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By using all available data we typically get
More precise estimates • More accurate reflection of true uncertainty • Minimisation of the

risk of selection-type biases
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Will be hard to
formulate a suitable model • fit the resulting model • assess the resulting model
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Could discard the existing models and implementations, but this seems wasteful
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Plug in
a point estimate

Plug in an approximation
to the posterior

Integrate the models

Very easy and fast

Will underestimate uncertainty

Fairly easy and fast

Assumptions made can be unclear

All uncertainty propagated

Make all assumptions explicit
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Quantity of interest: p = Pr(being hospitalised | have influenza symptoms)

Observe:

• y = 100, the number of people in hospital with influenza symptoms
• n = 1000, the number of people with influenza symptoms

Model:

y ∼ Bin(n, p) p ∼ Beta(1, 9)
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Quantity of interest: p = Pr(being hospitalised | have influenza symptoms)

Observe:

• y = 100, the number of people in hospital with influenza symptoms
• n = 1000, the number of people with influenza symptoms

Model: i = 1, 2

yi ∼ Bin(ni, pi) pi ∼ Beta(1, 9)
ni ∼ Po(1000)

New data from a similar area: x = 40 out of m = 500 had influenza symptoms.

Model for new data:

x ∼ Bin(m, q) q ∼ Beta(0.5, 5)

If we assume q is the same in the original area, and we knew the total population size N,

n ∼ Bin(N, q) → BUT now two models for n

Now have a direct model for n itself, and a model for n1 and n2 where n = n1 + n2 4/41

A toy example Severity of influenza
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Model 1
involving

ϕ

Model 2
involving

ϕ

Model 3
involving

ϕ

...

1. Create a generic method for joining submodels that share a common quantity ϕ into a
single, joint model

� Need to handle (implicitly) having two different priors for the same quantity
� Need to handle models linked by non-invertible deterministic transformations

2. Fit the joint model in a staged/modular manner, one submodel at a time
� Want the extra burden compared to plug-in approaches to be as small as possible
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Suppose we have models m = 1, . . . ,M

pm( ϕ , ψm , Ym )

The common
parameter that
links the models

Model-specific
unobserved
parameters

Model-specific
observed
quantities

↓

Want a generic method that integrates these models into a single joint model

p( ϕ , ψ1, . . . , ψM , Y1, . . . ,YM )
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Suppose consistent marginals: i.e. pm(ϕ) = p(ϕ) is the same for all m

First isolate ϕ by conditioning:

pm(ϕ, ψm,Ym) = pm(ψm,Ym | ϕ) pm(ϕ)

This suggests the following joint model:

pcomb(ϕ, ψ1, . . . , ψM,Y1, . . . ,YM) = p(ϕ)
M∏

m=1

pm(ψm,Ym | ϕ)

=

∏M
m=1 pm(ϕ, ψm,Ym)

p(ϕ)M−1

This is called Markov combination — Dawid and Lauritzen (1993), Massa and Lauritzen (2010)

• (ψm,Ym) ⊥⊥ (ψℓ,Yℓ) | ϕ for m ̸= ℓ

• pcomb(ψm,Ym | ϕ) = pm(ψm,Ym | ϕ) for all m
• pcomb(ϕ, ψm,Ym) = pm(ϕ, ψm,Ym) for all m

Dawid and Lauritzen (1993). “Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models”. Annals of Statistics 21, 1272–1317.
Massa and Lauritzen (2010). “Combining statistical models”. In: Contemporary Mathematics: Algebraic Methods in Statistics and Probability II. ed. by
Viana and Wynn, pp. 239–260.
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Suppose inconsistent marginals i.e. p1(ϕ), . . . , pM(ϕ) are not all equal

Instead choose a pooled density

ppool(ϕ) = g
(
p1(ϕ), . . . , pM(ϕ)

)

This suggests the following joint model:

pmeld(ϕ, ψ1, . . . , ψM,Y1, . . . ,YM) = ppool(ϕ)

M∏
m=1

pm(ψm,Ym | ϕ)

