:3:. Warwick : Statistics

Risk and Predictability - Where Might Modern Mathematics Take Me?

Offer-holder Visit Day, March 2019

(Prof Bärbel Finkenstädt, Dr Jere Koskela, Dr Vicky Henderson)

Welcome to the offer-holders open day

Offer-holders for 3 degree courses:

- Data Science
- Mathematics and Statistics
- MORSE
... and parents or other accompanying persons!

The purpose of today

A varied programme of events, which we hope will:

- Inform you.
- Inspire you.
- Help you to make the decision that is right for you about which university offer to accept.

Schedule

11:00-11:50 Talk \Risk and Predictability | Where Might Modern Mathematics Take Me?" Opportunity for questions.
12:00-13:00 Lunch
Information about Careers, Funding, Admissions and Wellbeing.
13:00-13:45 Talk "How to solve it? Examples from STEP and A-level papers", Opportunity for questions.
14:00-15:20 Campus tour led by current students / Small group meetings with academic staff
15:20- Tea, and more information

Where might modern mathematics take me?

Some things to know:

- Mathematics - and especially Statistics - becomes much more interesting at university level.
- The demand for well-rounded maths graduates remains absolutely buoyant, everywhere in the world.
- Demand for our kind of maths, especially so!

Our kind of maths? Probability, statistics, operational research, mathematical finance, machine learning...
These are the most sought after areas of mathematics in the world at large.
In this talk we mention just a few of the exciting application areas for modern mathematics.

Destinations of our recent graduates

A wide range of:

- management consultancy
- investment banking
- medical, social or economic research
- academia
- market research
- 'big data' in commerce, science, government, . . .
- insurance and actuarial work
- software engineering
- engineering consultancy
- sport, entertainment

More details on employment statistics and careers in the flyer in your pack

Some recent student projects

- Forecasting Sleep Apnea
- Portfolio Management Under Uncertainty
- Evaluating changes in attitudes experience and accident risk in novice drivers
- Comparison of population based Monte Carlo methods
- Mobile Health Analysis
- Statistical inference of stochastic differential equations
- Game-theoretric modelling of cybersecurity
- Erdos-Kac theory and Mod-Poisson convergence
- Exponential random graphs modelling
- On the complexity and behaviour of crypto currencies compared to other markets

Statistical Inference for circadian pacemaking

Bärbel Finkenstädt (Statistics)
Francis Lévi (WMS, INSERM \& Hôpital Paul Brousse, France)

Circadian Rhythm

The body's circadian rhythm, or biological clock, runs over a period of around 24 hours and affects not only sleep patterns but immune function and metabolism.

In response to environmental cues, such as light, a region of the hypothalamus called the suprachiasmatic nucleus SCN

- acts as a central timekeeper;
- sends out neuronal and hormonal signals that coordinate a molecular clock within every cell;
- orchestrates a network of peripheral clocks in nearly every organ and tissue of the body.

These cellular clocks are driven by the oscillating and interacting expression of at least 14 core clock genes.

The 2017 Nobel Prize in Physiology or Medicine was awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young "for their discoveries of molecular mechanisms controlling the circadian rhythm" in fruit flies.

Chronotherapy (Chronomedicine)

Link between disruption of our circadian programme and increased risk to health

- chronic diseases including cancer, metabolic syndrome (obesity, diabetes)
- psychiatric disorders (depression, bipolar, schizophrenia, attention deficit).

Clock genes are important in cancer because they govern

- cell cycles,
- cell proliferation,
- cell death,
- DNA damage repair.

Synchronizing drug delivery with a patient's body clock can yield benefits.

