Alice and Bob

You play a game with Alice and Bob:

1. They pick one number each, with the only constraint that \(A \neq B \), meaning that they are not allowed to pick the same number. (However, they can use any strategy: communicate with each other, use randomness to pick their numbers, etc.)

2. You toss a coin to choose who reveals their number, Alice or Bob.

3. After seeing the revealed number, you are to guess who has the bigger number.

Find a strategy so that, if playing this game repeatedly, you win more often than you lose.

Hint

Assume first that they pick numbers from the faces of a die, that is, from the set \(S = \{1, 2, 3, 4, 5, 6\} \) and that your strategy is deterministic. For example, if the revealed number was > 3, you always declared that it was the bigger of the two numbers. Would your strategy always work? What if Alice and Bob always picked 4 and 5? What if \(S \) is a different set, e.g. the real numbers? Can you think of a more abstract description of the strategy that enables you to introduce a dependency on what you see?

Answer

For your strategy you first pick a function \(\psi \) on \(S \) that is strictly increasing, that goes to 0 for \(X \) to \(-\infty \) and that goes to 1 for \(X \) to \(\infty \).

Then you declare the revealed number \(X \) (where \(X \) may be \(A \) or \(B \)) bigger with probability \(\psi(A) \), where \(\psi \) is a cumulative distribution function. (It can be any such function.

Why it works:
Without loss of generality, assume \(A < B \). After tossing the coin, the chance that you see \(A \) or \(B \) is the same and equals 1/2. However, what is the chance your answer is correct?

\[
P(\text{win}) = P(\text{seen } B)P(\text{declared } B \text{ as bigger given } B \text{ was seen })
+ P(\text{seen } A)P(\text{declared } B \text{ as bigger given } A \text{ was seen })
\]

\[
= \frac{1}{2}\psi(B) + \frac{1}{2}(1 - \psi(A))
= \frac{1}{2} + \frac{1}{2}(\psi(B) - \psi(A))
> \frac{1}{2},
\]

because \(\psi \) is strictly monotone and \(A < B \).
Notes

- An interpretation of this is that it is a probabilistic strategy and ψ is a cumulative distribution function. An examples for a cumulative functions if S is the real numbers is the normal distribution. In the case where S is a discrete set, the function ψ does not have to be strictly increasing, but could be piecewise constant and jump up by a value larger than 0 in each values of S, e.g. $\psi(k) = k/6$ ($k = 1, 2, \ldots, 6$) for the die. (For more details about such functions see https://en.wikipedia.org/wiki/Cumulative_distribution_function).

- The strategy always works no matter whether the set S is finite or infinite, discrete or continuous.

- What does "without loss of generality" means? It means that the argument works in the same way without that assumption. Here, the assumption was $A < B$. The case of equality was excluded. If $A > B$ then the argument can just be rewritten with the roles of A and B exchanged.