= ppool(ϕ)
M∏

m=1

pm(ϕ, ψm,Ym)

pm(ϕ)

We call this Markov melding1

• (ψm,Ym) ⊥⊥ (ψℓ,Yℓ) | ϕ for m ̸= ℓ

• pmeld(ψm,Ym | ϕ) = pm(ψm,Ym | ϕ) for all m
• But pmeld(ϕ, ψm,Ym) ̸= pm(ϕ, ψm,Ym) in general

1Goudie et al. (2019). “Joining and Splitting Models with Markov Melding”. Bayesian Analysis 14, 81–109.
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Similar problem to forming a single prior to use when several experts have been asked to supply
their prior.

Several pooling functions have been suggested (O’Hagan et al., 2006)

• Linear opinion pooling

ppool(ϕ) =

M∑
m=1

wmpm(ϕ)

• Logarithmic opinion pooling

ppool(ϕ) ∝
M∏

m=1

pm(ϕ)wm

• Product of experts pooling (Hinton, 2002)

ppool(ϕ) ∝
M∏

m=1

pm(ϕ)

• Dictatorial pooling
ppool(ϕ) = pm(ϕ) some m ∈ {1, . . . ,M}

O’Hagan et al. (2006). Uncertain Judgements: Eliciting Experts’ Probabilities. Chichester: John Wiley & Sons.
Hinton (2002). “Training Products of Experts by Minimizing Contrastive Divergence.”. Neural computation 14, 1771–1800.
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linear opinion pooling

ppool(ϕ) =
M∑

m=1

wmpm(ϕ)

logarithmic opinion pooling

ppool(ϕ) ∝
M∏

m=1

pm(ϕ)wm

product of experts pooling

ppool(ϕ) ∝
M∏

m=1

pm(ϕ)
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A pooling function g is called externally Bayesian if Bayesian updating and pooling are
interchangeable.

g ( posterior (model1), . . . , posterior (modelM)) ∝ posterior ( g (model1, . . . ,modelM))
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For M models pi(ϕ,Y) = p(Y | ϕ)pi(ϕ) i = 1, . . . ,M with the same likelihood

g
(
p1(ϕ | Y), . . . , pM(ϕ | Y)

)
∝ p(Y | ϕ) g

(
p1(ϕ), . . . , pM(ϕ)

)

Logarithmic pooling is externally Bayesian when
∑M

i=1 wi = 1. (Genest and Zidek, 1986)

Genest and Zidek (1986). “Combining Probability Distributions: A Critique and an Annotated Bibliography”. Statistical Science 1, 114–135.
12/41

Joining models Externally Bayesian pooling



A pooling function g is called externally Bayesian if Bayesian updating and pooling are
interchangeable.

g ( posterior (model1), . . . , posterior (modelM)) ∝ posterior ( g (model1, . . . ,modelM))

For M models pi(ϕ,Y) = p(Y | ϕ)pi(ϕ) i = 1, . . . ,M with the same likelihood

g
(
p1(ϕ | Y), . . . , pM(ϕ | Y)

)
∝ p(Y | ϕ) g

(
p1(ϕ), . . . , pM(ϕ)

)

Logarithmic pooling is externally Bayesian when
∑M

i=1 wi = 1. (Genest and Zidek, 1986)

However, this property is not applicable when combining several distinct likelihoods with
distinct data, since

g
(
p1(ϕ, ψ1 | Y1), . . . , pM(ϕ, ψM | YM)

)
̸∝ g

(
p1(ϕ), . . . , pM(ϕ)

)∏
i

pi(Yi, ψi | ϕ)

Genest and Zidek (1986). “Combining Probability Distributions: A Critique and an Annotated Bibliography”. Statistical Science 1, 114–135.
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Poole and Raftery (2000) consider a deterministic model of the form:

ϕ = f(θ)

Standard Bayesian

y

ϕ

θ f

Bayesian melding

y

ϕ

θ f

• Extra information about the output of the deterministic function
• ϕ now has two different prior distributions
• Extend f to an invertible function, back-transform prior, then pool the two priors for θ