Chronotherapy

Thoracic sensor

Komarzynski S. et al., Real-time capture of inter- and intra-subject variations in human circadian coordination in healthy and cancerous persons at home, J Med Internet Res 2018 doi:10.2196/imir. 9779

Hidden Markov Model

Data likelihood:

$$
\begin{aligned}
\mathrm{P}\left(Y^{(T)}\right) & =\sum_{s_{1}, \ldots, s_{T}=1}^{m} \mathrm{P}\left(S_{1}\right) \prod_{t=2}^{T} \mathrm{P}\left(S_{t} \mid S_{t-1}\right) \prod_{t=1}^{T} \mathrm{P}\left(Y_{t} \mid S_{t}\right) \\
& =\boldsymbol{\delta} \mathbf{P}\left(Y_{1} \mid S_{1}\right) \boldsymbol{\Gamma} \mathbf{P}\left(Y_{2} \mid S_{2}\right) \boldsymbol{\Gamma} \ldots . \boldsymbol{\Gamma} \mathbf{P}\left(Y_{T} \mid S_{T}\right) \mathbf{1}^{\prime}
\end{aligned}
$$

HMM is parametrized by:

1. Initial state distribution $\boldsymbol{\delta} \in \mathbb{R}^{1 \times m}$
2. Conditional probability matrix $\mathbf{P}\left(Y_{t} \mid S_{t}\right) \in \mathbb{R}^{m \times m}$
3. Markov chain transition matrix $\boldsymbol{\Gamma} \in \mathbb{R}^{\mathbf{m} \times \mathbf{m}}$, with $\boldsymbol{\Gamma}_{j, k}=\mathrm{P}(S=k \mid S=j)$

State 1: Inactive (IA)/Rest
State 2: Moderately active (MA)
State 3: Highly active (HA)

Transition matrix

$$
\hat{\boldsymbol{\Gamma}}=\left(\begin{array}{lll}
0.945 & 0.055 & 0.000 \\
0.065 & 0.859 & 0.076 \\
0.000 & 0.140 & 0.860
\end{array}\right)
$$

Subject 9
Rest Amount: 7.16 hours; Center Rest Time: 4:16; Rhythm Index: 0.96

Subject 20
Rest Amount: 5.49 hours; Center Rest Time: 4:48; Rhythm Index: 0.53

Subject 42
Rest Amount: 9.43 hours; Center Rest Time: 2:53; Rhythm Index: 0.81

Subject 21
Rest Amount: 11.39 hours; Center Rest Time: 8:17; Rhythm Index: 0.79

Baseline Profile of Patient 13
rest amount: 8.76 hours; center rest time: $4: 05$; rhythm index: 0.63

Chemotherapy Profile of Subject 13
rest amount: 9.64 hours; center rest time: 2:20; rhythm index: 0.47

Q: Where modern mathematics might take me?

A: Here.

Jere Koskela

Offer holder visitor day, 18-19.03.2019

Where modern mathematics might take me?

Where modern mathematics might take me?

BARCLAYS CAPITAL

Summer 2010

Where modern mathematics might take me?

$$
\frac{\partial V}{\partial t}+\frac{1}{2} \sigma^{2} S_{t}^{2} \frac{\partial^{2} V}{\partial S_{t}^{2}}+r S_{t} \frac{\partial V}{\partial S_{t}}-r V=0
$$

Credit: https://www.gfmag.com/topics/global-banking/5-black-scholes-merton-and-algorithms

Where modern mathematics might take me?

- 2007

2008-2012

BARCLAYS
CAPITAL
Summer 2010 \&
2011

Where modern mathematics might take me?

Skorokhod Embeddings and Their Applications

Jere Koskela

Where modern mathematics might take me?

2012-2016

Mathematics and Statistics Centre for Doctoral Training

2016-2017

2017 -

Where modern mathematics might take me?

?

How you really make financial decisions

Psychologists have uncovered a wealth of behavioural biases in the way we make decisions under uncertainty.
We are not rational !

- Major banks (eg. Barclays) and investment managers (eg. BlackRock) have behavioural teams
- Government has a Behavioural Insights Team to provide policy recommendations
- Thinking Fast and Slow, D Kahneman (Nobel Prize, 2002)
- Nudge, R. Thaler (Nobel Prize, 2017)
- BBC2 Horizon programme "How you really make decisions"

How do Mathematics, Statistics and Probability contribute?

