly constant upto
time 600 followed by a brief period of higher volatility follved by a longer period of low
volatility. Fitting the OUDP model to the data yields a pogtedistribution of M that is
similar to the simulated data example. However the parancetatrolling dependencs is
estimated to be smaller indicating substantial correfagidonger times. The autocorrelation
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Figure 6: A time series graph of daily returns from the ib@aesidex for the Brazilian stock
exchange

function equals 0.5 after 23 days and equals 0.05 afer 70 d&gsposterior median estimate
of M X is also smaller with a new jump appearing every 18 days orageer

M 1.05 (0.54, 1.82)
A 0.052 (0.029, 0.098
exp{—A} | 0.95(0.91, 0.97)
M) | 0.055 (0.037,0.079

Table 2: A summary of the posterior distribution showing plesterior median followed by the
95% highest posterior probability region fof for the Ibovespa data

Figure 7 shows the smoothed and filtered results, which vwadcelated in the same ways
as with the simulated data. These graphs show the Fmairrdsattithe volatility. An initial
constant period of volatility is followed by a period whetetdistribution of the volatility
becomes more widely spread. The results indicate that ghéhiand tail of the distribution
increases alot (to capture the few large returns) whichrastg with the median value of
volatility that changes a much less pronounced way. The fiegbd of lower volatility is
captured.

Figure 8 shows the smoothed and filtered posterior distabubf volatility at several
selected time points. It shows that the distribution of titify at several different time points
which indicates how the various periods of volatility argteed and show a substantial
variation in the fitted shapes.

6 Discussion

This paper has introduced a method for constructing sttichpsocesses with particular
marginal processes which generalize the Normalized RarMeasures priors for Bayesian
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Figure 7: The filtered and smoothed estimates of the vdlaslwith the OUDP model for the
Ibovespa data. The results are represented by the mediahligse) and the 2.5 and 97.5 per-
centile (dashed lines)

filtered smoothed

o 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02

Figure 8: The filtered and smoothed estimates of the distabwvith the OUDP model for the
Ibovespa data at times: 200 (solid line), 652 (dashed lind)®4 (dashed line).

nonparametric inference to time-varying problems. Theewtelation function of the un-
normalized process has an exponential form which is irdebdity the normalized process
in many situations. The special case of the OUDP processhwias a marginal Dirichlet
process is considered. Inferential methods using Markamnckonte Carlo methods and
particle filtering are developed. The simple form of the psxsuggest a number of possible
extensions to allow more general time-dependencies batdisgibutions. One posssible ap-
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proach uses mixed OU processes (Barndorff-Nielsen, 2008jevthe unnormalized process
is defined by

G = / G (M)

whereG; () follows stochastic differential equation in (2) for a fixedlwe of A and x4 is

a distribution. Inferential approach using MCMC methodsehbeen considered by both
Robertet al (2004) and Griffin and Steel (2006b) whéit(t) as a continuous-time volatil-
ity process and: is a discrete distribution with a finite number of atoms, whaould be
extended using some of the MCMC methods developed in thisrpakternative general-
isations are explored by Gander and Stephens (2005) why #pplideas of Wolpert and
Tagqu (2006) to stochastic volatility modelling. In paniiar they present alternative meth-
ods for defining a long-memory process. An interesting goiesor future research is “how
well can the autoocorrelation function be estimated froendata?”

The current work has concentrated on specifying known fdonthe process of7;. An
alternative approach chooses a form for the backgroundhdrivevy process. The proper-
ties of the marginal process can then be derived. This apprcen lead to simpler sampling
schemes in the stochastic volatility context. In particdemes (2006) shows that the infinite
dimensional proces&*(t) can be integrated from the process for particular choicdse T
use of these models to define a time-varying normalized randeasure seems an interest-
ing alternative approach to the ideas presented in thisrpdpe current work has focused
on Dirichlet process marginals since these processes lmwmadted the Bayesian nonpara-
metric literature. There has been recent work looking agrofinocesses in applications. In
particular Teh (2006) considers the use of a Pitman-Yorgsedéor language modelling. The
methods developed in this paper allow time-varying vesiminsuch models and an interest-
ing direction for future work would be the exploration of Abirichlet process time-varying
models.
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A Proofs

A.1 Proof of theorem 1

We need to show that; = >, I(r; < t)exp{—A(t — 7;)}J;0p, follows the appropriate
unnormalized Lévy process. Consider a measureabl®sbenG;(B) = > .o, I(1; <

t) exp{—A(t — 7;) }Jidp,(B) which is an independent thinning 6f*(S) = >, I(1; <

t) exp{—A(t—7)}Jidp, (S) with thinning probabilityH (B). Therefore it has the same distri-
bution asy oo, I(7F < t)exp{—\(t—77)}J where(r*, J*) is a Poisson proce&" x R*
which has intensityV * (.J) H (B) X which by the properties of the BNS construction has the
marginal distributiontV * (.J) H(B), which is the marginal distribution of the unnormalized

measure orB under the NRMW ™, H).

A.2 Proof of result 1

COMGy, Giry) = Cov( Gi(B) exp{—AM}G}(B) + L exp{—i}Jidy, (B) )

GH(B) + G (S\B) exp{—At}G;(S) + exp{-M}GF(S\B) + i, exp{ At} J;

exp{—A}GF(S)Gy(B) + H(B) X exp{—/\ti}Ji>
exp{—M}GF(S) + S exp{—\t;}J;

COV(Gt, Gt—i—k) = Cov (Gt(B),

E(GGyip) = E (exp{—At}Gt*(S)Gt(B)2 + Gy(B)H(B) X, exp{—At;} JZ)

exp{—M}GF(S) + X8| exp{-\t;}J;
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MGy, Gony) = E (exp{—xt}axsmtw)z +G(B)H(B) Y1, exp{—AW) _H(B)?

exp{—M}GH(S) + S exp{—At;}J;

MGy, Curs) = E (G?(S)Gt(BV + Gi(B)H(B) 1y exp{—A(t; — t)}@-) _HB)

exp{—M}GF(S) + X8 exp{-\t;}J;

Asymptotically

exp{MICOVGr, Gor) — E (G?(S)Gt(BP + Gi(B)H(B) exp{At} 8| eXp{—Ati}Ji> _H(B)

Sk exp{=Xt;}J;

Gt (S)G;(B)?
le exp{—M\t; } J;

exp{\t}CoV(Gy,Gyyi) = E (Z > + exp{M}H(B)?exp{\t} — H(B)?

o GiS)Gu(B)?
exp{M}CoV(Gy, Giyr) = E <Ef:1 eXp{_)\ti}J)

The autocorrelation is asymptotically

E( G1(8)Gy(B)* >exp{_m

Ele exp{—M\t; } J;

A.3 Derivation of autocorrelation for OUDP

The general result

X
g(Xv Y) = ?
CEX], EX] 1
E[Z] E[Y] + 032/ ]S — UXYW

then HX] = exp{—AA}p and BY'| = x by stationarity wherg. = E[G(X)]. Co\(X,Y) =
Cov(X, X) 4+ Cov(X,Y — X) = V(X) = exp{—2)\A}o? wheres? = V[G*(S)].

E[Z] = exp{—AA} |1+ Z—i(l —exp{—AA})

for the Dirichlet proces%; =+
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