Poole and Raftery (2000). “Inference for Deterministic Simulation Models: The Bayesian Melding Approach”. Journal of the American Statistical
Association 95, 1244–1255.
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Markov melding is defined for any collection of submodels BUT that is not a guarantee that the
joint model is appropriate

• If two submodels pm(ϕ, ψm,Ym) and pℓ(ϕ, ψℓ,Yℓ) strongly conflict, the posterior from
the joint model will be misleading

A simple two-step approximate approach is sometimes used when joining two models
e.g. Eddy et al. (1992), Jackson et al. (2009), Albert et al. (2011), Commenges and Hejblum (2012)

1. Obtain the posterior distribution p1(ϕ, ψ1 | y1) under the first model
2. Approximate posterior marginal of ϕ under model 1 by pN(ϕ | µ̂, Σ̂) ≈ p1(ϕ | y1)
3. Modify likelihood of the second model by a factor pN(µ̂ | ϕ, Σ̂)

Turns out that this an approximation to Markov melding with Products of Expert pooling.

Eddy et al. (1992). Meta-Analysis by the Confidence Profile Method. London: Academic Press.
Jackson et al. (2009). “Bayesian Graphical Models for Regression on Multiple Data Sets with Different Variables.”. Biostatistics 10, 335–351.
Albert et al. (2011). “A Bayesian Evidence Synthesis for Estimating Campylobacteriosis Prevalence”. Risk Analysis 31, 1141–1155.
Commenges and Hejblum (2012). “Evidence Synthesis through a Degradation Model Applied to Myocardial Infarction”. Lifetime Data Analysis 19,
1–18.
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• Markov melding: aims to construct a suitable joint model

Can be viewed as replacing prior marginal distributions

poriginal(ϕ, ψ,Y) → pmeld(ϕ, ψ,Y) =
poriginal(ϕ, ψ,Y)

poriginal(ϕ)
ppool(ϕ)

then use the standard Bayesian posterior as our result

• Cut distributions: aims to avoid (some of) the consequences of a joint model

Can be viewed as replacing posterior marginal distributions

poriginal(ϕ, ψ | Y,Z)

= poriginal(ψ | Y, ϕ)poriginal(ϕ | Y,Z) → pcut(ϕ, ψ) =
poriginal(ϕ, ψ | Y,Z)
poriginal(ϕ | Y,Z) p(ϕ | Z)

and use that as our result.

15/41
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Recall that the Markov melding model is

pmeld(ϕ, ψ1, . . . , ψM,Y1, . . . ,YM) = ppool(ϕ)
M∏

m=1

pm(ψm,Ym | ϕ)

= ppool(ϕ)

M∏
m=1

pm(ϕ, ψm,Ym)

pm(ϕ)

The joint posterior distribution pmeld is

pmeld(ϕ, ψ1, . . . , ψM | y1, . . . , yM) ∝ ppool(ϕ)

M∏
m=1

pm(ϕ, ψm, ym)
pm(ϕ)

pmeld is just a posterior distribution, so can target it directly with any standard method
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But this is unappealing for the sorts of applications we consider because...
1. Pre-existing implementations of pm, m = 1, . . . ,M

� Often each implemented in a different language (C++, R, Python...) and/or a probabilistic
programming language (Stan, JAGS, BUGS, Nimble, Turing, ...)

2. Fragility: each pm may require “hand-holding”
� Tuning parameters, initial conditions...
� Cleaning erroneous data etc

3. Interest goes beyond pmeld
� Sub/intermediate posteriors are of interest themselves: which submodel leads the overall

posterior distribution to have some particular feature?