- Identify potential biases - Analyze data \& design statistical tests
- Develop stochastic models to capture human behaviour under biases: to explain and predict how we might behave - in particular, in a dynamic setting

Experimental and Empirical Evidence suggests....

Tend to prefer a certain $£ 500$ to a 50% chance of $£ 1000$ risk averse over gains
But prefer a 50\% chance of losing $£ 1000$ to a certain loss of $£ 500$ risk seeking over losses

Averse to gambles such as (£110, 50%; - £ $100,50 \%$) loss averse
Use reference points, mental accounts, framing
Delay realization of losses (relative to gains) - disposition effect

Why do people buy lottery tickets and insurance?

Tend to prefer a
$\frac{1}{1000}$ chance of $£ 5000$ to a certain $£ 5$
But prefer a certain loss of $£ 5$ to a $\frac{1}{1000}$ chance of losing $£ 5000$

We tend
to over-weight small probabilities

Dynamic Prospect Theory Models I

- Prospect theory was developed by Kahneman and Tversky (1979, 1992)
- We incorporate PT and especially probability weighting into stochastic trading models.
- Time-inconsistent behaviour emerges.

Dynamic Prospect Theory Models II

If we now make the grid finer and finer (continuous time) then....

- if we assume investors can "stick to their plans" then model can explain:
- Stop-loss strategies in markets
- Preference for right skewness
- Disposition effect
- ...the naive investor never stops \& gambles until the bitter end..... Casino gambling.....

What Research can I do as an Undergraduate? And Beyond?

Fourth year Integrated Masters (MMORSE) student Nikesh Lad analyzed individual investor behaviour with a very large dataset

- 158,000 accounts over a five year period.

Third year student Rosie Ferguson did an 8 week URSS project in Summer 2015.
Recent PhD student Alex Tse (now at Cambridge) worked on prospect theory models in financial trading.

Behavioural Biases in Financial Decision Making

Figue 7: ilumeraw sood price vapectory
Propensity to sell seems to be higher if the investor observed a historical high price of the stock price trajectory and is dependent an a number of factors.

Whether the stock is making a positive or negative return. - Selling occurs at a prompter rate for positive returns. - If the maximump price occurs at a time which is not close to when (Figure 5)
higher the median return - breateal chance a maximum price, the higher the median return - greater chance of experiencing
maxima of greater magnitudes [Figure 5] The type of investor.
-On average, active traders have shorter buy-to-sell holding times and yield lower returns.
Consistent with idea that active irvestment strategies can underperform passive strategies.
this behaviour time consistent?
Not in the dassical sense - large proportion of investors are selling stocks just below the maximum price and
price reashes some pre-determined level.

Bibliography

 European securities markets, 1990-95\%, The European Journal of Finance, (2001), 7(1): 1-21.
E.oris, N. and W. Xiong, "Realization utility," Journal of Financial Econornics, (2012), 104: 251-271.
Kahneman, D. and A. Tversky, "Prospect Theory: An Analysis of Decision under Risk," Econometrica, (1979), 47(2): 263-292. Odean, T_{0} "Are Investors Reluctant to Realise Their Losses?", The American Economic Review, (1998), 55(5): 1775-1799. - Shefrin, H. and M. Statman, "The Disposition to Sell Winners Too Early and Ride Losers Too Long: Theary and Evidence," The Journ
of finance, (1985), 40(3): 777.790. of Finance, (1985), 40|3): 7777-79.
d is worth two in the bush: On choice behaviour in an optimal stopping task* * 2014

Questions?

What next?

11:00-11:50 Talk \Risk and Predictability | Where Might Modern Mathematics Take Me?" Opportunity for questions.
Now Lunch Information about Careers, Funding, Admissions and Wellbeing.
13:00-13:45 Talk "How to solve it? Examples from STEP and A-level papers", Opportunity for questions. (Alternative event for accompanying persons: Welfare talks)
14:00-15:20 Campus tour led by current students / Small group meetings with academic staff
15:20- Tea, and more information