4. Submodels may not be fixed
� May have several alternatives for pℓ some ℓ ∈ {1, . . . ,M}

5. Also (ideally)...
� data too large to fit on a single computer (’omics type data)
� model too slow to fit on a single computer
� siloed private data

17/41
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We adopt the modular/two-stage/recursive computation scheme, proposed by several authors,
which is more convenient

• Liang and Weiss (2007)
• Tom et al. (2010)
• Lunn et al. (2013)
• Hooten et al. (2019)

Liang and Weiss (2007). “A Hierarchical Semiparametric Regression Model for Combining HIV-1 Phylogenetic Analyses Using Iterative Reweighting
Algorithms”. Biometrics 63, 733–741.
Tom et al. (2010). “Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data”. The Annals of
Applied Statistics 4, 1722–1748.
Lunn et al. (2013). “Fully Bayesian Hierarchical Modelling in Two Stages, with Application to Meta-Analysis.”. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 62, 551–572.
Hooten et al. (2019). “Making Recursive Bayesian Inference Accessible”. The American Statistician 186, 1–10.
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With M = 2 models:

1. Stage 1: Model 1 posterior
Draw and retain samples (ϕ(h), ψ

(h)
1 ) ∼ p1(ϕ, ψ1 | y1), h = 1, . . . ,H

Extends naturally to an M-stage algorithm when M > 2

19/41
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Accept with probability min(1, r) where

r = pmeld(ϕ
⋆, ψ⋆

1 , ψ2 | y1, y2)
pmeld(ϕ, ψ1, ψ2 | y1, y2)

× q(ϕ | ϕ⋆)

q(ϕ⋆ | ϕ)

=
ppool(ϕ

⋆)×((((((p1(ϕ⋆, ψ⋆
1 , y1)p1(ϕ⋆)−1 × p2(ϕ⋆, ψ2, y2)p2(ϕ⋆)−1

ppool(ϕ)×(((((p1(ϕ, ψ1, y1)p1(ϕ)−1 × p2(ϕ, ψ2, y2)p2(ϕ)−1
× ((((((p1(ϕ, ψ1 | y1)
((((((p1(ϕ⋆, ψ⋆

1 | y1)

=
ppool(ϕ

⋆)S× p1(ϕ⋆)−1 × p2(ϕ⋆, ψ2, y2)p2(ϕ⋆)−1

ppool(ϕ)× p1(ϕ)−1 × p2(ϕ, ψ2, y2)p2(ϕ)−1

Extends naturally to an M-stage algorithm when M > 2
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What is appealing about this approach?

1. Second stage requires only posterior samples from the first p1(ϕ, ψ1 | y1)
� Any implementation of a Monte Carlo algorithm for p1 will output this

2. Second stage acceptance probability does not involve p1(ϕ, ψ1, y1)
� No need to code this in the second stage

3. Second stage can be implemented completely separately from stage one
� No need to use the same programming language etc

What is not appealing....

• Samples from stage one should be independent
• If the region of posterior mass of pmeld is not a subregion of the high posterior support of
p1, then degeneracy-type problems

• etc...
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Background

Public health responses to influenza outbreaks rely on knowledge of severity: the probability
that an infection results in a severe event such as hospitalisation or death

Aim

To estimate the total number χ of intensive care unit (ICU), admissions for the A/H1N1 strain
during the 2010/2011 influenza season in England

Data sources

• Observations of the (weekly) number of suspected prevalent cases of A/H1N1 in ICUs
• Weekly virological positivity data from the sentinel laboratory surveillance system
• Many other indirect data (number of GP consultations, suspected hospitalisations outside

ICUs, deaths etc) — here simplified to an informative prior

See Presanis et al. (2014) for details

Presanis et al. (2014). “Synthesising Evidence to Estimate Pandemic (2009) A/H1N1 Influenza Severity in 2009–2011”. The Annals of Applied Statistics
8, 2378–2403.
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ϕY

θ πpos

(a) Intensive Care Unit (ICU) model

ϕ

χ πdet

(b) Severity model (simplified)

Figure: High-level DAGs

Model (a)
• Y is (weekly) data recording the number of

suspected cases of A/H1N1 in ICUs
• πpos is probability of suspected A/H1N1 being real,

based on virological data (not shown).
• Given θ and πpos, we estimate the confirmed

number ϕ of cases of A/H1N1 in ICUs

Model (b)
• ϕ ∼ Bin(χ, πdet), because data Y is known to

miss some cases in ICUs
• An informative prior is chosen for χ that represents

the other data sources

22/41

Influenza A/H1N1 example Model structures



ϕY

θ πpos

(a) Intensive Care Unit (ICU) model

ϕ

χ πdet

(b) Severity model (simplified)

Figure: High-level DAGs

Model (a)
• Y is (weekly) data recording the number of

suspected cases of A/H1N1 in ICUs
• πpos is probability of suspected A/H1N1 being real,

based on virological data (not shown).
• Given θ and πpos, we estimate the confirmed

number ϕ of cases of A/H1N1 in ICUs

Model (b)
• ϕ ∼ Bin(χ, πdet), because data Y is known to

miss some cases in ICUs
• An informative prior is chosen for χ that represents

the other data sources

22/41

Influenza A/H1N1 example Model structures



ICU Severity Linear PoE Log
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Density

(a) Priors (b) Pooled priors
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PoE pooling

Normal approximation

Severity model posterior

ICU model posterior
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Log pooling w1 = 0.25

PoE pooling

Normal approximation

Severity model posterior

ICU model posterior
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The acceptance probability in the multi-stage algorithm for a proposal ϕ→ ϕ⋆ involves the
self-density ratio of prior marginals p1(ϕ)/p1(ϕ⋆)

• The prior marginals p1(ϕ) =
∫
p1(ϕ, ψ1,Y1)dψ1 dY1 are not usually tractable

• Originally we plugged in kernel density estimates from Monte Carlo samples

But can be unstable – underestimation in the tails of the denominator leads to an exploding
self-density ratio estimate

• Sampling from (multiple) weighted marginals then using weighted KDE can help2

2Manderson and Goudie (2022). “A Numerically Stable Algorithm for Integrating Bayesian Models Using Markov Melding”. Statistics and
Computing 32, 24.
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There is not always a single quantity ϕ shared between all submodels

For example, the submodels may form a “chain”, in which adjacent submodels have common
parameters

. . .Y4, ψ4

Model 4

Y3, ψ3

Model 3

Y2, ψ2

Model 2

Y1, ψ1

Model 1

ϕ1∩2 ϕ2∩3 ϕ3∩4 ϕ4∩5
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Chained Markov melding



Suppose we have models m = 1, . . . ,M

pm( ϕm , ψm , Ym )

Common parameter
ϕm =

(ϕm−1∩m, ϕm∩m+1)

for m = 2, . . .M− 1

with ϕ1 = ϕ1∩2 and
ϕM = ϕM−1∩M

Model-specific
unobserved
parameters

Model-specific
observed
quantities

↓

Want a generic method that integrates these models into a single joint model

p( ϕ1∩2, . . . , ϕM−1∩M , ψ1, . . . , ψM , Y1, . . . ,YM )
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In the M = 3 case, we propose3:

pmeld(ϕ1∩2, ϕ2∩3, ψ1, ψ2, ψ3,Y1,Y2,Y3) =

ppool(ϕ1∩2, ϕ2∩3)
p1(ϕ1∩2, ψ1,Y1)

p1(ϕ1∩2)

p2(ϕ1∩2, ϕ2∩3, ψ2,Y2)

p2(ϕ1∩2, ϕ2∩3)

p3(ϕ2∩3, ψ3,YM)

p3(ϕ2∩3)

Unless p2(ϕ1∩2, ϕ2∩3) = p2(ϕ1∩2)p2(ϕ2∩3), this is usually a different model to the model
given by applying “common ϕmelding” twice i.e.

meld(meld(p1, p2), p3)

Generalisation to a chain of M models is natural:

pmeld(ϕ,ψ,Y) = ppool(ϕ)
p1(ϕ1∩2, ψ1,Y1)

p1(ϕ1∩2)

pM(ϕM−1∩M, ψM,YM)

pM(ϕM−1∩M)

×
M−1∏
m=2

(
pm(ϕm−1∩m, ϕm∩m+1, ψm,Ym)

pm(ϕm−1∩m, ϕm∩m+1)

)

3Manderson and Goudie (in press). “Combining Chains of Bayesian Models with Markov Melding”. Bayesian Analysis.
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We form the pooled prior by combining the prior marginals of all common parameters

ppool(ϕ) = g(p1(ϕ1), p2(ϕ2), . . . , pM(ϕM))

= g(p1(ϕ1∩2), p2(ϕ1∩2, ϕ2∩3), . . . , p2(ϕM−2∩M−1, ϕM−1∩M), pM(ϕM−1∩M)),

• Logarithmic opinion pooling

ppool, log(ϕ) ∝
M∏

m=1

pm(ϕm)
λm

where λ1 = · · · = λM = 1 is a special case we call products-of-experts (PoE) pooling
• Linear opinion pooling less obvious: p1(ϕ1∩2) + p2(ϕ1∩2, ϕ2∩3) = ?.

Nearest analogue: pool marginals

ppool,m(ϕm∩m+1) ∝ λm,1pm(ϕm∩m+1) + λm,2pm+1(ϕm∩m+1)

Then take product of marginals — which obviously induces prior independence.

• Dictatorial pooling
Essentially choose one (of the two possible) priors for each common parameter ϕm−1∩m
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Interested in the time to onset of respiratory failure amongst patients in intensive care units
(ICU), and factors that are associated with its onset

• Respiratory failure defined as the P/F ratio ≤ 300mmHg
� P/F ratio is measured regularly, but is highly variable
� The time to P/F ratio ≤ 300mmHg is thus quite uncertain

• Time to respiratory failure likely depends on various baseline covariates
� Demographics, laboratory test results

• There is some also evidence for a relationship with rate of fluid intake
� The rate can be estimated from cumulative fluid balance records

Aim: to integrate together 3 separate models that relate:

1. B-spline: model for P/F ratio data
2. Time-to-event: model for respiratory failure dependence on baseline covariates and fluid

intake rate
3. Piecewise linear model: model for cumulative fluid balance
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Uncertain-time-to-event example Respiratory failure
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Model 1: P/F ratio model

Y1 = β0,i + Bi(ti)⊤ζ i + εi.

with estimated time of respiratory failure

ϕ1∩2 = Ti = min
t

{β0,i + Bi(t)ζ i = 300}
250

300

350

400

0 5 10 15 20 25
t

P/
F
ra

tio

β0,i

Ti
(di=1)

Bi(t)⊤ζ i

Model 2: Weibull time-to-event model for time ϕ1∩2 , with hazard

hi(t) = γtγ−1 exp
{
w⊤

i θ + α
∂

∂t ϕ2∩3(t)
}

Model 3: Cumulative fluid balance model, with mean:

ϕ2∩3(t) = mi(t) =

η0,i + ηb1,i(t− κi)1{t<κi}

+ ηa1,i(t− κi)1{t≥κi}
0

10

20

0 5 10 15 20 25
t

Cu
m

ul
at
iv
eF

lu
id

ηb1,i

ηa1,i
η0,i

κi
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Y1

ψ1

ϕ1∩2 ϕ1∩2

ψ2 Y2

ϕ2∩3 ϕ2∩3

ψ3

Y3

p1 P/F ratio model p2 Time-to-event model p3 Fluid balance model

Will compare the results from

• Chained Markov melding (with different pooling functions)
• Plugging in point-estimates from models 1 and 3 into model 2
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Posterior density estimates for baseline coefficients (θ3, θ17), Weibull hazard rate γ and
hazard-longitudinal association α

θ3 θ17 γ α

−2 −1 0 1 −2 −1 0 1 1 2 3 −2 −1 0 1
0

1

2

3

4

0

1

2

3

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Prior: p2(ψ2) PoE pooling Log pooling Fixed φ1∩ 2 and φ2∩ 3

• Posterior insensitive to Logarithmic pooling vs Products of Experts (PoE) pooling here
• Disparity between chained Markov melding posterior and plugging-in fixed point

estimates ϕ̂1∩2 and ϕ̂2∩3
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With the Turing-RSS Health Data Lab in the UK, exploited these ideas to integrate several data
sources relating to COVID-19

1. Randomised surveillance data (REACT study)
2. Targeted surveillance data from hospitals and (self-selected) wider community
3. Population meta-data (ethnicity, deprivation)
4. Commuter travel data

See Nicholson et al. (2022) for details. Argues that the pandemic...

...brought into focus a number of interesting challenges to conventional statistical practice
arising, in particular, from the need to model real-time, messy data from diverse sources,
in order to efficiently address rapidly evolving [...] demands. The dynamic nature [...]
led to frequent changes in the specific questions being asked of the data, with focus often
shifting unpredictably and suddenly.

Argues that interoperable approaches → agility: ability to rapidly interlink and recycle
statistical modelling outputs across analyses, with transferable components across problems

Nicholson et al. (2022). “Interoperability of Statistical Models in Pandemic Preparedness: Principles and Reality”. Statistical Science 37, 183–206.
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Markov melding — joining models
• Provides a generic method for joining submodels

� that share a common variable4
� or that are linked in a chain-like structure5

• Incorporates the idea of pooling of prior marginal distributions
• Requires that there is not strong conflict

Multi-stage algorithm

• Enables inference for the joint model to be conducted in submodel-specific stages
• May be easier/faster than fitting a monolithic joint model directly
• Only small changes required to existing software for a particular sub-model
• But can be unstable: weighted KDE can help6

4Goudie et al. (2019). “Joining and Splitting Models with Markov Melding”. Bayesian Analysis 14, 81–109.
5Manderson and Goudie (in press). “Combining Chains of Bayesian Models with Markov Melding”. Bayesian Analysis.
6Manderson and Goudie (2022). “A Numerically Stable Algorithm for Integrating Bayesian Models Using Markov Melding”. Statistics and

Computing 32, 24.
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Clinical
trial

p1(ϕ,ψ1,Y1)

Cohort
study

p2(ϕ,ψ2,Y2)

Health
records

p3(ϕ, ψ3,Y3)

Genomic

p4(ϕ, ψ4,Y4)

?

Feasible with low-dimensional common parameters + little conflict between models
Still a long way off this being straightforward in general
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Future work



Interested in doing a PhD in Biostatistics, at the interface between
methodological development and biomedical applications?

• Efficient Study Design
• Precision Medicine
• Causal Mechanisms
• Population Health
• Biostatistical Machine Learning

Multiple funded PhD studentships for available for October 2023

Applications for funding close on January 5th 2023. For more details see

https://www.mrc-bsu.cam.ac.uk/training/phd/ • phdstudy@mrc-bsu.cam.ac.uk
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Lorenz Wernisch
Anne Presanis
David Lunn
Daniela De Angelis

Goudie et al (2019)

Andrew Manderson

Manderson and Goudie (2022)
Manderson and Goudie (in press)

Turing-RSS Health Data Lab
George Nicholson (Oxford)
Sylvia Richardson

Nicholson et al (2022)

UKRI Medical Research Council (MRC) • The Alan Turing Institute under the UK EPSRC • NIHR
Cambridge Biomedical Research Centre

Goudie et al. (2019). “Joining and Splitting Models with Markov Melding”. Bayesian Analysis 14, 81–109.
Manderson and Goudie (2022). “A Numerically Stable Algorithm for Integrating Bayesian Models Using Markov Melding”. Statistics and Computing
32, 24.
Manderson and Goudie (in press). “Combining Chains of Bayesian Models with Markov Melding”. Bayesian Analysis.
Nicholson et al. (2022). “Interoperability of Statistical Models in Pandemic Preparedness: Principles and Reality”. Statistical Science 37, 183–206. 41/41

Thanks


	Conceptual framework

